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A Methodology Details

A.1 Semi-supervised Training

In this work, we explore the spectrum between totally supervised (100% labeled)
and totally unsupervised (0% labeled) training. The question is: what is the
intermediate state of semi-supervised learning if we have exactly a fraction r of
training samples labeled (0 < r < 1)? Intuitively, the performance should be
monotonically increasing when we increase the label ratio r.

Specifically, the most ideal setting requires us to find a semi-supervised learn-
ing scheme that

– trains using the information of all labeled and unlabeled samples at the same
time, and

– is continuous at r = 0 (unsupervised) and r = 1 (supervised), i.e. , if we set
r = 0, it should be equivalent as the current unsupervised learning pipeline,
and if we set r = 1, it should be equivalent as the fully supervised setting.
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We want to define our semi-supervised setting as a smooth transition between
the supervised and unsupervised settings. The naive solution is to train a fixed
neural network architecture with a semi-supervised loss that works differently
for the labeled and unlabeled samples. For example,

ℓsemi(x) =

{
ℓunsup(x), if x is unlabeled,
αℓsup(x), otherwise,

(1)

where α > 0 is the coefficient to balance the two different losses. We then have
the final loss term

Lsemi =
∑
x∈D

ℓsemi(x) =
∑

x∈Du

ℓunsup(x) + α
∑
x∈Dl

ℓsup(x),

where Du and Dl are the unlabeled and labeled sample set, and D = Du ∪ Dl.
Under this setting, the label ratio is r = |Dl|/(|Du|+ |Dl|), and changing r from
0 to 1 will change the setting smoothly from unsupervised to supervised.

However, one concern with this setting is that we need to fix the same dataset
D for all experiments with varying 0 ≤ r ≤ 1, but the datasets used in current
state-of-the-art supervised and unsupervised methods are usually different. For
example, to get the best results on the Sintel dataset [1], unsupervised methods
first train on the Sintel raw movie dataset and then fine-tune on Sintel. How-
ever, the latest supervised methods usually first train on the FlyingChairs [2]
and FlyingThings3D [7] datasets before training on the small Sintel set. This
difference in dataset is important to notice because it is one of the advantages of
unsupervised learning that it can use much more data (probably from the same
data distribution as the test data) than supervised training.

In light of the problem mentioned above, we decide to use the unsupervised
datasets as our data in the semi-supervised training. There are mainly two rea-
sons. First of all, the label ratio can be very low in daily practice, so defining
our setting closer to the unsupervised setting may be more practical. Second,
the unsupervised training is harder to converge than the supervised training be-
cause of the lack of supervisory signals, so using a framework that is closer to
the unsupervised training may be better for convergence in both scenarios.

Another concern is in the training schedule. In the setting defined above, we
only have one stage of training that use all labeled and unlabeled samples in
the same stage. Another option is to split to two stages, one unsupervised stage
using all unlabeled samples (similar as a pre-training stage) and a supervised
stage using the labeled samples. We discuss the pros and cons of both schedules
in Sec. B.3.

A.2 Network Choice: Why ARFlow? Why Not RAFT?

We found that RAFT is not appropriate to be tested at this stage because it has
been mostly proven to work in the supervised setting, but our semi-supervised
flow is actually much closer to the unsupervised setting in the following two
ways.
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– Our label ratio is very low (5-10%), which is almost unsupervised. The su-
pervision signal is extremely sparse.

– Our first training stage is unsupervised, so the model is initialized in an
unsupervised way.

Therefore, a reliable unsupervised base model is preferred in our setting. This is
why we choose ARFlow [5] (unsupervised SOTA) instead of RAFT [11] (super-
vised SOTA).

Admittedly, there is recent work [10] on unsupervised versions of RAFT.
However, this work is based on multi-frame inputs, and it also adds too much
complexity (such as self-supervision) into the model, so we do not think it is the
right time to move towards RAFT now. However, we do agree that it is worth
trying in the future once a simple and reliable unsupervised appraoch for RAFT
is available.

