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Abstract. We address the problem of generating diverse 3D human mo-
tions from textual descriptions. This challenging task requires joint mod-
eling of both modalities: understanding and extracting useful human-
centric information from the text, and then generating plausible and
realistic sequences of human poses. In contrast to most previous work
which focuses on generating a single, deterministic, motion from a tex-
tual description, we design a variational approach that can produce mul-
tiple diverse human motions. We propose TEMOS, a text-conditioned gen-
erative model leveraging variational autoencoder (VAE) training with
human motion data, in combination with a text encoder that produces
distribution parameters compatible with the VAE latent space. We show
the TEMOS framework can produce both skeleton-based animations as
in prior work, as well more expressive SMPL body motions. We evalu-
ate our approach on the KIT Motion-Language benchmark and, despite
being relatively straightforward, demonstrate significant improvements
over the state of the art. Code and models are available on our webpage.

1 Introduction

We explore the problem of generating 3D human motions, i.e., sequences of 3D
poses, from natural language textual descriptions (in English in this paper). Gen-
erating text-conditioned human motions has numerous applications both for the
virtual (e.g., game industry) and real worlds (e.g., controlling a robot with speech
for personal physical assistance). For example, in the film and game industries,
motion capture is often used to create special effects featuring humans. Motion
capture is expensive, therefore technologies that automatically synthesize new
motion data could save time and money.

Language represents a natural interface for people to interact with com-
puters [19], and our work provides a foundational step towards creating human
animations using natural language input. The problem of generating human mo-
tion from free-form text, however, is relatively new since it relies on advances in
both language modeling and human motion synthesis. Regarding the former, we
build on advances in language modeling using transformers. In terms of human
motion synthesis, much of the previous work has focused on generating motions
conditioned on a single action label, not a sentence, e.g., [15, 39]. Here we go
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A man walks in a circle. A person stands, then walks a few steps, then stops again.

z � �(0,1) z � �(0,1)

Fig. 1: Goal: Text-to-Motions (TEMOS) learns to synthesize human motion sequences
conditioned on a textual description and a duration. SMPL pose sequences are gener-
ated by sampling from a single latent vector, z. Here, we illustrate the diversity of our
motions on two sample texts, providing three generations per text input. Each image
corresponds to a motion sequence where we visualize the root trajectory projected on
the ground plane and the human poses at multiple equidistant time frames. The flow
of time is shown with a color code where lighter blue denotes the past.

further by encoding both the language and the motion using transformers in a
joint latent space. The approach is relatively straightforward, yet achieves results
that significantly outperform the latest state of the art. We perform extensive
experiments and ablation studies to understand which design choices are critical.

Despite recent efforts in this area, most current methods generate only one
output motion per text input [2, 13, 29]. That is, with the input “A man walks in
a circle”, these methods synthesize one motion. However, one description often
can map to multiple ways of performing the actions, often due to ambiguities
and lack of details, e.g., in our example, the size and the orientation of the
circle are not specified. An ideal generative model should therefore be able to
synthesize multiple sequences that respect the textual description while exploring
the degrees of freedom to generate natural variations. While, in theory, the more
precise the description becomes, the less space there is for diversity; it is a
desirable property for natural language interfaces to manage intrinsic ambiguities
of linguistic expressions [12]. In this paper, we propose a method that allows
sampling from a distribution of human motions conditioned on natural language
descriptions. Figure 1 illustrates multiple sampled motions generated from two
input texts; check the project webpage [38] for video examples.

A key challenge is building models that are effective for temporal modeling.
Most prior work employs autoregressive models that iteratively decode the next
time frame given the past. These approaches may suffer from drift over time
and often, eventually, produce static poses [35]. In contrast, sequence-level gen-
erative models encode an entire sequence and can exploit long-range context.
In this work, we incorporate the powerful Transformer models [48], which have
proven effective for various sequence modeling tasks [4, 9]. We design a simple
yet effective architecture, where both the motion and text are input to Trans-
former encoders before projecting them to a cross-modal joint space. Similarly,
the motion decoder uses a Transformer architecture taking positional encodings
and a latent vector as input, and generating a 3D human motion (see Figure 2).
Notably, a single sequence-level latent vector is used to decode the motion in one
shot, without any autoregressive iterations. Through detailed ablation studies,
we show that the main improvement over prior work stems from this design.
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A well-known challenge common to generative models is the difficulty of
evaluation. While many metrics are used in evaluating generated motions, each
of them is limited. Consequently, in this work, we rely on both quantitative
measures that compare against the ground truth motion data associated with
each test description, and human perceptual studies to evaluate the perceived
quality of the motions. The former is problematic particularly for this work,
because it assumes one true motion per text, but our method produces multiple
motions due to its probabilistic nature. We find that human judgment of motion
quality is necessary for a full picture.

