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Abstract. Robust and accurate planar tracking over a whole video se-
quence is vitally important for many vision applications. The key to
planar object tracking is to find object correspondences, modeled by ho-
mography, between the reference image and the tracked image. Existing
methods tend to obtain wrong correspondences with changing appear-
ance variations, camera-object relative motions and occlusions. To al-
leviate this problem, we present a unified convolutional neural network
(CNN) model that jointly considers homography, visibility, and confi-
dence. First, we introduce correlation blocks that explicitly account for
the local appearance changes and camera-object relative motions as the
base of our model. Second, we jointly learn the homography and visi-
bility that links camera-object relative motions with occlusions. Third,
we propose a confidence module that actively monitors the estimation
quality from the pixel correlation distributions obtained in correlation
blocks. All these modules are plugged into a Lucas-Kanade (LK) track-
ing pipeline to obtain both accurate and robust planar object tracking.
Our approach outperforms the state-of-the-art methods on public POT
and TMT datasets. Its superior performance is also verified on a real-
world application, synthesizing high-quality in-video advertisements.
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1 Introduction

Planar object tracking is a classic computer vision task with a wide range of
applications. Given the initial corners of a planar object in the reference frame,
the primary goal of planar tracking is to estimate the movements of these corners,
modeled by a geometric transformation called a homography, in consecutive
frames. Though lots of advances have been made in past decades, obtaining
accurate and robust results remains challenging. These difficulties are mainly
caused by three factors: appearance variation, camera-object relative motion and
occlusion. The appearance variation is a camera-related issue. It is usually known
as image blur, sensor noise, non-linear response of brightness. The camera-object
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(a) (b) (c) (d)

Fig. 1.One of our synthetic frames in the lottery sequence of [23]. (a) A planar object to
be tracked in the reference image, denoted by a green quadrilateral. (b) The estimated
homography with very high tracking confidence in one video frame. (c) Corresponding
visibility mask of the tracked object. (d) The synthetic frame after placing the CVF logo
using results from (b) and (c). More results are shown in Fig. 7 and the supplemental.

relative motion leads to geometry transformations of an object on the image.
Typical effects on the image plane are scale changes, rotations, translations, and
perspective distortions. Occlusion is referred as the fact that the tracked object is
occluded by another object. The situation becomes worse if the ‘another object’
looks very similar to the tracked object. These factors pose strong challenges for
traditional keypoint-based methods that estimate the homography using hand-
crafted features [35, 12, 6], since the extracted features are prone to be different
under the influence of these factors. Learned features like D2-Net [14], LF-Net
[45], and R2D2 [30] are proposed to decrease this influence. Direct methods [4,
7], usually with the LK pipeline [4], estimate the homography iteratively. [4, 7]
assume the intensity consistency and compute the homography increment for
each iteration. [9, 27, 24, 46, 47] extend direct methods with the learned ‘feature
consistency’ assumption for increasing the robustness. We argue that efforts
are still needed on better feature representation. Moreover, these methods have
not discussed occlusions that are widely existed in real-world video sequences.
The last to mention is the CNN-based method [11] that directly regresses the
homography in one step with CNN.It is not robust to these three factors, neither.

In this work, we propose a novel CNN model for handling mentioned diffi-
culties. The base of our model is correlation blocks (Sect. 3.3). It firstly extracts
features in the intensity domain for handling appearance variations. Cost vol-
umes, representing distributions of pixel correlations, are then constructed in
the pixel displacement domain to account for the camera-object relative motion.
We find that estimating the homography with these two cascaded steps is much
better than methods with one step [11, 27, 9, 24]. Moreover, in contrast to meth-
ods that learn homography alone [11, 27, 9, 24], we learn it jointly with another
task called visibility, which is defined as a binary mask that indicates which part
of the reference image is visible on the tracked image (Fig. 2). A reference image
pixel is regarded as visible if and only if it satisfies the homography constraint
of the tracked planar object (geometry-induced) and it is not occluded by other
objects on the tracked image (disocclusion-induced). Joint learning homography
and visibility not only improves the correlation block representations, but also
links camera-object relative motions with occlusions (Sect. 3.5). Lastly, as esti-
mations with the LK pipeline are sensitive to initializations, we further improve
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Fig. 2. (from left to right) Reference image, current image, motion-induced visibility,
disocclusion-induced visibility, combined visibility used in our model.

the estimation robustness by monitoring the tracking quality and rebooting es-
timations. This is done by introducing a confidence module that evaluates the
planar tracking quality from pixel correlation distributions obtained in corre-
lation blocks (Sec. 3.7). By equipping all these presented modules with a LK
pipeline, our model obtains both accurate and robust homography estimation-
s. We achieve significantly higher homography precision than state-of-the-art
homography estimation methods (Sect. 4). Besides, as a by-product, our mod-
el provides visibility masks that other works have not mentioned. With these
masks, we are able to easily place planar advertisements in videos (Fig. 1).

