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Supplementary Material

1 The Out-of-plane Rotation

1.1 The Decomposition of Rotation

As described in the paper, a rotation matrix R can be decomposed as in-plane
rotation Rin and out-of-plane rotation Rout, so that R = RinRout. Rout will
change the view direction, and Rin is a rotation around the view axis. However,
note that this decomposition is not unique, because there is no standard way to
change the view direction without introducing in-plane rotation.

We thus adopt a similar approach as the gluLookAt function, which can keep
an up direction while changing the view direction. To retrieve the view direction
v from R, we should note that in the camera coordinate space, the view axis
is always the Z axis. Therefore, v should be aligned with the Z axis after the
rotation, i.e. Rv = [0, 0, 1]⊤. Obviously, v should be the last row of R.

Given the view direction v, we can compute Rout similarly as gluLookAt,
by specifying an up vector ([0, 1, 0] in our implementation). We found that this
approach can better decompose in-plane and out-of-plane rotations than using
Euler angles.

1.2 The Distribution of Failures

As mentioned in the paper, our basic observation is that most failures of previous
3D tracking methods are caused by the out-of-plane rotations. Figure 1 shows
the statistics of tracking failures caused by different components (translation, in-
plane and out-of-plane rotation) for the representative methods RBOT [7] and
SRT3D [5]. As can be seen, about 70% of RBOT failures and 90% of SRT3D
failures are due to the out-of-plane rotation. We found that the translation and
in-plane rotation introduce more failures for RBOT mainly because the opti-
mization process is not sufficiently converged in order to achieve real-time speed,
which results in larger error for the translation and in-plane rotation.

To classify the failures, the rotation error Rd = RR−1
gt is first decomposed

as in-plane part Rin
d and out-of-plane part Rout

d , using the method as described
above. The standard 5◦-5cm criteria then is applied for the classification. If the
translation error is greater than 5cm, the translation failure is added by one. If
the error of Rd is greater than 5◦, the one in Rin

d and Rout
d with larger error is

counted as fail.
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Fig. 1. The distribution of failures with respect to translation, in-plane and out-of-
plane rotations on the regular variant of RBOT. left : The results of RBOT [7]; right :
The results of SRT3D [5].

2 Pose Optimization

To optimize the pose, the cost function is firstly rewritten as

E(ξ) =

N∑
i=1

ωi ∥ F (ξ, i) ∥α, where F (ξ, i) = n⊤
i (x

ξ
i − oi)− di (1)

which does not satisfy the general form of least square problem. Therefore, To
solve it with iterative reweighted least square(IRLS) , we can further rewrite it
as

E(ξ) =

N∑
i=1

ωiψiF (ξ, i)
2, with ψi =

1

∥ F (ξ, i) ∥2−α
(2)

with ψi fixed weights computed with the current ξ, which is used to penalize
the correspondences that are with large matching residuals. We solve the opti-
mization problem using Gauss-Newton method. By linearizing F (ξ, i) with its
first-order Taylor approximation F (ξ +∆ξ) = F (ξ) + J∆ξ, we have

E(ξ) ≈
N∑
i=1

ωiψi (F (ξ, i) + J∆ξ)
2 (3)

which is quadratic with respect to ∆ξ, so the optimal solution should be

∆ξ = −(
N∑
i=1

ωiψiJ
⊤J)−1

N∑
i=1

ωiψiJF (ξ, i) (4)

with J the Jacobian of F (ξ, i)

J =
∂F (ξ, i)

∂ξ
= n⊤i

∂xξ
i

∂ξ
(5)
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Fig. 2. Results of all variants for different frame steps (S = 1, 2, 3, 4). Ours(local) is
Ours-. The compared methods are RBOT [7], RBGT [4], SRT3D [5].

where xξ
i = π(K(TX̃)3×1) = π(K(RX+ t)), therefore

∂xξ
i

∂ξ
=
∂π(K(RX+ t))

∂(RX+ t)

∂(RX+ t)

∂X

∂X

∂ξ

=

[
fx
Z′ 0 − fxX

′

(Z′)2

0
fy
Z′ − fyY

′

(Z′)2

]
R

1 0 0 0 Z −Y
0 1 0 −Z 0 X
0 0 1 Y −X 0

 (6)

in which X′ = [X ′, Y ′, Z ′] = RX+ t is the coordinate in the camera space.
After ∆ξ is computed, the object pose can be updated as

T← T exp(∆ξ) (7)

Note that exp(∆ξ) should appear at the right of T, because in Eq. (6) the
disturbance is applied in the model space.