B Experiment Details

B.1 Summary of Available Datasets

Official Datasets We train and evaluate our method on two large synthetic
datasets, FlyingChairs [2] and FlyingThings3D [7], as well as two more realistic
datasets, Sintel [1] and KITTI [3,8].

FlyingChairs [2] and FlyingThings3D [7] consist of image pairs generated by
moving chairs or everyday objects across the background images along random-
ized 3D trajectories. These two datasets are large but unrealistic, so they are
usually only used to pre-train supervised networks.

Sintel [1] is a challenging benchmark dataset obtained from a computer-
animated movie. This dataset is closer to real-life scenes as it contains fast mo-
tions, large occlusions, and many realistic artifacts like illumination change and
fog or blur. It provides both clean and final passes with corresponding dense
optical flow labels. Apart from that, the unlabeled raw movie frames have also
been used in many recent unsupervised work [6,5].

KITTI dataset was first released in 2012 [3] and extended in 2015[8]. The
dataset contains frame pairs of road scenes from a camera mounted on a car.
Sparse optical flow labels are provided using 3D laser scanner and egomotion
information. KITTI raw frames with no labels are also available and used in
unsupervised training [9,5,12].

Tab. 1 summarizes the dataset information. We have excluded the labeled
samples from the raw Sintel and KITTI dataset, so all splits in the table are
disjoint.

Our Data Splits We cannot test our model using the official KITTI and
Sintel test set for all the experiments since the website restricts the number
of submissions. We test on the official test set only for the major final models in
our paper. Thus, we need to split our own validation set from Sintel and KITTI.
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Table 1. Available official datasets for optical flow estimation.

Dataset Split # of samples Labeled?

FlyingChairs
train 22,232 ✓

val 640 ✓

FlyingThings3D
train 19,621 ✓

val 3,823 ✓

Sintel
raw 12,466 ✗

clean 1,041 ✓

final 1,041 ✓

KITTI
raw 27,858 ✗

2012 194 ✓

2015 200 ✓

Table 2. Our train/val split of Sintel and KITTI

Dataset Our train split # train samples # val samples

Sintel clean+final

alley 1, ambush 4, ambush 6,

1082 1000
ambush 7, bamboo 2, bandage 2,

cave 2, market 2, market 5,
shaman 2, sleeping 2, and temple 3

KITTI 2015+2012 first 150 samples for each 300 94

Our own train/val split is shown in Tab 2. For Sintel, as suggested in the
official implementation of ARFlow [5], we split the following folders of both
clean and final passes as our train split of Sintel: alley 1, ambush 4, ambush 6,
ambush 7, bamboo 2, bandage 2, cave 2, market 2, market 5, shaman 2, sleeping 2,
and temple 3. For KITTI, we take the first 150 samples in each of the 2015 set
and 2012 set as our train split and the rest as our val split.

B.2 Data Augmentation Parameters

The data augmentation parameters in our experiments are summarized in Tab. 3.
Our data augmentation implementations are borrowed from the official code base
of ARFlow [5] and RAFT [11]. We use ColorJitter from the torchvision.transforms
package to implement the appearance transformations. In addition, “gamma”
means raising the normalized image color value (between 0 and 1) to a power
sampled between 0.7 and 1.5 uniformly, and “gblur” means applying gaussian
blur with radius 3 with probability 0.5.

B.3 Training Schedule Design

Three options of the training pipelines are listed below. We now explain and
discuss them one by one.