Moreover, the state of the art reports results on the task of future motion
prediction. Specifically, Ghosh et al. [13] assume the first pose in the gener-
ated sequence is available from the ground truth. In contrast, we evaluate our
method by synthesizing the full motion from scratch; i.e. without conditioning
on the first, ground truth, frame. We provide results for various settings, e.g.,
comparing a random generation against the ground truth, or picking the best
out of several generations. We outperform previous work even when sampling
a single random generation, but the performance improves as we increase the
number of generations and pick the best.

A further addition we make over existing text-to-motion approaches is to
generate sequences of SMPL body models [31]. Unlike classical skeleton repre-
sentations, the parametric SMPL model provides the body surface, which can
support future research on motions that involve interaction with objects or the
scene. Such skinned generations were considered in other work on unconstrained
or action-conditioned generation [39, 57]. Here, we demonstrate promising results
for the text-conditioning scenario as well. The fact that the framework supports
multiple body representations, illustrates its generality.

In summary, our contributions are the following: (i) We present Text-to-
Motions (TEMOS), a novel cross-modal variational model that can produce diverse
3D human movements given textual descriptions in natural language. (ii) In
our experiments, we provide an extensive ablation study of the model compo-
nents and outperform the state of the art by a large margin both on standard
metrics and through perceptual studies. (iii) We go beyond stick figure genera-
tions, and exploit the SMPL model for text-conditioned body surface synthesis,
demonstrating qualitatively appealing results. The code and trained models are
available on our project page [38].

2 Related work

We provide a brief summary of relevant work on human motion synthesis and
text-conditioned motion generation. While there is also work on facial motion
generation [8, 11, 23, 43], here we focus on articulated human bodies.
Human motion synthesis. While there is a large body of work focusing on
future human motion prediction [3, 6, 16, 37, 54, 57] and completion [10, 17],
here, we give an overview of methods that generate motions from scratch (i.e.,
no past or future observations). Generative models of human motion have been
designed using GANs [1, 30], VAEs [15, 39], or normalizing flows [18, 55]. In this
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work, we employ VAEs in the context of Transformer neural network architec-
tures. Recent work suggest that VAEs are effective for human motion generation
compared with GANs [15, 39], while being easier to train.

Motion synthesis methods can be broadly divided into two categories: (i)
unconstrained generation, which models the entire space of possible motions
[51, 56, 58] and (ii) conditioned synthesis, which aims for controllability such as
using music [26, 27, 28], speech [7, 14], action [15, 39], and text [1, 2, 13, 29,
30, 45] conditioning. Generative models that synthesize unconstrained motions
aim, by design, to sample from a distribution, allowing generation of diverse
motions. However, they lack the ability to control the generation process. On the
other hand, the conditioned synthesis can be further divided into two categories:
deterministic [2, 13, 29] or probabilistic [1, 15, 26, 27, 30, 39]. In this work, we
focus on the latter, motivated by the fact that there are often multiple possible
motions for a given condition.

Text-conditioned motion generation. Recent work explores the advances in
natural language modeling [9, 36] to design sequence-to-sequence approaches to
cast the text-to-motion task as a machine translation problem [1, 29, 41]. Others
build joint cross-modal embeddings to map the text and motion to the same
space [2, 13, 50], which has been a success in other research area [5, 42, 52, 53].

Several methods use an impoverished body motion representation. For ex-
ample, some do not model the global trajectory [41, 50], making the motions
unrealistic and ignoring the global movement description in the input text.
Text2Action [1] uses a sequence-to-sequence model but only models the up-
per body motion. This is because Text2Action uses a semi-automatic approach
to create training data from the MSR-VTT captioned video dataset [49], which
contains frequently occluded lower bodies. They apply 2D pose estimation, lift
the joints to 3D, and employ manual cleaning of the input text to make it generic.