2 Related Work

2.1 Homography Estimation

Existing planar tracking methods for estimating the underlying homography can
be roughly classified into three categories: keypoint-based methods [35, 12, 6, 28,
3, 13], direct methods [4, 7, 10, 31, 5, 26], and CNN-based methods [11, 27, 9, 24].
Keypoint-based methods firstly detect and describe keypoints (using ORB [35],
SIFT [12], SURF [6] and etc.) both in the reference planar region and subse-
quent consecutive frames. These keypoints are then matched by minimizing the
distances in the descriptor space. Homography, the planar surface in the projec-
tion space is related, is then calculated with the obtained matches. To remove
potential outlier matches, RANSAC [16] is usually performed. Different from
keypoint-based methods, direct methods [4, 7] assume that the planar template
does not move fast in consecutive images. The homography is directly optimized
by minimizing the photometric error between the planar template and its pro-
jection in the incoming video frames. Recently, CNN-based methods have been
proposed. Homography is regressed from input images in one forward step [11,
27, 46, 47]. [9, 24, 20, 48] adopt the Lucas-Kanade framework [4] and compute
homography with multiple iterations.

2.2 Object Segmentation

The visibility of planar object tracking is less discussed in the past. The closest
work is segmentation. There are three main approaches for object segmenta-
tion according to the level of supervision required. Supervised methods require
iterative human interactions for adding segmentation prior as well as refining seg-
mentation outputs [2, 15]. They obtain high-quality segmentations at the cost of
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Fig. 3. The framework of our model. It follows the LK scheme. There are three modules:
the multi-scale motion estimation module, the refinement module, and the tracking
confidence module. The base of this model is correlation blocks that extract features
in the intensity domain for handling appearance variations and construct cost volumes
in the pixel displacement domain for handling motion-related issues in a cascaded way
(Sect. 3.3). Pyramid blocks are build (Sect. 3.4), where homography and visibility are
jointly learned (Sect. 3.5). The refinement module for further improvements is optional
(Sect. 3.6). Tracking estimation confidence is also evaluated (Sect. 3.7).

extensive expert efforts. To relax this mass manual supervision, semi-supervised
methods propagate sparse human labeling in the reference frame to the remain-
ing frames, and then formulate the segmentation problem as an optimization
problem with energy defined over graphs [1, 29, 42]. The last to mention is the
unsupervised methods that do not require any manual annotation or utilize
prior information on the segmented objects. Early unsupervised methods focus
on over-segmentation [17] or motion segmentation [8]. They are extended to
foreground-background separation in recent years [44, 41].

2.3 Patch Similarity

The most related work to confidence prediction is to compute the similarity
between two patches [36, 18, 37]. The confidence score is learned by training the
network with reflective loss in [37]. The similarity is trained via a classification
pipeline in [36]. Patched representation as well as robust feature comparison is
jointly learned in [18].

3 Our Approach

3.1 The LK-based CNN Framework

Our model framework is shown in Fig. 3. We follows the LK scheme [4] to com-
pute homography, denoted as Hij ∈ R3×3. For each 3D object point ok, its
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projection on image frame i and j is denoted as pk
i and pk