A. train on all data (semi-sup)
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Table 3. Data augmentation parameters

FlyingChairs FlyingThings3D Sintel KITTI

Cropping 384× 448 384× 768 384× 768 320× 960

Rescaling ✗ ✗
scale ∈ [2−0.2, 20.6]

✗
with prob. 0.8

Horizontal flip with prob. 0.5 with prob. 0.5 with prob. 0.5 with prob. 0.5

Appearance

brightness = 0.5 brightness = 0.5 brightness = 0.4 brightness = 0.3
contrast = 0.5 contrast = 0.5 contrast = 0.4 contrast = 0.3
saturation = 0.5 saturation = 0.5 saturation = 0.4 saturation = 0.3

hue = 0 hue = 0 hue = 0.16 hue = 0.1
gamma = True gamma = True gamma = True gamma = False

gblur = True gblur = True gblur = True gblur = True

B. train on all data (unsup) → query partial labels from all data → train on
all data (semi-sup)

C. train on non-candidate set (unsup) → query partial labels from candidate
set → train on candidate set (semi-sup)

A one-stage training schedule (option A) can be used if our goal is only
to visualize the change of performance when we gradually increase the label
ratio from 0 to 1. We can simply train on the full dataset with partial labels
using the semi-supervised loss in one stage. Thus, we use this setting in our first
experiment to draw the label ratio-validation error curves. We randomly shuffle
and mix labeled and unlabeled samples in mini-batches to stabilize our training.
However, this assumes that the partial labels have to be assigned before training
independent of the model and thus may be naive compared with the other two
options, which use active learning.

Now, we want to explore a semi-supervised training pipeline where the labels
are assigned during the training. This has to be a pipeline of at least two stages
because we need to query labels at some point in the process. Specifically, as
shown in option B, we first have a totally unlabeled dataset, so we train our first
model using the unsupervised loss. Then, based on the current trained model,
we pick a part of the dataset that can help the current model most to query
labels. Subsequently, we continue training using the semi-supervised loss. This
reflects a workflow that can be applied in real practice so that the researchers
only need to pay for the partial labels that can help the most. Note that we can
easily change the pipeline to query labels multiple times by stacking more stages
in the end.

One problem for option B is that it assumes every sample can be labeled.
However, in real life, it is possible that only a subset of the original dataset
can be labeled. For instance, labeling the ground-truth flow of an autonomous
driving dataset (like KITTI) requires lidar sensors deployed when the videos are
collected. If a raw video does not have the corresponding lidar information, it
cannot be labeled but can still be used in the unsupervised part of training.
Therefore, a more general setting is to define a candidate set to indicate those
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samples that can be labeled. Note that we can always split the full dataset
manually to a candidate and a non-candidate splits even if every sample is eligible
to get the label, which actually brings benefits in generalization as we will discuss
next.

After splitting the dataset to a candidate and a non-candidate set, we can
define the pipeline as in option C above. We first do unsupervised training on
the non-candidate set and then use the current model to select samples out of
the candidate set to get labels. This is beneficial because the model has not seen
the candidate set in its first stage of unsupervised training. This can help add
generalization ability because when we select samples to label, we are actually
validating the current model on the new unseen candidate set. The selected
samples are thus the ones that can help the current model generalize the most.
This is why we stick to option C as our experiment settings in all the experiments
on KITTI and Sintel.

Experiments on semi-supervised training (drawing the label ratio-
validation error curves) Since our interest in this experiment is to see how
the error changes when we assign different ratios of labels, we first use the sim-
plest training schedule (option A) on two toy datasets, FlyingChairs and Fly-
ingThings3D, to plot the whole figure. The experiment settings are as follows.

– FlyingChairs: train on the train split (semi-sup), evaluate on the val split
– FlyingThings3D: train on the train split (semi-sup), evaluate on the val split

Subsequently, we also would like to see the curve on two regular datasets,
Sintel and KITTI, but since a large part of the data (raw dataset) is not labeled,
we have to pre-train on those data in an unsupervised manner. This fits into
the reason for specifying a candidate set, where only part of the data we have
in hand are eligible to query labels. Moreover, to better fit the state-of-the-art
unsupervised training schedule, we adopt option C as our training schedule.
For Sintel and KITTI, we assign our train split as the candidate set, and the
large unlabeled data (raw sets) as the non-candidate set1, yielding the following
training schedules.