Most other work uses 3D motion capture data [2, 13, 29, 30]. DVGANs [30]
adapt the CMU MoCap database [47] and Human3.6M [21, 22] for the task
of motion generation and completion, and they use the action labels as text-
conditioning instead of categorical supervision. More recent works [2, 13, 29]
employ the KIT Motion-Language dataset [40], which is also the focus of our
work.

A key limitation of many state-of-the-art text-conditioned motion generation
models is that they are deterministic [2, 13]. These methods employ a shared
cross-modal latent space approach. Ahuja et al. [2] employ word2vec text em-
beddings [36], while [13] uses the more recent BERT model [9].

Most similar to our work is Ghosh et. al. [13], which builds on Language2Pose
[2]. Our key difference is the integration of a variational approach for sampling a
diverse set of motions from a single text. Our further improvements include the
use of Transformers to encode motion sequences into a single embedding instead
of the autoregressive approach in [13]. This allows us to encode distribution
parameters of the VAE as in [39], proving effective in our state-of-the-art results.
Ghosh et al. [13] also encode the upper body and lower body separately, whereas
our approach does not need such hand crafting.
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Fig. 2: Method overview: During training, we encode both the motion and text
through their respective Transformer encoders, together with modal-specific learnable
distribution tokens. The encoder outputs corresponding to these tokens provide Gaus-
sian distribution parameters on which the KL losses are applied and a latent vector z is
sampled. Reconstruction losses on the motion decoder outputs further provide super-
vision for both motion and text branches. In practice, our word embedding consists of
a variational encoder that takes input from a pre-trained and frozen DistilBERT [44]
model. Trainable layers are denoted in green, the inputs/outputs in brown. At test
time, we only use the right branch, which goes from an input text to a diverse set of
motions through the random sampling of the latent vector zT on the cross-modal space.
The output motion duration is determined by the number of positional encodings F .

3 Generating multiple motions from a textual description

In this section, we start by formulating the problem (Section 3.1). We then
provide details on our model design (Section 3.2), as well as our training strategy
(Section 3.3).

3.1 Task definition

Given a sentence describing a motion, the goal is to generate various sequences
of 3D human poses and trajectories that match the textual input. Next, we
describe the representation for the text and motion data.
Textual description represents a written natural language sentence (e.g., in
English) that describes what and how a human motion is performed. The sen-
tence can include various levels of detail: a precise sequence of actions such as
“A human walks two steps and then stops” or a more ambiguous description
such as “A man walks in a circle”. The data structure is a sequence of words
W1:N = W1, . . . ,WN from the English vocabulary.
3D human motion is defined as a sequence of human posesH1:F = H1, . . . ,HF ,
where F denotes the number of time frames. Each pose Hf corresponds to a
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representation of the articulated human body. In this work, we employ two
types of body motion representations: one based on skeletons, one based on
SMPL [31]. First, to enable a comparison with the state of the art, we follow
the rotation-invariant skeleton representation from Holden et. al. [20], which is
used in the previous work we compare with [2, 13]. Second, we incorporate the
parametric SMPL representation by encoding the global root trajectory of the
body and parent-relative joint rotations in 6D representation [59]. We provide
detailed formulations for both motion representations in Appendix B.

More generally, a human motion can be represented by a sequence of F poses
each with p dimensions, so that at frame f , we have Hf ∈ Rp. Our goal is, given
a textual description W1:N , to sample from a distribution of plausible motions
H1:F and to generate multiple hypotheses.

3.2 TEMOS model architecture

Following [2], we learn a joint latent space between the two modalities: motion
and text (see Figure 2). To incorporate generative modeling in such an approach,
we employ a VAE [25] formulation that requires architectural changes. We fur-
ther employ Transformers [48] to obtain sequence-level embeddings both for the
text and motion data. Next, we describe the two encoders for motion and text,
followed by the motion decoder.

Motion and text encoders. We have two encoders for representing motion
Menc and text Tenc in a joint space. The encoders are designed to be as sym-
metric as possible across the two modalities. To this end, we adapt the AC-
TOR [39] Transformer-based VAE motion encoder by making it class-agnostic
(i.e., removing action conditioning). This encoder takes as input a sequence of
vectors of arbitrary length, as well as learnable distribution tokens. The outputs
corresponding to the distribution tokens are treated as Gaussian distribution
parameters µ and Σ of the sequence-level latent space. Using the reparameter-
ization trick [25], we sample a latent vector z ∈ Rd from this distribution (see
Figure 2). The latent space dimensionality d is set to 256 in our experiments.