3 Results of Other Variants

Due to the space limitation, only the results of the regular variant of the RBOT
dataset are included in the paper. Here we present results of all variants, includ-
ing regular, dynamic light, noisy, unmodeled occlusion.

Figure 2 shows the results for different frame steps. All variants have similar
trends, our local and non-local methods both significantly outperform previous
methods. For large displacements, great improvement is achieved with our non-
local method. The accuracy of noisy is much lower than the accuracy of other
three variants, because the severe noise would introduce significant error to the
probability map, resulting in errors in the correspondences. However, when com-
pared with previous methods, our method still performs much better for large
displacements.

Table 1 contains more details and comparisons for S = 1, which is the stan-
dard benchmark of the RBOT dataset. Results of the compared methods are
from the original paper. As can be seen, for S = 1 our method still achieves
the best accuracy, slightly better than SRT3D [5] and significantly better than
others. Since the displacement is small, using non-local search only slightly im-
prove the accuracy. For the noisy variant, using non-local search for S = 1 even
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decrease the accuracy by 0.2%. As we have analyzed in the paper, this is mainly
due to the error function, which may fail to predict the true object pose in
complicated cases.

Table 1. Comparisons on the standard RBOT benchmark, with frame step S = 1.

M
e
t
h
o
d

A
p
e

S
o
d
a

V
is
e

S
o
u
p

C
a
m
e
ra

C
a
n

C
a
t

C
lo
w
n

C
u
b
e

D
ri
ll
e
r

D
u
ck

E
g
g
B
o
x

G
lu
e

Ir
o
n

C
a
n
d
y

L
a
m
p

P
h
o
n
e

S
q
u
ir
re
l

A
v
g
.

Regular

[7] 85.0 39.0 98.9 82.4 79.7 87.6 95.9 93.3 78.1 93.0 86.8 74.6 38.9 81.0 46.8 97.5 80.7 99.4 79.9
[8] 88.8 41.3 94.0 85.9 86.9 89.0 98.5 93.7 83.1 87.3 86.2 78.5 58.6 86.3 57.9 91.7 85.0 96.2 82.7
[3] 92.8 42.6 96.8 87.5 90.7 86.2 99.0 96.9 86.8 94.6 90.4 87.0 57.6 88.7 59.9 96.5 90.6 99.5 85.8
[2] 91.9 44.8 99.7 89.1 89.3 90.6 97.4 95.9 83.9 97.6 91.8 84.4 59.0 92.5 74.3 97.4 86.4 99.7 86.9
[6] 93.0 55.2 99.3 85.4 96.1 93.9 98.0 95.6 79.5 98.2 89.7 89.1 66.5 91.3 60.6 98.6 95.6 99.6 88.1
[1] 94.6 49.4 99.5 91.0 93.7 96.0 97.8 96.6 90.2 98.2 93.4 90.3 64.4 94.0 79.0 98.8 92.9 99.8 89.9
[4] 96.4 53.2 98.8 93.9 93.0 92.7 99.7 97.1 92.5 92.5 93.7 88.5 70.0 92.1 78.8 95.5 92.5 99.6 90.0
[5] 98.8 65.1 99.6 96.0 98.0 96.5 100 98.4 94.1 96.9 98.0 95.3 79.3 96.0 90.3 97.4 96.2 99.8 94.2
Ours- 99.8 65.6 99.5 95.0 96.6 92.6 100 98.7 95.0 97.1 97.4 96.1 83.3 96.9 91.5 95.8 95.2 99.7 94.2
Ours 99.8 67.1 100 97.8 97.3 93.7 100 99.4 97.4 97.6 99.3 96.9 84.7 97.7 93.4 96.7 95.4 100 95.2