– Sintel: train on raw Sintel videos (unsup) → randomly select and assign
labels for our train split → train on our train split (semi-sup) → evaluate
on our val split.

– KITTI: train on raw KITTI videos (unsup) → randomly select and assign
labels from our train split → train on our train split (semi-sup) → evaluate
on our val split.

Experiments on our active learning algorithms We consider many heuris-
tics as the algorithms to select samples to label. We use Sintel and KITTI
datasets and apply the same training schedule as in the previous experiments.

1 We are not using the KITTI multi-view extension set for simplicity.
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clean final label

𝑐! 𝑓! 𝑙!
𝑐" 𝑓" 𝑙"

(a) Sampling in pairs

clean final label

𝑐! 𝑓! 𝑙!
𝑐" 𝑓" 𝑙"

(b) Sampling separately

Fig. 1. Examples of two different sampling methods on Sintel

The only difference is that we now use our algorithms to select samples to label
instead of random selection.

– Sintel: train on raw Sintel videos (unsup) → apply our active learning al-
gorithms to select and assign labels for our train split → train on our train
split (semi-sup) → evaluate on our val split.

– KITTI: train on raw KITTI videos (unsup) → apply our active learning
algorithms to select and assign labels from our train split → train on our
train split (semi-sup) → evaluate on our val split.

B.4 A Special Note on Sintel Label Queries in Pairs

When we run experiments on Sintel, the same set of labels are provided for both
clean and final pass input frames, since the final pass is simply another rendering
of the same content with more realistic artifacts like motion blur. In other words,
we always ensure that the corresponding clean and final samples are either both
labeled or both unlabeled. The reasons are as follows.

In our project, we want to investigate the trade-off between model perfor-
mance and annotation costs. We use label ratio r to represent annotation cost, so
we need to make sure that the total fraction of labels needed in our experiment
is consistent with the label ratio r. A simple example is shown in Fig. 1. Suppose
we have a tiny training set of only two clean-final pairs (c1, f1) and (c2, f2), and
we set the label ratio r = 0.5. We have a total of four samples, so we need to
select two of them to be labeled. If we sample clean and final images in pairs (as
it is done in our experiments), the results may be like in Fig. 1(a), where only
l1 (a half of the label set, consistent with r = 0.5) is needed in the experiment.

However, if we select clean and final samples separately, the selection may
be like Fig. 1(b). In this case, c1 and f2 are selected to be labeled, so both l1
and l2 are needed. This is inconsistent with r = 0.5 because 100% of the label
set is needed, meaning that the annotation cost here is 100%. Therefore, the
label ratio r here does not represent the actual annotation cost needed in the
experiment. Even though the labels are not used during 100% of the training
time (e.g. , l1 is not used when we train with f1), we still need to pay full cost for
annotating l1 and l2. Thus, this alternative sampling method does not support
our investigation since r does not reflect the annotation cost accurately.

Another option may be to use only one split (clean or final) for the exper-
iments, i.e. , training one semi-supervised model only on the clean split and
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Table 4. Validation error for semi-supervised training on different datasets

Label ratio r
FlyingChairs Sintel

EPE/px clean EPE/px final EPE/px

0 3.066(±0.044) 1.906(±0.013) 2.933(±0.010)

0.05 2.369(±0.033) 1.850(±0.014) 2.828(±0.020)
0.1 2.091(±0.046) 1.776(±0.018) 2.710(±0.023)
0.2 1.803(±0.018) 1.691(±0.011) 2.598(±0.022)
0.4 1.653(±0.037) 1.643(±0.014) 2.349(±0.031)
0.6 1.560(±0.039) 1.625(±0.008) 2.281(±0.022)
0.8 1.550(±0.043) 1.581(±0.015) 2.281(±0.015)

1 1.439(±0.052) 1.651(±0.018) 2.290(±0.013)