For the motion encoder Menc, the input sequence of vectors is H1:F , repre-
senting the poses. For the text encoder Tenc, the inputs are word embeddings
for W1:N obtained from a pretrained language model DistilBERT [44]. We freeze
the weights of DistilBERT unless stated otherwise.

Motion decoder. The motion decoder Mdec is a Transformer decoder (as in
ACTOR [39], but without the bias token to make it class agnostic), so that
given a latent vector z and a duration F , we generate a 3D human motion
sequence Ĥ1:F non-autoregressively from a single latent vector. Note that such
approach does not require masks in self-attention, and tends to provide a globally
consistent motion. The latent vector is obtained from one of the two encoders
during training (described next, in Section 3.3), and the duration is represented
as a sequence of positional encodings in the form of sinusoidal functions. We
note that our model can produce variable durations, which is another source of
diversity (see supplementary video [38]).
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3.3 Training strategy

For our cross-modal neural network training, we sample a batch of text-motion
pairs at each training iteration. In summary, both input modalities go through
their respective encoders, and both encoded vectors go through the motion de-
coder to reconstruct the 3D poses. This means we have one branch that is text-
to-motion and another branch that is an autoencoder for motion-to-motion (see
Figure 2). At test time, we only use the text-to-motion branch. This approach
proved effective in previous work [2]. Here, we first briefly describe the loss terms
to train this model probabilistically. Then, we provide implementation details.

Given a ground-truth pair consisting of human motion H1:F and textual de-
scription W1:N , we use (i) two reconstruction losses – one per modality, (ii) KL
divergence losses comparing each modality against Gaussion priors, (iii) KL di-
vergence losses, as well as a cross-modal embedding similarity loss to compare
the two modalities to each other.
Reconstruction losses (LR). We obtain ĤM

1:F and ĤT
1:F by inputting the mo-

tion embedding and text embedding to the decoder, respectively. We compare
these motion reconstructions to the ground-truth human motion H1:F via:

LR = L1(H1:F , Ĥ
M
1:F ) + L1(H1:F , Ĥ

T
1:F ) (1)

where L1 denotes the smooth L1 loss.
KL losses (LKL). To enforce the two modalities to be close to each other in
the latent space, we minimize the Kullback-Leibler (KL) divergences between the
distributions of the text embedding φT = N (µT , ΣT ) and the motion embedding
φM = N (µM , ΣM ). To regularize the shared latent space, we encourage each
distribution to be similar to a normal distribution ψ = N (0, I) (as in standard
VAE formulations). Thus we obtain four terms:

LKL = KL(φT , φM ) + KL(φM , φT )

+ KL(φT , ψ) + KL(φM , ψ).
(2)

Cross-modal embedding similarity loss (LE). After sampling the text em-
bedding zT ∼ N (µT , ΣT ) and the motion embedding zM ∼ N (µM , ΣM ) from
the two encoders, we also constrain them to be as close as possible to each other,
with the following loss term (i.e., loss between the cross-modal embeddings):

LE = L1(zT , zM ). (3)

The resulting total loss is defined as a weighted sum of the three terms:
L = LR +λKLLKL +λELE. We empirically set λKL and λE to 10−5, and provide
ablations. While some of the loss terms may appear redundant, we experimen-
tally validate each term.

Implementation details. We train our models for 1000 epochs with the AdamW
optimizer [24, 32] using a fixed learning rate of 10−4. Our minibatch size is set to
32. Our Transformer encoders and decoders consist of 6 layers for both motion
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and text encoders, as well the motion decoder. Ablations about these hyperpa-
rameters are presented in Appendix A.

At training time, we input the full motion sequence, i.e., a variable number
of frames for each training sample. At inference time, we can specify the desired
duration F (see supplementary video [38]); however, we provide quantitative
metrics with known ground-truth motion duration.

4 Experiments

We first present the data and performance measures used in our experiments
(Section 4.1). Next, we compare to previous work (Section 4.2) and present an
ablation study (Section 4.3). Then, we demonstrate our results with the SMPL
model (Section 4.4). Finally, we discuss limitations (Section 4.5).