j respectively. Ac-

cording to the derivation from [19], we have pk
i = Hijp

k
j . Supposing we have an

initial homography Hij , the LK scheme consists of two iterated steps:
1) solving for homography increment δHij ,
2) updating homography Hij ← Hij ∗ δHij .
For the first step, the classic LK method [4] assume that intensities are consistent
across images. We improve this step with three aspects. Firstly, as the intensity
consistency assumption is prone to be broken in real-world cases with appearance
variations and occlusions, we extend it with the ‘feature consistency’ assumption
and improve the effectiveness of feature representation (Sect. 3.3). Secondly, ho-
mography increments are computed with difference scales (Sect. 3.4). Thirdly,
based on the ‘feature consistency’ assumption, we compute homography incre-
ments with joint homography and visibility learning (Sect. 3.5). The improved
first LK step is implemented as the multi-scale motion estimation module in
our model. We also have an optional step without correlation block, i.e. the
refinement module (Sect. 3.6). As computed homography increments are sensi-
tive to homography initializations, we present a tracking confidence module to
evaluate the estimation quality and re-initializes the homography computations
(Sect. 3.7). We follow the same second step as the LK pipeline, where we update
homography through update layers. Lastly, we notice that the concerned planar
object tracking problem is to solve for homography between object projections
on two images while existing LK-based methods consider homography between
two images. We thus propose a sampling trick to turn the concerned problem
into a classic LK-based homography problem that is more suitable for CNN
models (Sect. 3.2).

3.2 Homography Surrogate & Sampling

The projection shape of a 3D plane on video images deforms as the camera moves
relatively to the tracked object. Processing the full-resolution video images with
CNNs will waste a lot of memory as well as computations on useless image regions
outside the projection shape. What’s worse, information on outside regions will
distort the estimations and make CNN predictions more challenging. To this
end, we propose a planar object sampling layer for CNNs for handling planar
objects in arbitrarily deformed shapes or sizes. As shown in Fig. 4, the key idea is
NOT to predict the original homography in the original image space. Instead, we
predict a surrogate homography in the normalized space. We sample the planar
object in the reference image into a W × H template: pn

i = Hn
i pi, where Hn

i

can be easily computed using SVD [19] once the reference planar object with
four-corner representation is given. We denote the homography used to sample
the planar object in the current image into a W ×H template as Hn

j , and the
homography between two normalized images i and j is Hs

ij . We have:

Hn
j = (Hs

ij)
−1Hn

i Hij = (Hs
ij)

−1H∗
ij (1)

whereH∗
ij = Hn

i Hij . We defineHn
j as a surrogate forHij , andHs

ij as a surrogate
for δHij . H

s
ij will be an identity matrix if and only if Hn

j is equal to ground
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Fig. 4. The planar object sampling. We sample the planar object in the reference frame
and in the current frame to fixed-size images with Hn
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predict the increment Hs
ij . H

s
ij will be the identity matrix if and only if the sampled

planar objects on both sampled images are aligned perfectly. Hn
j and Hs

ij are used as
surrogates for Hij and δHij respectively.

truth H∗
ij . If the final H

n
j is obtained, Hij is computed as Hij = (Hn

i )
−1Hn

j . By
using surrogates, we maintain a fixed-size input to CNNs.

3.3 Correlation Block

Different from previous works [11, 24] that regress homography on images, we
decompose the homography regression into two cascaded steps:
1) The first step is to extract features representing image local appearances.
These features are designed to be robust for image blur, illumination variations,
occlusions, scale changes, perspective distortions, etc, through data argumenta-
tion covering various image conditions. Since the template size is small, we use
the U-Net structure [32] for simplicity. Other feature extraction structures, such
as ResNet, EfficientNet and MultiResUNet, can also be used.
2) The second step is to construct cost volumes with extracted features, whose
elements are pixel correlations between sampled images. These pixel correlation-
s are designed to encode the relative geometry transformation between objects
and cameras. Each element in this cost volume is computed as the correlation
[40] between a pixel xi in reference feature map fr and a pixel xj in the tracked
feature map ft: c(xi,xj) = fr(xi)

T ft(xj), where T is the transpose operator.
Given a maximum displacement dm, for each location xi we compute correla-
tions c(xi,xj) for xj s.t. |xj − xi| <= dm. Correlations at each location xi are
reorganized in the channel dimension. Thus, the size of the 3D cost volume is
H ×W × (2dm + 1)2. dm is set to be 4 at each pyramid here by balancing the
complexity and movement range.
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3.4 Pyramids

Inspired by the classic pyramid methods in image processing, we build correlation
blocks in different scales. We sample objects with different template resolutions
(1/16x, 1/4x, 1x). Homography increments are computed sequentially from the
smallest resolution to the highest resolution.