Dynamic Light

[7] 84.9 42.0 99.0 81.3 84.3 88.9 95.6 92.5 77.5 94.6 86.4 77.3 52.9 77.9 47.9 96.9 81.7 99.3 81.2
[8] 89.7 40.2 92.7 86.5 86.6 89.2 98.3 93.9 81.8 88.4 83.9 76.8 55.3 79.3 54.7 88.7 81.0 95.8 81.3
[3] 93.5 43.1 96.6 88.5 92.8 86.0 99.6 95.5 85.7 96.8 91.1 90.2 68.4 86.8 59.7 96.1 91.5 99.2 86.7
[2] 91.8 42.3 98.9 89.9 91.3 87.8 97.6 94.5 84.5 98.1 91.9 86.7 66.2 90.9 73.2 97.1 89.2 99.6 87.3
[6] 93.8 55.9 99.6 85.6 97.7 93.7 97.7 96.5 78.3 98.6 91.0 91.6 72.1 90.7 63.0 98.9 94.4 100 88.8
[1] 94.3 48.3 99.5 90.1 94.6 96.1 97.9 97.3 90.9 99.1 92.9 91.5 72.6 94.7 80.0 98.3 95.2 99.8 90.7
[4] 96.5 54.6 99.1 93.9 93.1 94.7 99.5 97.0 93.0 93.4 93.3 92.6 74.9 91.0 79.2 95.6 89.8 99.5 90.6
[5] 98.2 65.2 99.2 95.6 97.5 98.1 100 98.5 94.2 97.5 97.9 96.9 86.1 95.2 89.3 97.0 95.9 99.9 94.6
Ours- 99.7 64.7 99.7 95.2 97.2 93.0 99.8 98.8 94.2 98.4 97.1 97.2 86.9 95.4 91.4 96.2 95.6 99.9 94.5
Ours 100 64.5 99.8 97.9 97.9 94.0 100 99.5 97.0 98.8 99.3 97.6 87.5 97.4 92.4 97.1 96.4 100 95.4

Noisy

[7] 77.5 44.5 91.5 82.9 51.7 38.4 95.1 69.2 24.4 64.3 88.5 11.2 2.9 46.7 32.7 57.3 44.1 96.6 56.6
[8] 79.3 35.2 82.6 86.2 65.1 56.9 96.9 67.0 37.5 75.2 85.4 35.2 18.9 63.7 35.4 64.6 66.3 93.2 63.6
[3] 89.1 44.0 91.6 89.4 75.2 62.3 98.6 77.3 41.2 81.5 91.6 54.5 31.8 65.0 46.0 78.5 69.6 97.6 71.4
[2] 89.0 45.0 89.5 90.2 68.9 38.3 95.9 72.8 20.1 85.5 92.2 26.8 15.8 66.2 52.2 58.3 65.1 98.4 65.0
[6] 92.5 56.2 98.0 85.1 91.7 79.0 97.7 86.2 40.1 96.6 90.8 70.2 50.9 84.3 49.9 91.2 89.4 99.4 80.5
[1] 91.0 49.1 95.6 91.0 76.3 54.1 97.1 73.7 27.3 92.8 95.3 30.2 7.8 73.9 56.8 71.4 70.8 98.7 69.6
[4] 91.9 53.3 90.2 92.6 67.9 59.3 98.4 80.6 43.5 78.1 92.5 44.0 31.3 72.3 62.0 59.9 71.7 98.3 71.5
[5] 96.9 61.9 95.4 95.7 84.5 73.9 99.9 90.3 62.2 87.8 97.6 62.2 43.4 84.3 78.2 73.3 83.1 99.7 81.7
Ours- 98.4 62.6 95.5 94.0 90.6 69.6 99.8 89.1 57.1 95.7 97.2 68.7 53.2 87.9 76.1 76.9 89.0 99.2 83.4
Ours 99.3 62.0 95.8 97.7 90.4 68.6 99.9 91.3 54.2 95.4 99.0 64.8 51.6 89.2 75.2 74.7 87.6 100 83.2