4.1 Data and evaluation metrics

KIT Motion-Language [40] dataset (KIT) provides raw motion capture
(MoCap) data, as well as processed data using the Master Motor Map (MMM)
framework [46]. The motions comprise a collection of subsets of the KIT Whole-
Body Human Motion Database [34] and of the CMU Graphics Lab Motion Cap-
ture Database [47]. The dataset consists of 3911 motion sequences with 6353
sequence-level description annotations, with 9.5 words per description on aver-
age. We use the same splits as in Language2Pose [2] by extracting 1784 training,
566 validation and 587 test motions (some motions do not have corresponding
descriptions). As the model from Ghosh et al. [13] produce only 520 sequences
in the test set (instead of 587), for a fair comparison we evaluate all methods
with this subset, which we will refer to as the test set. If the same motion se-
quence corresponds to multiple descriptions, we randomly choose one of these
descriptions at each training iteration, while we evaluate the method on the first
description. Recent state-of-the-art methods on text-conditioned motion synthe-
sis employ this dataset, by first converting the MMM axis-angle data into 21
xyz coordinates and downsampling the sequences from 100 Hz to 12.5 Hz. We
do the same procedure, and follow the training and test splits explained above
to compare methods. Additionally, we find correspondences from the KIT se-
quences to the AMASS MoCap collection [33] to obtain the motions in SMPL
body format. We note that this procedure resulted in a subset of 2888 annotated
motion sequences, as some sequences have not been processed in AMASS. We
refer to this data as KITSMPL.
Evaluation metrics. We follow the performance measures employed in Lan-
guage2Pose [2] and Ghosh et al. [13] for quantitative evaluations. In particular,
we report Average Positional Error (APE) and Average Variance Error (AVE)
metrics. However, we note that the results in [13] do not match the ones in [2]
due to lack of evaluation code from [2]. We identified minor issues with the eval-
uation code of [13] (more details in Appendix C); therefore, we reimplement our
own evaluation. Moreover, we introduce several modifications (which we believe
make the metrics more interpretable): in contrast to [2, 13], we compute the root
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joint metric by using the joint coordinates only (and not on velocities for x and
y axes) and all the metrics are computed without standardizing the data (i.e.,
mean subtraction and division by standard deviation). Our motivation for this
is to remain in the coordinate space since the metrics are positional. Note that
the KIT data in the MMM format is canonicalized to the same body shape. We
perform most of our experiments with this data format to remain comparable to
the state of the art. We report results with the SMPL body format separately
since the skeletons are not perfectly compatible (see Appendix A.5). Finally, we
convert our low-fps generations (at 12 Hz) to the original frame-rate of KIT (100
Hz) via linear interpolation on coordinates and report the error comparing to
this original ground truth. We display the error in meters.

As discussed in Section 1, the evaluation is suboptimal because it assumes
one ground truth motion per text; however, our focus is to generate multiple
different motions. The KIT test set is insufficient to design distribution-based
metrics such as FID, since there are not enough motions for the same text (see
Appendix E. for statistics). We therefore report the performance of generating
a single sample, as well as generating multiple and evaluating the closest sample
to the ground truth. We rely on additional perceptual studies to assess the
correctness of multiple generations, which is described in Appendix C.

4.2 Comparison to the state of the art

Quantitative. We compare with the state-of-the-art text-conditioned motion
generation methods [2, 13, 29] on the test set of the KIT dataset (as defined in
4.1). To obtain motions for these three methods, we use their publicly available
codes (note that all three give the ground truth initial frame as input to their
generations). We summarize the main results in Table 1. Our TEMOS approach
substantially outperforms on all metrics, except APE on local joints. As pointed
by [2, 13], the most difficult metric that better differentiates improvements on
this dataset is the APE on the root joint, and we obtain significant improvements
on this metric. Moreover, we sample a random latent vector for reporting the
results for TEMOS; however, as we will show next in Section 4.3, if we sample
more, we are more likely to find the motion closer to the ground truth.
Qualitative. We further provide qualitative comparisons in Figure 4 with the
state of the art. We show sample generations for Lin et al. [29], JL2P [2], and
Ghosh et al. [13]. The motions from our TEMOS model reflect the semantic content
of the input text better than the others across a variety of samples. Furthermore,
we observe that while [29] generates overly smooth motions, JL2P has lots of foot
sliding. [13], on the other hand, synthesizes unrealistic motions due to exagger-
ated foot contacts (and even extremely elongated limbs such as in 3rd column,
3rd row of Figure 4). Our generations are the most realistic among all. Further
visualizations are provided in the supplementary video [38].
Perceptual study. These conclusions are further justified by two human per-
ceptual studies that evaluate which methods are preferred in terms of semantics
(correspondence to the text) or in terms of realism. For the first study, we dis-
played a pair of motions (with a randomly swapped order in each display) and a
description of the motion, and asked Amazon Mechanical Turk (AMT) workers
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Table 1: State-of-the-art comparison: We compare our method with recent works [2,
13, 29], on the KIT Motion-Language dataset [40] and obtain significant improvements
on most metrics (values in meters) even if we are sampling a random motion per text
conditioning for our model.

