
Appendix — Aware of the History: Trajectory
Forecasting with the Local Behavior Data

Yiqi Zhong1[0000−0002−0928−8018], Zhenyang Ni2[0000−0001−7134−620X], Siheng

Chen2,
⋆
[0000−0001−6199−529X], and Ulrich Neumann1,

⋆
[0000−0001−8977−7112]

1 University of Southern California, Los Angeles, CA 90089, USA
{yiqizhon,uneumann}@usc.edu

2 Shanghai Jiao Tong University, Shanghai, China
{0107nzy,sihengc}@sjtu.edu.cn

A Dataset Construction

In this work, we use two widely used autonomous driving benchmark: nuScenes[1]
and Argoverse[2]. Here we describe how we derive local behavior data from each
dataset for the experiments use.

A.1 nuScenes

nuScenes collects scene from four different places from Singapore and Boston,
USA. The four places are labeled as singapore-onenorh, boston-seaport, singapore-
queenstown and singapore-hollandvillage by the dataset. For each data split, we
collect all the 2-second observed trajectories in the four places separately to
build the behavior database DB. Since the sample rate of nuScenes is 2Hz, each
2-second observed trajectory suppose to have two-dimensional coordinates at
5 timestamps. However, in the dataset, there are missing timestamps for some
observed trajectories. To make the learning procedure more stable, we only pick
the observed trajectories those have no missing data. Meanwhile, we also filter
out the static trajectories (whose speed is lower than 2m/s). Table 1 shows the
size of the behavior database for each data split in nuScenes dataset.

Table 1. The number of historical observed trajectories contained in the behavior
database for each location in nuScenes dataset. We build the database for each split
separately to simulate the real-world scenario.

Location Label train val test

singapore-onenorth 92893 54878 50570
boston-seaport 708527 226813 163812

singapore-queenstown 59702 3696 26568
singapore-hollandvillage 92924 N/A 7340

⋆ Corresponding authours



2 Y. Zhong et al.

A.2 Argoverse

Argoverse collects data from Pittsburgh and Miami. We build the behavior DB
for each city of each data split using the all 2-second observed trajectories cor-
respondingly. In argoverse, since the sample rate is 10Hz, for each 2-second
observed trajectory, there are 20 timestamps geometric position data. Similar to
what we do for nuScenes, we only pick the observed trajectory that has no un-
available timestamp and whose average speed is larger than 2m/s. The statistic
of the behavior database size is shown in Table 2

Table 2. The number of historical observed trajectories contained in the behavior
database for each location in Argoverse dataset.

Location train val test

Miami 1532574 281809 538004
Pittsburg 980827 162470 583311

B Implementation

We pick three SOTA methods for implementation. The implemented works in
our paper are all based on existing official code packages. We only modify the
scene encoder related modules while remain the other parts exactly
the same as the baseline methods, including the decoders and the encoders for
HD maps and motion data. For the LBF training, the network parameters are
randomly initialized by pytorch, i.e. we did not use LBA teacher network as the
initialize ion.

B.1 LaneGCN[5]

Implementation details: We upgrade LaneGCN to Local-Behavior-Aware and
Local-Behavior-Free framework based on their official code (https://github.com/uber-
research/LaneGCN). During the training, on both nuScenes and Argoverse dataset,
we use 2 NVIDIA GeForce RTX 3090 GPUs with the batch size of 32. The initial
learning rate is 1e-3 and will decay to 1e-4 at epoch 32. The total training epoch
number is 36. We replicate the exact training scheduler of the LaneGCN listed
in the readme file of their official code package. We use ϵ = 0.5 and λkd = 1.5 as
the default setting.

Dataset Preprocessing: For the argoverse dataset, we use their official
code to generate the preprocessed data, including the lane graph and the mo-
tion data. For the nuScenes dataset, we follow the instruction in their paper[5],
generating the lane graph using the lane information from nuScenes dataset. In
the nuScenes, besides the lane information, there are also other map objects like
sidewalks. Because in the LaneGCN paper, there is no indication for how to



Aware of the History: Trajectory Forecasting with the Local Behavior Data 3

process those map objects, we decide to ignore them during our data prepro-
cessing. It may explain that why the baseline performance of the LaneGCN on
nuScenes (See Table 1 in the paper) is not as good as it shows on Argoverse. It
also explains by the boost brought by the local behavior data is significant even
compared to other methods: local behavior data provide extra complementary
information to the system.

Network Architecture: We show the architecture of the implementation
on LaneGCN based framework in Figure 1.