Label ratio r
FlyingThings3D KITTI

EPE/px 2012 Fl/% 2015 Fl/%

0 12.037(±0.500) 5.827(±0.057) 12.742(±0.090)

0.05 10.588(±0.444) 5.525(±0.038) 11.462(±0.088)
0.1 10.205(±0.694) 5.325(±0.042) 11.030(±0.128)
0.2 9.584(±0.132) 5.137(±0.050) 10.357(±0.096)
0.4 8.395(±0.307) 4.899(±0.036) 10.109(±0.087)
0.6 8.296(±0.154) 4.973(±0.049) 9.947(±0.150)
0.8 7.833(±0.152) 4.709(±0.057) 9.784(±0.134)

1 7.876(±0.283) 4.562(±0.047) 9.448(±0.134 )

another model only on the final split. This also solves the problem above that
the label ratio r does not reflect the true annotation cost. Nevertheless, this
setting is largely different from most of the previous work, where both clean and
final images are used to train one model that works on both passes at the same
time. In this case, we are not able to compare with previous results. Such com-
parisons are crucial because we want to show that our semi-supervised models
are significantly better than the state-of-the-art unsupervised models and also
close to the supervised results.

C More Data and Results

C.1 Raw Validation Data

Our raw data values are shown in Tabs. 4 and 5. All pseudo error bars are
obtained by taking the standard deviations in the last 50 epochs or 50k iterations.
Semi-supervised training validation errors (Fig. 2 in the paper) are shown in
Tab. 4, and active learning validation errors (Fig. 3 in the paper) are shown in
Tab. 5.

C.2 Benchmark Qualitative Results

Some qualitative results are shown in Fig. 2. We can see that our active learning
method is especially effective at hard sequences like “ambush”, “cave”, “market”
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Table 5. Active learning validation errors, mean and std

Label ratio r Method
Sintel

clean EPE/px final EPE/px

0 - 1.906 (±0.013) 2.933 (±0.010)

random 1.850 (±0.014) 2.828 (±0.020)
0.05 photo loss 1.807 (±0.010) 2.731 (±0.015)

occ ratio 1.767 (±0.019) 2.693 (±0.017)
flow grad norm 1.797 (±0.017) 2.770 (±0.016)

random 1.776 (±0.018) 2.710 (±0.023)
0.1 photo loss 1.706 (±0.006) 2.541 (±0.018)

occ ratio 1.686 (±0.013) 2.515 (±0.018)
flow grad norm 1.696 (±0.009) 2.545 (±0.017)

random 1.691 (±0.011) 2.598 (±0.022)
0.2 photo loss 1.639 (±0.010) 2.383 (±0.025)

occ ratio 1.643 (±0.013) 2.373 (±0.018)
flow grad norm 1.631 (±0.016) 2.299 (±0.019)

1 - 1.651 (±0.018) 2.290 (±0.013)

Label ratio r Method
KITTI

2012 Fl/% 2015 Fl/%

0 - 5.573 (±0.056) 12.062 (±0.153)

random 5.363 (±0.080) 11.456 (±0.158)
0.05 photo loss 5.477 (±0.032) 11.705 (±0.112)

occ ratio 5.256 (±0.040) 10.689 (±0.101)
flow grad norm 5.353 (±0.047) 10.994 (±0.171)

random 5.273 (±0.034) 10.480 (±0.108)
0.1 photo loss 5.175 (±0.040) 10.441 (±0.087)

occ ratio 5.170 (±0.043) 10.148 (±0.110)
flow grad norm 5.159 (±0.039) 10.880 (±0.135)

random 5.021 (±0.061) 9.962 (±0.096)
0.2 photo loss 4.934 (±0.033) 9.759 (±0.140)

occ ratio 4.929 (±0.043) 9.736 (±0.147)
flow grad norm 4.837 (±0.046) 9.731 (±0.122)

1 - 4.446 (±0.034) 8.545 (±0.086)

and “temple”, and less effective at easy sequences where errors are already very
small even for the unsupervised model. KITTI qualitative results are also shown
in Fig. 3, where the differences are less visible with the naked eye.