3.5 Joint Learning of Homography and Visibility

Homography is obtained by information that is visible on both reference and
tracked images. Hence, we learn homography jointly with visibility, in order to
extract a more reliable feature representation. This leads to three loss function-
s during training: Ld, Lm, and Lv. For benefit of CNNs, we adopt represen-
tation in [11], where homography is represented by four corner displacements
{d1, d2, d3, d4}. Ld is a homograph loss. It is defined as the l1 norm between the
ground truth 4-point displacement d∗k and the predicted 4-point displacement dk
at each scale level:

Ld =
1

4

4∑
k=1

∥d∗k − dk∥1 (2)

Lm is a visibility loss. Pixel visibility prediction of the sampled tracked image
is regarded as a 2-class classification problem. We denote the ground truth label
and the predicted label for a pixel’s visibility as m∗

k and mk. Cross-entropy is
adopted for the visibility loss Lm at each scale level:

Lm = − 1

Nk

Nk∑
k=1

(m∗
k log(mk) + (1−m∗

k) log(1−mk)) (3)

where Nk is the total number of pixels at each scale level. To further improve
the feature representations used to construct cost volumes, we add a visible
alignment loss Lv that minimizes the visible feature distance between extracted
reference feature map fr and tracked feature map ft. It is defined as followed,

Lv =
1

Nk

∑
xk

m∗
k

∥∥f ′t(xk)− ft(xk)
∥∥
1

(4)

where xk is the pixel location on the sampled tracked image, f ′t = Warp(fr,Htr)
is a wrapped feature map from fr to ft using the homography Htr. The total
loss is the combination of these three losses:

Lall = λdLd + λmLm + λvLv (5)

where λd, λm and λv are balancing parameters. In our experiments, they are all
empirically set to be 1.0.

With the visibility loss, we explicitly connect homography with occlusion.
This is in contrast to competing methods [9, 27, 24, 46, 47] that handle occlu-
sions implicitly with the learned feature capability. Moreover, with the visible
alignment loss, we ale able to connect homography, visibility and features in the
correlation block.

Notice that, the supervised visibility mask varies in each scale level. It is
generated at each training iteration.
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3.6 Homography and Visibility Refinement

This module is similar to that of Sect. 3.5 expect that the correlation block is
removed and the visible alignment loss is ignored. It is designed to capture tiny
modifications to the homography and visibility. The VGG structure [39] is used
for simplicity. Three iterations are usually conducted for convergence. Note that,
this module is optional.

3.7 Estimation Confidence Evaluation

This section discusses the homography initialization in the LK pipeline (Sec-
t. 3.1). The initial homography of the first scale level is equal to the homography
obtained at the previous video frame j − 1. For the following scale levels, their
initializations are equal to homography obtained at previous scale levels. For the
refinement module, its first homography initial value is equal to the homography
output from the multi-scale motion estimation module. In the following refine-
ment step, its initial homography is equal to the homography in last iteration.

With this homography initialization mechanism, we see the significance of
the homography obtained at the previous video frame j − 1, as it is the base
of estimation in the current video frame j. However, though we have tried our
best to improve the homography estimation robustness and accuracy, our trained
model inevitably fails under extreme conditions, such as large appearance vari-
ations, rapid camera-object relative motions, and severe occlusions. That is, the
homography obtained at the previous video frame j − 1 may be unreliable. To
check this, we add a tracking confidence module to evaluate the estimation con-
fidence. This confidence is regarded as a regression whose output ranges between
0 and 1. 0 indicates the estimation is unreliable while 1 indicates it is reliable. In
contrast to previous works [36, 18, 37] that regress confidences from images, we
regress them from cost volumes of correlation blocks. These multi-scale cost vol-
umes, representing distributions of pixel correlations, encode the ‘uncertainty’
of the estimation. For an object pixel in the reference image, its correspond-
ing pixel on the tracked image is ambiguous if the pixel correlation distribution
is flat, or obvious if the pixel correlation distribution is concentrated on one
specific location. We train this tracking confidence module after the multi-scale
motion estimation module and the optional refinement module is trained using
an independent dataset.

We consider the estimation as unreliable if the homography loss Ld between
the ground truth and predicted homography is larger than 5 while reliable oth-
erwise. We denote the ground truth label and the predicted label as p∗ and p.
Cross-entropy loss is used for confidence loss:

Lc = −(p∗ log(p) + (1− p∗) log(1− p)) (6)

In implementations, each cost volume of each pyramid layer is convoluted to
a H

8 ×
W
8 × 15 feature map by several convolutional layers respectively. These

feature maps are then followed by two fully connected (FC) layers, whose drop-
out ratio is set to 0.5, with 1024 and 2 channels. The final layer is a soft-max
layer that output the confidence. 3× 3 kernels are used in convolutional layers.
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Fig. 5. Samples of the generated dataset. First two rows are image pairs with variations
of brightness, contrast, saturation, image blur, and occlusions. The last row shows
ground truth visibility masks.