Methods
Average Positional Error ↓ Average Variance Error ↓

root joint global traj. mean local mean global root joint global traj. mean local mean global

Lin et. al. [29] 1.966 1.956 0.105 1.969 0.790 0.789 0.007 0.791
JL2P [2] 1.622 1.616 0.097 1.630 0.669 0.669 0.006 0.672
Ghosh et al. [13] 1.291 1.242 0.206 1.294 0.564 0.548 0.024 0.563
TEMOS (ours) 0.963 0.955 0.104 0.976 0.445 0.445 0.005 0.448

(a) Which motion corresponds better to the textual description? (b) Which motion is more realistic?

Fig. 3: Perceptual study: (a) We ask users which motion corresponds better to the
input text between two displayed samples generated from model A vs model B. (b)
We ask other users which motion is more realistic without showing the textual descrip-
tion. We report the percentage for which the users show a preference for A. The red
dashed line denotes the 50% level (equal preference). On the left of both studies, our
generations from TEMOS were rated better than the previous work of Lin et al. [29],
JL2P [2], and Ghosh et al. [13]. On the right of both studies, we compare against the
ground truth (GT) and see that our motions are rated as better than the GT 15.5%
and 38.5% of the time, whereas Ghosh et al. [13] are at 8.5% and 5.5%.

the question: “Which motion corresponds better to the textual description?”.
We collected answers for 100 randomly sampled test descriptions, showing each
description to multiple workers. For the second study, we asked another set of
AMT workers the question: “Which motion is more realistic?” without showing
the description. We give more details on our perceptual studies in Appendix C.

The resulting ranking between our method and each of the state-of-the-art
methods [2, 13, 29] is reported in Figure 3. We see that humans perceive our mo-
tions as better matching the descriptions compared to all three state-of-the-art
methods, especially significantly outperforming Lin et al. [29] (users preferred
TEMOS over [29] 90.5% of the time). For the more competitive and more recent
Ghosh et al. [13] method, we ask users to compare their generations against
the ground truth. We do the same for our generations and see that users pre-
ferred our motions over the ground truth 15.5% of the time where the ones from
Ghosh et al. [13] are preferred only 8.5% of the time. Our generations are also
clearly preferred in terms of realism over the three methods. Our motions are
realistic enough that they are preferred to real motion capture data 38.5% of
the time, as compared to 5.5% of the time for Ghosh et al. [13].
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Fig. 4: Qualitative comparison to the state of the art: We qualitatively compare
the generations from our TEMOS model with the recent state-of-the-art methods and
the ground truth (GT). We present different textual queries in columns, and different
methods in rows. Overall, our generations better match semantically to the textual
descriptions. We further overcome several limitations with the prior work, such as over-
smooth motions in Lin et al. [29], foot sliding in J2LP [2], and exaggerated foot contacts
in Ghosh et al. [13], which can better be viewed in our supplementary video [38].

4.3 Ablation study

In this section, we evaluate the influence of several components of our framework
in a controlled setting.
Variational design. First, we ‘turn off’ the variational property of our gener-
ative model and synthesize a single motion per text. Instead of two learnable
distribution tokens as in Figure 2, we use one learnable embedding token from
which we directly obtain the latent vector using the corresponding encoder out-
put (hence removing sampling). We removed all the KL losses such that the
model becomes deterministic, and keep the embedding similarity loss to learn the
joint latent space. In Table 2, we report performance metrics with this approach
and see that we already obtain competitive performance with the determinis-
tic version of our model, demonstrating the improvements from our temporal
sequence modeling approach compared to previous works.