C.3 Analysis on More Uncertainty Scores

We have also tried more metrics with heuristics defined as below.

– flow norm: the 2-norm of the estimated flow vectors averaged across the
frame, used to reflect large motions.

– img grad norm: the magnitude of gradients of the input images, used to
reflect edges in the scene
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– texture score: used to evaluate whether the input images have good tex-
tures (high scores for good textures); computed based on Good Features to
track [4]. We select 16*16 windows with stride=8. For each window, we com-
pute the Z matrix for each pixel from image gradients and add them up to
get a summed 2-by-2 positive semi-definite symmetric matrix. We compute
the smaller eigenvalues (must positive) of the matrix for each window and
take the average.

– color change: used to indicate illumination change. We compute the color
histogram for each RGB channel as well as its cumulative distribution. We
compute the distances between the cumulative distributions of the first and
second frames and take average across the RGB channels.

– param grad norm: the norm of the loss gradients with respect to the network
parameters. Intuitively, if a sample contributes large gradients to the net-
work, it is likely that this sample does not fit well with the current network,
so it may need labels.

– max corr vol : the maximum value of the correlation volume at each pixel av-
eraged across the whole frame. We use the correlation volume at the second-
level decoder here. Intuitively, a large maximum correlation volume means
that the pixel has a good match within the window, so the error may be
small.

We plot similar correlation matrices (as the ones in the last part of the
main paper) with all our metrics in Fig. 4. We can see that all metrics are
more or less consistent with our intuitions. Note that the “img grad norm” and
“texture score” are negatively correlated with the errors because larger values
indicate better textures and thus smaller estimation errors. Also, “max corr vol”
is negatively correlated because larger values indicate better matches found for
the first image pixels. From Fig. 4, we can see that the metrics that are more
correlated with the errors are “occ ratio”, “flow grad norm”, “photo loss”, which
are then used in our experiments.

Comparing the Sintel correlation matrix (Fig. 4(a)) from that of KITTI
(Fig. 4(b)), we can see that the Sintel metrics are generally more correlated
with the errors, whereas KITTI metrics are generally less effective in detecting
the samples of large errors. Especially for the texture related scores like “img
grad norm” and “texture score”, Sintel errors have correlations around 0.5, but
KITTI errors are almost independent of the sample errors. We guess it may be
because KITTI can already achieve pretty decent results by merely learning the
flow distribution patterns (the looming motion), so it does not have to track
every patch closely.
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alley_2/frame_0020 gt_flow unsup
epe=0.36