After the tracking confidence module is trained, we monitor the tracking
confidence on the fly. If the homography obtained at the previous video frame
j−1 is classified as unreliable, we use the homography estimated in more previous
times (e.g. 2 to 60 frames before) for homography initialization and re-run our
model pipeline. This process is repeated until this tracking is reliable.

4 Experiments

Similar to [9, 11], we use the MS-COCO dataset [25] to generate the training
data. All images are resized to 240× 240. We randomly select an image, assign
a 120× 120 window to its center. We then randomly perturb the four corners of
this window to generate a random homography. The corner displacement is uni-
formly distributed between [-32, 32] in both horizontal and vertical directions.
Pixels within the perturbed window are wrapped to a sample image whose size
is W ×H. To increase the robustness of our network, we augment our samples
with more conditions that we meet in real-world applications. We add variances
of brightness, contrast, saturation and image blur to the sample images [38].
Moreover, we simulate real-world object occlusions by randomly placing arbi-
trary polygons, whose textures are cropped natural images from [25], into our
training samples [38]. 280000 image pairs with ground truth homography are
generated in total (Fig. 5). Among them, 200000 samples are used for train-
ing the motion estimation network and refinement network, 40000 samples are
used for validation, and the rest 40000 samples are tested for ablation study
(Sect. 4.2). GT visibility masks are generated at each training iteration.

4.1 Training & Quantitative Evaluation

In all experiments, we set W = H = 120. Adam [22] optimization with β1 = 0.9,
β2 = 0.999 is used, and the batch size is set to 32. Batch normalization [21] is
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adopted for accelerating convergence. The learning rate is initialized to be 10−4.
It is then decreased by a factor of 10 every 5 epochs. After the model is trained,
its processing rate is about 10hz on a commodity GPU card GeForce GTX 1080.

In this paper, two quantitative metrics, alignment error (AE) [34] and ho-
mography discrepancy (HD) [23], are used to evaluate the quality of predicted
homography accuracy.

4.2 Ablation Study

In this section, we perform ablation studies to analyze the contribution of each
component in our proposed model. All methods are trained on the training
dataset as well as tested on the dataset from Sect. 4 introduction.

Homography Precision We firstly analyze component contributions to the
homography precision. We train our model with increasing components proposed
in this paper: the correlation block in Sect. 3.3 (D), pyramids in Sect. 3.4 (P),
joint learning of homography and visibility in Sect. 3.5 (M), the refinement
module in Sect. 3.6 (R): Ours-D, Ours-DP, Ours-DPR, Ours-DPM, Ours-DPMR.
If our model is trained without any proposed components (Ours w/o DPMR),
it is equivalent to DeepHomography [11]. Tab. 1 shows the results:

Table 1. Ablation study and comparison on our test set.

Method AE [34] HD [23]

Ours w/o DPMR 6.678 14.983
Ours-P 5.280 10.627
Ours-PR 2.970 5.104
Ours-PM 4.051 7.984
Ours-PMR 2.426 4.262
Ours-D 4.173 9.147
Ours-DP 1.145 2.216
Ours-DPR 0.876 1.739
Ours-DPM 1.097 2.107
Ours-DPMR 0.876 1.695

– From line 2 and line 7, we see that the model with correlation blocks (Ours-D)
performs significantly better than that without them (Ours w/o DPMR).
– Pyramids (P) do help both approaches (Ours-D and Ours w/o DPMR). This
improvement is more significant for the model Ours-D as the cost volume is
constructed on limited displacements.
– The refinement module is able to capture tiny displacement between images.
It further increases the accuracy for all models (Ours-DP vs Ours-DPR, Ours-
DPM vs Ours-DPMR, Ours-P vs Ours-PR, Ours-PM vs Ours-PMR).
– By jointly training homography and visibility, our model generalizes better on
each original task (Ours-DP vs Ours-DPM, Ours-P vs Ours-PM, and Ours-PR
vs Ours-PMR).
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Fig. 6. A challenging case with large and irregular occlusions.

Table 2. Visibility loss of models w/ or w/o the correlation block (D), w/ or w/o joint
homography and visibility learning (M vs V).