Unmodeled Occlusion

[7] 80.0 42.7 91.8 73.5 76.1 81.7 89.8 82.6 68.7 86.7 80.5 67.0 46.6 64.0 43.6 88.8 68.6 86.2 73.3
[8] 83.9 38.1 92.4 81.5 81.3 85.5 97.5 88.9 76.1 87.5 81.7 72.7 52.5 77.2 53.9 88.5 79.3 92.5 78.4
[3] 89.3 43.3 92.2 83.1 84.1 79.0 94.5 88.6 76.2 90.4 87.0 80.7 61.6 75.3 53.1 91.1 81.9 93.4 80.3
[2] 86.2 46.3 97.8 87.5 86.5 86.3 95.7 90.7 78.8 96.5 86.0 80.6 59.9 86.8 69.6 93.3 81.8 95.8 83.6
[6] 91.3 56.7 97.8 82.0 92.8 89.9 96.6 92.2 71.8 97.0 85.0 84.6 66.9 87.7 56.1 95.1 89.8 98.2 85.1
[1] 92.5 51.5 99.2 90.7 92.1 92.2 97.7 94.2 89.8 98.4 91.3 90.7 66.3 91.7 75.3 95.9 92.1 99.0 88.9
[4] 90.8 51.7 95.9 88.5 88.0 90.5 96.9 91.6 87.1 90.3 86.4 85.6 65.8 87.0 72.7 91.2 84.0 97.0 85.6
[5] 96.5 66.8 99.0 95.8 95.0 95.9 100 97.6 92.2 96.6 95.0 94.4 79.0 94.7 89.8 95.7 93.6 99.6 93.2
Ours- 98.0 65.8 98.7 95.2 97.0 92.0 99.8 98.8 92.6 97.3 97.1 95.7 83.8 95.2 89.3 96.0 94.3 99.6 93.7
Ours 98.7 68.4 99.9 97.5 98.3 93.0 99.9 99.4 95.1 97.9 99.1 96.9 85.5 97.0 90.3 96.3 95.1 100 94.9

4 More Results and Analysis

Figure 4 provides more visual results with very large frame step (S = 8), in
which case it is nearly impossible to be successfully tracked with local methods
such as SRT3D and Ours -. Our non-local method performs much better. Note
that in order to achieve real-time speed, we adopted a very simple color-based
segmentation method. As can be seen from Figure 4, the probability map is very
inaccurate for some objects, introducing many resistant local minimum. Without
a doubt, if more computing power (e.g. GPU) is available, better segmentation
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Table 2. Tracking success rates with different α on the RBOT dataset [7].
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α = 0.125 99.8 65.6 99.5 95.0 96.6 92.6 100 98.7 95.0 97.1 97.4 96.1 83.3 96.9 91.5 95.8 95.2 99.7 94.2
α = 0.25 99.7 65.2 99.6 95.1 96.3 92.1 100 98.7 94.8 97.1 97.2 96.1 83.5 97.1 91.7 95.9 94.8 99.9 94.2
α = 0.5 99.3 65.6 99.4 95.2 95.5 90.1 100 98.4 94.6 96.5 97.3 94.2 82.8 97.0 90.7 95.2 92.7 99.8 93.6
α = 0.75 99.3 65.1 99.9 95.6 92.8 86.9 100 98.3 94.3 94.8 97.5 91.1 76.9 96.1 90.1 91.6 88.3 99.9 92.1
α = 1.0 99.3 63.8 98.9 95.5 86.1 79.7 99.9 98.3 93.9 87.6 97.2 85.1 67.9 94.7 87.3 83.4 80.0 99.5 88.8
α = 1.5 98.9 61.2 84.7 95.1 54.2 42.2 99.3 96.5 87.7 56.2 97.4 48.7 38.4 85.6 61.8 46.0 48.4 99.1 72.3

(a) #1 input (b) #1 user specified (c) #2 result

Fig. 3. The interactive initialization process in real scenes.

and larger search range can be achieved in real time, then the accuracy of our
method can be further improved.

The ablation study in the paper shows that using smaller α is helpful for
achieving higher accuracy. Table 2 contains details of each object. We can find
that as the increase of α, the decrease of accuracy for each object is very different.
For the objects that are distinctive from the background (ape,cat,squirrel,duck
etc.), the accuracy is only slightly decreased. On the other hand, for the objects
that are indistinctive (camera,can,glue,lamp, etc.), the accuracy would decrease
dramatically. Therefore, the robust estimation is especially important for han-
dling errors in segmentation.

5 Real-scene Examples

We tested our method in real scenes for further evaluation. The input video is
captured by an ordinary web camera (Logitech C270), with 640 × 480 image
resolution and 25fps frame rate. The initial pose is set interactively by aligning
the current frame with a standard pose. As shown in Figure 3, the user needs only
to specify a rough initial pose, then in the second frame our method can converge
to the correct pose. The test scenes contain typical challenges such as fast motion,
background clutter, occlusion and out of view, etc. Thanks to the advantage in
handling large displacements, our method can perform significant better than
previous methods for the case of fast motion. Please see the accompany video
for the results.
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(a) init. (b) srt3d [5] (c) ours prob. (d) ours(local) (e) ours

Fig. 4. Some visual examples of large displacements(S = 8).
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