As noted earlier, our variational model can produce multiple generations for
the same text, and a single random sample may not necessarily match the ground
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Table 2: Variational vs deterministic models: We first provide the performance
of the deterministic version of our model. We then report results with several settings
using our variational model: (i) generating a single motion per text to compare against
the ground truth (either randomly or using a zero-vector representing the mean of the
Gaussian latent space), and (ii) generating 10 motions per text, each compared against
the ground truth separately (either averaging the metrics or taking the motion with
the best metric). As expected, TEMOS is able to produce multiple hypotheses where
the best candidates improve the metrics.

Model Sampling
Average Positional Error ↓ Average Variance Error ↓

root joint global traj. mean local mean global root joint global traj. mean local mean global

Deterministic n/a 1.175 1.165 0.106 1.188 0.514 0.513 0.005 0.516

Variational 1 sample, z = ~0 1.005 0.997 0.104 1.020 0.443 0.442 0.005 0.446
Variational 1 random sample 0.963 0.955 0.104 0.976 0.445 0.445 0.005 0.448
Variational 10 random avg 1.001 0.993 0.104 1.015 0.451 0.451 0.005 0.454
Variational 10 random best 0.784 0.774 0.104 0.802 0.392 0.391 0.005 0.395

truth. In Table 2, we report results for one generation from a random z noise
vector, or generating from the zero-vector that represents the mean of the latent
space (z = ~0); both perform similarly. To assess the performance with multiple
generations, we randomly sample 10 latent vectors per text, and provide two
evaluations. First, we compare each of the 10 generations to the single ground
truth, and average over all generations (10 random avg). Second, we record the
performance of the motion that best matches to the ground truth out of the 10
generations (10 random best). As expected, Table 2 shows improvements with
the latter (see Appendix A.5 for more values for the number of latent vectors).

Architectural and loss components. Next, we investigate which component
is most responsible for the performance improvement over the state of the art,
since even the deterministic variant of our model outperforms previous works.
Table 3 reports the performance by removing one component at each row. The
APE root joint performance drops from 0.96 to i) 1.44 using GRUs instead of
Transformers; ii) 1.18 without the motion encoder (using only one KL loss);
iii) 1.09 without the cross-modal embedding loss; iv) 1.05 without the Gaussian
priors; v) 0.99 without the cross-modal KL losses. Note that the cross-modal
framework originates from JL2P [2]. While we observe slight improvement with
each of the cross-modal terms, we notice that the model performance is already
satisfactory even without the motion encoder. We therefore conclude that the
main improvement stems from the improved non-autoregressive Transformer ar-
chitecture, and removing each of the other components (4 KL loss terms, motion
encoder, embedding similarity) also slightly degrades performance.

Language model finetuning. As explained in Section 3.2, we do not update
the language model parameters during training, which are from the pretrained
DistilBERT [44]. We measure the performance with and without finetuning in
Table 4 and conclude that freezing performs better while being more efficient.
We note that we already introduce additional layers through our text encoder
(see Figure 2), which may be sufficient to adapt the embeddings to our specific
motion description domain. We provide an additional experiment with larger
language models in Appendix A.4.
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Table 3: Architectural and loss study: We conclude that the most critical compo-
nent is the Transformer architecture, as opposed to a recurrent one (i.e., GRU). While
the additional losses are helpful, they bring relatively minor improvements.

Average Positional Error ↓ Average Variance Error ↓
root glob. mean mean root glob. mean mean

Arch. LKL LE joint traj. loc. glob. joint traj. loc. glob.