Method Ours-PVR Ours-PMR Ours-DPVR Ours-DPMR

Visibility loss 0.347 0.346 0.335 0.328

Visibility Accuracy Apart from the improvement to homography precision,
we wonder whether learning of homography and visibility jointly (M) leads to
higher visibility accuracy than learning these two tasks independently (V). We
also test if the correlation block helps visibility accuracy. We train four model-
s on the generated training dataset: Ours-PMR, Ours-DPMR, Ours-PVR and
Ours-DPVR. We then compute the visibility loss (Sect. 3.5) on the test set. Re-
sults are shown in Tab. 2. We find that the correlation block and joint learning
not only help the homography predictions but also improve the visibility estima-
tions. We see strong connections between homography and visibility. Visibility, a
by-product of our work, can be used for in-video advertising. We show one syn-
thesized frame (Fig. 6) using our obtained visibility during experiments on the
POT dataset [23]. We meet large and irregular occlusions that are challenging
to our model. Fortunately, our model is able to overcome this difficulty.

Confidence Effectiveness One way to evaluate the confidence effectiveness
is to compute the classification statistics using the predicted confidence (0.5
is used as the threshold). We follow data generations in Sect. 4 introduction
to generate an additional large dataset covering challenging conditions. This
dataset, on which tracking is much harder than that of in Sect. 4 introduction,
contains 50000 samples. The percents of training, validation and testing are 80%,
10% and 10% respectively. Our trained models (Ours-DPR and Ours-DPMR)
are then run on this dataset. If the computed Ld is smaller than 5, the tracking
result is labeled to be reliable. Otherwise, it is labeled to be unreliable. Obtained
labels are adopted for training the confidence network and testing the confidence
performance. PatchCon [36] that directly regresses this confidence from wrapped
images is the baseline/competing method. Both OursCon and PatchCon are
trained to evaluate pre-trained Ours-DPMR and Ours-DPR.

True-positive rate (TPR), false-positive rate (FPR), false-negative rate (FN-
R) and true-negative rate (TNR) are shown in Tab. 3. Comparing OursCon and
PatchCon [36] that both evaluate Ours-DPMR, we see that tracking confidence
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Table 3. Classification statistics using the estimated confidence.

Method + Pre-trained Base TPR FPR FNR TNR

PatchCon [36]+Ours-DPMR 93.1% 14.5% 6.9% 85.5%
OursCon+Ours-DPMR 96.6% 8.7% 3.4% 91.3%
OursCon+Ours-DPR 96.5% 10.2% 3.5% 89.8%

 Scale change Rotation Perspective
 distortion Motion blur Occlusion Out of view

(a)

(b)

(c)

(d)

Fig. 7. Results obtained by our model in different conditions. (a) A planar object in
the reference frame. (b) The tracked planar object in the current frame. (c) Predicted
visibility mask corresponding to (b). (d) The synthetic frame after placing the CVF
logo on (b). More results can be found in the supplementary material.

predicted from correlation blocks is more accurate. Moreover, from OursCon
+Ours-DPR and OursCon+Ours-DPMR, we see that joint learning of visibility
mask and homography does improve the effectiveness of our correlation block
and model generalization, leading to performance gains of confidence prediction.

4.3 Comparisons on Other Datasets

Two public datasets, POT [23] and TMT [34], are used to evaluate the ho-
mography accuracy. State-of-the-art methods, including SIFT [12], SURF [6],
L1 [5, 26], IVT [33], ESM [7], Gracker [43], DeepHomography [11], IC-STN [24],
Ctx-Unsupervise [47], PFN [46], MHN [20] and DLKFM [48] are compared.
Our models are all with our tracking confidence module (OursCon), excep-
t the one named Ours-DPMR w/o OursCon. The competing confidence pre-
diction method, PatchCon [36], is also included for comparison (Ours-DPMR-
PatchCon). The model with all our modules achieves the best performance.
POT is a planar object tracking benchmark containing 210 videos of 30 pla-
nar objects in natural environments. It contains scenes with various challenging
conditions, including scale change, rotation, perspective distortion, motion blur,
occlusion, out-of-view, and a combination of these factors. For better presenta-
tion, comparisons are shown with precision plots and success plots. Precision plot
counts the percentage of frames whose AE is within the threshold tp. Success plot
counts the percentage of frames whose HD is within a threshold ts. Results are
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Table 4. Success rate of different approaches on the TMT dataset with AE < 5 [34].
Larger is better. Best and second best are colored. (*) Models of Ours-DPMR, Ours-
DPMR-PatchCon and Ours-DPMR w/o OursCon perform the same. We omit rested
notations for short.