semi-sup (rand, r = 0.1)
epe=0.33

semi-sup (occ, r = 0.1)
epe=0.33

sup
epe=0.23

ambush_2/frame_0010 gt_flow unsup
epe=25.50

semi-sup (rand, r = 0.1)
epe=24.21

semi-sup (occ, r = 0.1)
epe=20.81

sup
epe=15.37

ambush_5/frame_0031 gt_flow unsup
epe=10.93

semi-sup (rand, r = 0.1)
epe=10.26

semi-sup (occ, r = 0.1)
epe=7.57

sup
epe=8.31

bamboo_1/frame_0048 gt_flow unsup
epe=0.55

semi-sup (rand, r = 0.1)
epe=0.52

semi-sup (occ, r = 0.1)
epe=0.54

sup
epe=0.62

bandage_1/frame_0020 gt_flow unsup
epe=0.67

semi-sup (rand, r = 0.1)
epe=0.60

semi-sup (occ, r = 0.1)
epe=0.63

sup
epe=0.50

cave_4/frame_0047 gt_flow unsup
epe=9.05

semi-sup (rand, r = 0.1)
epe=8.75

semi-sup (occ, r = 0.1)
epe=7.42

sup
epe=7.07

market_6/frame_0032 gt_flow unsup
epe=6.09

semi-sup (rand, r = 0.1)
epe=5.96

semi-sup (occ, r = 0.1)
epe=4.42

sup
epe=3.52

mountain_1/frame_0005 gt_flow unsup
epe=0.38

semi-sup (rand, r = 0.1)
epe=0.28

semi-sup (occ, r = 0.1)
epe=0.33

sup
epe=0.31

shaman_3/frame_0020 gt_flow unsup
epe=0.25

semi-sup (rand, r = 0.1)
epe=0.26

semi-sup (occ, r = 0.1)
epe=0.25

sup
epe=0.22

temple_2/frame_0019 gt_flow unsup
epe=9.16

semi-sup (rand, r = 0.1)
epe=8.48

semi-sup (occ, r = 0.1)
epe=7.98

sup
epe=7.27

Fig. 2. Qualitative results on Sintel. Examples selected form our final pass validation
split. Columns from left to right: the first frame image, the ground-truth flow, the
unsupervised model prediction, the (random) semi-supervised model prediction (label
ratio r = 0.1), our active learning model prediction (label ratio r = 0.1), the supervised
model prediction. EPEs are shown in the subtitles.
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kitti2015/flow/000158_10 gt_flow unsup
epe=2.51

semi-sup (rand, r = 0.1)
epe=2.13

semi-sup (occ, r = 0.1)
epe=1.71

sup
epe=1.46

kitti2015/flow/000163_10 gt_flow unsup
epe=1.70

semi-sup (rand, r = 0.1)
epe=1.73

semi-sup (occ, r = 0.1)
epe=1.54

sup
epe=1.35

kitti2015/flow/000169_10 gt_flow unsup
epe=1.96

semi-sup (rand, r = 0.1)
epe=1.75

semi-sup (occ, r = 0.1)
epe=1.73

sup
epe=1.07

kitti2015/flow/000171_10 gt_flow unsup
epe=0.66

semi-sup (rand, r = 0.1)
epe=0.66

semi-sup (occ, r = 0.1)
epe=0.65

sup
epe=0.64

kitti2015/flow/000176_10 gt_flow unsup
epe=15.92

semi-sup (rand, r = 0.1)
epe=13.13

semi-sup (occ, r = 0.1)
epe=12.40

sup
epe=12.06

kitti2015/flow/000179_10 gt_flow unsup
epe=6.11

semi-sup (rand, r = 0.1)
epe=5.37

semi-sup (occ, r = 0.1)
epe=4.42

sup
epe=4.03

kitti2015/flow/000192_10 gt_flow unsup
epe=6.67

semi-sup (rand, r = 0.1)
epe=5.44

semi-sup (occ, r = 0.1)
epe=4.59

sup
epe=4.46

kitti2012/flow/000160_10 gt_flow unsup
epe=0.76

semi-sup (rand, r = 0.1)
epe=0.73

semi-sup (occ, r = 0.1)
epe=0.81

sup
epe=0.64

kitti2012/flow/000169_10 gt_flow unsup
epe=4.53

semi-sup (rand, r = 0.1)
epe=4.84

semi-sup (occ, r = 0.1)
epe=3.92

sup
epe=4.55

kitti2012/flow/000181_10 gt_flow unsup
epe=4.47

semi-sup (rand, r = 0.1)
epe=3.88

semi-sup (occ, r = 0.1)
epe=2.80

sup
epe=3.01

Fig. 3. Qualitative results on KITTI. Examples are selected from our validation split.
Columns from left to right: the first frame image, the ground-truth flow, the unsu-
pervised model prediction, the (random) semi-supervised model prediction (label ratio
r = 0.1), our active learning model prediction (label ratio r = 0.1), the supervised
model prediction. EPEs are shown in the subtitles.
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Fig. 4. The correlation matrices of more active learning criteria with sample errors
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