GRU KL(φT , φM ) +KL(φM , φT ) +KL(φT , ψ) +KL(φM , ψ) 3 1.443 1.433 0.105 1.451 0.600 0.599 0.007 0.601

Transf. KL(φT , ψ) w/out Menc 7 1.178 1.168 0.106 1.189 0.506 0.505 0.006 0.508
Transf. KL(φT , φM ) +KL(φM , φT ) +KL(φT , ψ) +KL(φM , ψ) 7 1.091 1.083 0.107 1.104 0.449 0.448 0.005 0.451
Transf. KL(φT , ψ) +KL(φM , ψ) w/out cross-modal KL losses 7 1.080 1.071 0.107 1.095 0.453 0.452 0.005 0.456
Transf. KL(φT , ψ) +KL(φM , ψ) w/out cross-modal KL losses 3 0.993 0.983 0.105 1.006 0.461 0.460 0.005 0.463
Transf. KL(φT , φM ) +KL(φM , φT ) w/out Gaussian priors 3 1.049 1.039 0.108 1.065 0.472 0.471 0.005 0.475

Transf. KL(φT , φM ) +KL(φM , φT ) +KL(φT , ψ) +KL(φM , ψ) 3 0.963 0.955 0.104 0.976 0.445 0.445 0.005 0.448

Table 4: Language model finetuning: We experiment with finetuning the language
model (LM) parameters (i.e., DistilBERT [44]) end-to-end with our motion-language
cross-modal framework, and do not observe improvements. Here ‘Frozen’ refers to not
updating the LM parameters.

LM params
Average Positional Error ↓ Average Variance Error ↓

root joint global traj. mean local mean global root joint global traj. mean local mean global

Finetuned 1.402 1.393 0.113 1.414 0.559 0.558 0.006 0.562
Frozen 0.963 0.955 0.104 0.976 0.445 0.445 0.005 0.448

4.4 Generating skinned motions

We evaluate the variant of our model which uses the parametric SMPL repre-
sentation to generate full body meshes. The quantitative performance metrics
on KITSMPL test set can be found in Appendix A.5. We provide qualitative ex-
amples in Figure 5 to illustrate the diversity of our generations for a given text.
For each text, we present 2 random samples. Each column shows a different text
input. For all the visualization renderings in this paper, the camera is fixed and
the bodies are sampled evenly across time. Moreover, the forward direction of the
first frame is always facing the same canonical direction. Our observation is that
the model can generate multiple plausible motions corresponding to the same
text, exploring the degrees of freedom remaining from ambiguities in the lan-
guage description. On the other hand, if the text describes a precise action, such
as ‘A person performs a squat’ the diversity is reduced. The results are better
seen as movies; see supplementary video [38], where we also display other effects
such as generating variable durations, and interpolating in the latent space.

4.5 Limitations

Our model has several limitations. Firstly, the vocabulary of the KIT data is
relatively small with 1263 unique words compared to the full open-vocabulary
setting of natural language, and are dominated by locomotive motions. We there-
fore expect our model to suffer from out-of-distribution descriptions. Moreover,
we do not have a principled way of measuring the diversity of our models since
the training does not include multiple motions for the exact same text. Secondly,
we notice that if the input text contains typos (e.g., ‘wals’ instead of ‘walks’),
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A person walks 

two steps, turns 

around and walks 

another two steps.

A person stands, 

then walks a 

few steps, then 

stops again.

A human 

performing a 

kick with the 

right foot.

A person walking 

in a circle to the 

right.

A person 

performs a 

squat.

A person goes 

backward on 

his tiptoes.

Fig. 5: Qualitative evaluation of the diversity: We display two motion generations
for each description. Our model shows certain diversity among different generations
while respecting the textual description.

TEMOS might drastically fail, suggesting that a preprocessing step to correct them
beforehand might be needed. Finally, our method cannot scale up to very long
motions (such as walking for several minutes) due to the quadratic memory cost.

5 Conclusion

In this work, we introduced a variational approach to generate diverse 3D human
motions given textual descriptions in the form of natural language. In contrast
to previous methods, our approach considers the intrinsically ambiguous na-
ture of language and generates multiple plausible motions respecting the textual
description, rather than deterministically producing only one. We obtain state-
of-the-art results on the widely used KIT Motion-Language benchmark, out-
performing prior work by a large margin both in quantitative experiments and
perceptual studies. Our improvements are mainly from the architecture design
of incorporating sequence modeling via Transformers. Furthermore, we employ
full body meshes instead of only skeletons. Future work should focus on explicit
modeling of contacts and integrating physics knowledge. Another interesting di-
rection is to explore duration estimation for the generated motions. While we
do not expect any immediate negative societal impact from our work, we note
that with the potential advancement of fake visual data generation, a risk may
arise from the integration of our model in the applications that animate existing
people without their consent, raising privacy concerns.
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