Method Cereal Book1 Book2 Book3 Juice Mug1 Mug2 Mug3 Bus Highlight Letter Newspaper

SIFT [12] 0.92 0.74 1.00 0.84 0.89 0.91 0.43 0.55 0.19 0.97 0.18 0.16
SURF [6] 0.91 0.64 1.00 0.74 0.50 0.07 0.14 0.06 0.19 0.94 0.08 0.01
L1 [26] 0.24 0.10 0.79 0.42 0.16 0.10 0.30 0.54 0.57 0.67 0.19 0.61
IVT [33] 0.99 0.48 0.30 0.72 0.98 0.91 0.72 0.68 0.94 0.95 0.25 0.92
ESM [7] 1.00 1.00 1.00 0.34 1.00 1.00 0.89 1.00 1.00 0.76 1.00 1.00

Gracker [43] 0.91 1.00 1.00 0.88 1.00 1.00 0.83 0.75 0.97 1.00 0.78 1.00
DeepHomography 0.92 1.00 1.00 0.82 0.99 0.93 0.65 0.80 0.50 0.99 1.00 0.95

IC-STN [24] 0.92 1.00 1.00 0.82 1.00 1.00 0.77 0.79 0.99 0.98 1.00 0.95
PFN [46] 0.74 0.28 0.92 0.38 0.39 0.89 0.40 0.88 0.24 0.78 0.29 0.53

Ctx-Unsupervise 0.54 0.38 1.00 0.38 0.29 0.28 0.23 0.39 0.16 1.00 0.17 0.14
MHN [20] 0.62 0.18 0.92 0.40 0.63 0.99 0.50 0.41 0.50 0.76 0.22 0.14

DLKFM [48] 0.58 0.18 0.92 0.41 0.63 0.99 0.50 0.41 0.50 0.76 0.21 0.14

Ours-D 0.85 0.65 0.84 0.67 0.37 1.00 0.78 0.72 0.71 0.92 0.50 0.32
Ours-DP 0.93 1.00 1.00 0.86 1.00 1.00 0.84 0.81 0.97 1.00 1.00 0.93
Ours-DPR 0.93 1.00 1.00 0.88 1.00 1.00 0.83 0.80 0.95 1.00 1.00 0.98
Ours-DPM 0.93 1.00 1.00 0.88 1.00 1.00 0.72 0.83 0.99 1.00 1.00 0.93

Ours-DPMR (*) 0.93 1.00 1.00 0.88 1.00 1.00 0.89 0.85 0.99 1.00 1.00 1.00

shown in Fig. 8 and the supplementary material. Our proposed method shows
superior performance in all scenes. Especially for scenes with motion blur, per-
spective distortion, scale change or combinations of these factors, our approach
works much better because it is hard for non-learning algorithms to model the
underlying variation or tuning related parameters manually.
TMT consists of sequences for manipulation tasks. There are 100 annotated
and tagged sequences in total. Similar to POT, sequences in this dataset also
have a large condition variation. We use the same evaluation metric as in [34].
That is, the success rate that counts the percentage of frames whose AE < 5.
Comparison results are summarized in Table. 4. Overall, our model achieves a
better or similar performance in all sequences compared to other methods.

We visualize some qualitative results obtained by our model during experi-
ments and place a product (i.e. the CVF logo) on the tracked planar object in
Fig. 1 and Fig. 7. More results can be found in the supplementary material.

5 Discussions & Limitations & Conclusions

The main limitation of our work is that the predicted visibility mask is not per-
fect. With the own constraints of LK-based methods, our approach is sometimes
disturbed by the factor of similar occluded objects. In conclusion, we proposed
a novel model for planar object tracking. Homography, visibility and confidence
are jointly learned based on a correlation block. We achieved a superior pla-
nar tracking performance compared to state-of-the-art methods on the public
dataset, provided visibility masks that other works had not discussed, calculated
more reliable confidence than competing approaches. To better take multi-frame
constraints and similar occlusions into consideration is our future work.
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Fig. 8. The comparison of different approaches shown in precision plots on the POT
dataset [23]. Curves with larger areas are better. The AE at threshold = 5 [34] is
illustrated within brackets. Zoom-in is recommended. Video comparisons are in the
supplementary material.
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