Fig. 1. LaneGCN Network Architecture

In the network architecture drawn in the figure, B2A is the auxiliary fusion
module for LBF framework. When applied knowledge distillation loss, we use
the output of B2A, output of A2A II from the LBF as Fs and the output of B2A
and the output of A2A as Ft. In the Table 4 of the paper, to do the abalation
study, we pick an intermediate layer inside the PredNet as the third supervised
feature for comparison.

Detailed inner structure of behavior encoder, behavior estimator and auxil-
iary fusion module B2A are in Figure 2

B.2 DenseTNT[4]

Implementation Details. In the experiment of DenseTNT, we adopt their of-
ficial code package from https://github.com/Tsinghua-MARS-Lab/DenseTNT.
We use ϵ = 0.5 and λkd = 1.5 as the default setting. We use 8 NVIDIA GeForce
RTX 3090 GPUs with a batch size of 64 for training. Different from their paper
which claims a two-stage training strategy, in their official code, they train the
network in a end-to-end style. We adopt the training strategy in the official code
and set the learning rate with an initial value of 0.001 decays to 30% every 5
epochs. The total training epoch number is 30. The hidden size of the feature



4 Y. Zhong et al.

Fig. 2. Innter structure of important module in LaneGCN implementation

vectors is set to 128. The head number of our goal set predictor is 12. No data
augmentation is used.

Dataset Preprocessing: We directly use their preprocess code to process
the Argoverse dataset.

Network Architecture: We show the implemented architecture of DenseTNT
in Figure 3. The inner architecture of behavior estimator and the behavior en-
coder are identical to the ones in the LaneGCN, which is shown in Figure 2. In
the training of LBF framework ,Fs includes the output of Behavior estimator
and the output of Dense goal encoder while Ft contains the target goal fea-
tures of the Sparse context encoder and the output of the Dense goal encoder
correspondingly.

B.3 P2T[3]

Implementation Details: The implementation of P2T is based on their pub-
lished code package https://github.com/nachiket92/P2T. For the baseline result,
we directly use their released pre-trained model which is included in their code
package. We use one NVIDIA GeForce 1080 Ti GPU for training and the batch
size is 32. P2T trains the network in a three-stage style. It first trains a reward
network for 25 epochs with the learning rate as 1e-4 and then trains a coarse
trajectory predictor for 100 epochs whose learning rate is 1e-3. Afterwards, it



Aware of the History: Trajectory Forecasting with the Local Behavior Data 5

Fig. 3. DenseTNT Implementation Architecture

will train a finetuned trajectory predictor for 400 epochs with the learning rate
of 1e-4. We directly follow the default training strategy stated in the official code
package for the network training.

Dataset Preprocssing: We use the provided preprocess code to generate
rasterization of map images for each data sample. For the behavior probability
maps, we use the equation:

P(i,p)
B (x, y) =

P(i,p)
B (x, y)

max(P(i,p)
B (x, y))

, (1)

which is stated in the paper to generate each probability map.

Network Architecture: P2T uses reinforcement learning to solve the pre-
diction problem. Since we only modify the scene encoder part, in Figure 4, we
only shows the detailed modification in the encoder part and skip the description
of the reward model and the decoder. The behavior encoder is one linear layer
with activation and the output channel is 16. The behavior estimator is imple-
mented as stacked 3-layer-conv2D structure, the kernel size is 1 and the output
feature channel is 16. During the training of LBF framework, we apply KD loss
on the output of the behavior estimator as well as the input of the Decoder.



6 Y. Zhong et al.

Fig. 4. Implementation of P2T

C Extensive Discussion

C.1 Practicability.

When introducing a new data source to trajectory forecasting, researchers should
evaluate its accessibility in real-world applications. Our experiments use a col-
lection of available agents’ observed trajectories in each dataset to build the
behavior database DB. The datasets used in this work both contain the global
coordinates for each recorded trajectory. This property of the datasets enables
us to mount the trajectories to the physical location on the global map, which
is fundamental to the concept of local behavior data. Judging our framework
in real-world applications, the global coordinates of the map and the agents are
relatively easy to retrieve through techniques such as the Global Positioning Sys-
tem (GPS). Once the global coordinates are retrieved, gathering local behavior
data in the real world becomes feasible.

Furthermore, we argue that in the real-world application, the benefit brought
by the local behavior data will be even more significant, since the behavior data
gathering procedure in can last longer time and collect more data. Despite the
improvement brought by the local behavior data in our experiments on the
published datasets, in the Argoverse training split, there are still 5% of agents
have no available local behavior data.

C.2 Local Behavior Information Visualization

In this paper, we exploit the local behavior data from the perspective of agent
current locations. To more clearly visualize the information hidden in the local
behavior data, here we show visualizations of the local behavior data for every
lane segment on the map, see Figure 5.



Aware of the History: Trajectory Forecasting with the Local Behavior Data 7

In the figure, we focus on the visualization of two types of the information, one
is the average speed of the trajectories collected from each lane segment and the
other is the ratio of the trajectories that show turning actions (including turning
and the lane changing). From the visualization we can see besides the location-
specific information that is hidden in the local behavior data, such as the speed
limit, there are more interesting information that worth further exploit. Those
information includes some implicit rules of human driving behaviors that are
hard to be learnt by limited number of observed trajectories, such as the turning
intentions are much higher for the agents on the lanes that have intersections
ahead even if the lane does not directly lead to a right-turn lane or left-turn
lane.

Fig. 5. Visualization of the local behavior data for each lane segment.

D Additional Experiments

D.1 Ablation study on LBF system design.

The LBF system has three factors: if using i) knowledge distillation (KD), ii)
LBA as the teacher net in KD (to provide local behavior features guidance),
iii) behavior estimator. Tab 3 studies each factor for LaneGCN on Argoverse,
and it shows: i) A surpassed baseline (self-KD is effective); ii) B surpassed A
(local behavior features from LBA network are effective), iii) C surpassed B (the
behavior estimator is effective).



8 Y. Zhong et al.

Method KD Behavior Estimator minADE1 minFDE1

baseline no teacher 1.71 - 3.78 -
A self-KD 1.66↓ 3% 3.67↓ 3%
B LBA as teacher 1.65↓ 3% 3.63↓ 4%

C (LBF) LBA as teacher ✓ 1.60↓ 6% 3.54↓ 6%
Table 3. Each of three factors counts validated on Argo test split

D.2 Comparison with memory-based method.

Table 4 shows that the proposed LBA/ LBF significantly outperform SOTA
memory-based method, MANTRA[6], on Argoverse test split (numbers from
its original paper). As mentioned in Sec 2, previous memory-based methods
also leverage historical info, but three major differences mark the novelty of
our work: i) we directly use historical trajectories as system input to avoid
information loss, ii) we explicitly emphasize the spatial locality, iii) based on
knowledge distillation, LBF does not need extra input while a memory-based
method needs to store a huge memory bank.

Method minADE1 ↓ minFDE1 ↓ minADE6 ↓ minFDE6 ↓
MANTRA 2.36 - 5.31 - 1.22 - 2.30 -

LaneGCN-LBA (ours) 1.62 ↓ 30% 3.58 ↓ 33% 0.84 ↓ 31% 1.30 ↓ 43%
LaneGCN-LBF (ours) 1.60 ↓ 32% 3.54 ↓ 33% 0.85 ↓ 30% 1.31 ↓ 43%
Table 4. Proposed LBA and LBF systems outperform MANTRA.

D.3 Performance gains along the time

In our paper, we only use the a few second local behavior data to avoid data
snooping and for fair comparison. But in practice, by “local,” local behavior
data just means the data’s starting position is at an agent’s current location;
such data can be a long trajectory reflecting long-term behavior. We want to
demonstrate the potential of the local behavior data for long-term prediction in
real world application by using fig 8 to show that more gain from local behavior
data as prediction time goes on. One reason is that as real human behavior
recordings, local behavior data can suppress error accumulation in a prediction
model.



Aware of the History: Trajectory Forecasting with the Local Behavior Data 9

Fig. 8. Performance gain from LaneGCN-LBF compared to the baseline LaneGCN on
Argoverse val set

References

1. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. In: Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition. pp. 11621–11631 (2020)

2. Chang, M.F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D.,
Carr, P., Lucey, S., Ramanan, D., et al.: Argoverse: 3d tracking and forecasting with
rich maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 8748–8757 (2019)

3. Deo, N., Trivedi, M.M.: Trajectory forecasts in unknown environments conditioned
on grid-based plans. arXiv preprint arXiv:2001.00735 (2020)

4. Gu, J., Sun, C., Zhao, H.: Densetnt: End-to-end trajectory prediction from dense
goal sets. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 15303–15312 (2021)

5. Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S., Urtasun, R.: Learning lane
graph representations for motion forecasting. In: European Conference on Computer
Vision. pp. 541–556. Springer (2020)

6. Marchetti, F., Becattini, F., Seidenari, L., Bimbo, A.D.: Mantra: Memory aug-
mented networks for multiple trajectory prediction. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7143–
7152 (2020)


	Appendix — Aware of the History: Trajectory Forecasting with the Local Behavior Data

