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Fig. 1. Diverse free-form image completion results produced by our method.

Abstract. Image Inpainting is an ill-posed problem since there are di-
verse possible counterparts for the missing areas. The challenge of in-
painting is to keep the ”corrupted region” content consistent with the
background and generate a variety of reasonable texture details. How-
ever, existing one-stage methods that directly output the inpainting re-
sults have to make a trade-off between diversity and consistency. The
two-stage methods as the current trend can circumvent such shortcom-
ings. These methods predict diverse structural priors in the first stage
and focus on rich texture details generation in the second stage. How-
ever, all two-stage methods require autoregressive models to predict the
probability distribution of the structural priors, which significantly limits
the inference speed. In addition, their discretization assumption of prior
distribution reduces the diversity of the inpainting results. We propose
Flow-Fill, a novel two-stage image inpainting framework that utilizes a
conditional normalizing flow model to generate diverse structural priors
in the first stage. Flow-Fill can directly estimate the joint probability
density of the missing regions as a flow-based model without reasoning
pixel by pixel. Hence it achieves real-time inference speed and eliminates
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discretization assumptions. In addition, as a reversible model, Flow-Fill
can invert the latent variables for a specified region, which allows us to
make the inference process as semantic image editing. Experiments on
benchmark datasets validate that Flow-Fill achieves superior diversity
and fidelity in image inpainting qualitatively and quantitatively.
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1 Introduction

Image inpainting aims to generate meaningful content to fill in a corrupted im-
age’s missing areas. Unfortunately, it is a fundamentally ill-posed problem. For a
given corrupted image (masked image), theoretically, there exist infinitely many
natural (i.e., visually realistic and semantically reasonable) repaired images. This
poses a significant challenge to synthesize diverse natural contents that maintain
consistency with contextual information of the known image regions.

With the advancement of generative networks (such as VAEs, GANs), deep
learning based inpainting methods [12,18,19,23,24,27,34,36–39] typically utilize
an encoder-decoder framework to synthesize the high-level semantic information
consistent with the context. They treat Inpainting as an image reconstruction
problem, filling in the corrupted areas by learning a one-to-one mapping to the
ground truth. Although these methods yield a realistic result to fill the empty
region, they cannot generate multiple possibilities. In contrast to deterministic
Inpainting, many studies have recently emerged to challenge the ill-posed prob-
lem by addressing diverse Inpainting. For example, Zheng et al. [44] and Zhao
et al. [42] use VAE-based networks to learn the prior distributions of missing
parts conditional on the given corrupted image. Modulated GAN-based meth-
ods [20,43] modulate the deep features of random input noise from coarse to fine.
Diffusion-based methods [22,28] restore images from random noise by iteration.
However, these one-stage methods have to make a trade-off between diversity
and consistency. In addition to these one-stage methods, some two-stage meth-
ods [25, 32, 40] predict diverse structural priors in the first stage and focus on
rich texture details generation in the second stage. Although two-stage methods
moderate the trade-off of diversity and fidelity, all of them require autoregressive
models to predict the probability distribution of the structural priors1, which sig-
nificantly limits the inference speed. In addition, their discretization assumption
of prior distribution reduces the diversity of the inpainting results.

This paper follows the previous two-stage pipeline and develops Flow-Fill, a
diverse image inpainting framework that utilizes a conditional normalizing flow
network to naturally and accurately learn the distribution of structural priors
in the first stage. As a result, Flow-Fill can achieve real-time inference speed
and eliminate discretization assumptions compared to the existing two-stage

1 Wan et al. [32] predicts the missing pixels one by one in an autoregressive form
when inference. In addition, Wan et al. and Yu et al. [40] are based on Transformer,
making the inference unbearably slow.
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methods. Furthermore, compared to VAE and modulated GAN-based one-stage
approaches mentioned above, Flow-Fill is reversible in the first stage and, there-
fore, can accurately learn the distribution of structural priors without suffering
from mode-collapse and posterior collapse. In addition, as a flow-based model,
Flow-Fill can map the input images to the corresponding latent variables and en-
sure exact reconstruction. Therefore, we can invert specific regions to the latent
variable space for semantic Image Editing.

The main contributions in this work can be summarized as follows:

– We propose Flow-Fill, a flow-based two-stage diverse image inpainting frame-
work. Flow-Fill is the first conditional normalizing flow network that com-
pletes large irregular corrupted areas with diverse results and achieves state-
of-the-art image inpainting performance.

– As a flow-based model, Flow-Fill constructs a conditionally reversible bijec-
tive function, allowing inversion and inference about the content of a specific
area. Therefore, Flow-Fill can be extended to region-specific semantic trans-
fer tasks.

– Our Flow-Fill achieves a real-time inference speed that is approximately
87 times faster than autoregressive-based models and 142 times faster than
diffusion-based models.

– Extensive experiments over multiple benchmark datasets demonstrate our
proposed model’s superiority in quality and diversity.

2 Related Work

As an ill-posed problem, image inpainting has multiple realistic and high-fidelity
results. Based on the number of inpainting solutions, most existing image in-
painting methods can be broadly classified into deterministic image inpainting
and diverse image inpainting.

Deterministic Image Inpainting. Traditional image inpainting is mainly
divided into diffusion-based methods [2, 8] and patch-based methods [4, 10].
Diffusion-based methods gradually spread the contextual pixel information to
the damaged regions. Patch-based methods find the best matching patch in
the visible area or a specified data library and then transfer it to the hole.
With the advancement of generative networks, deep-learning based inpaint-
ing [12, 18, 19, 23, 24, 27, 34, 36–39] often uses generative adversarial networks
(GANs) to learn high-level semantic information consistent with the context.
However, while these deep-learning-based methods generate realistic comple-
mentary results for the hole regions, they cannot generate diverse semantically
meaningful results.

Diverse Image Inpainting. In order to obtain pluralistic image inpainting
results, current methods can be broadly classified into four categories: 1) Some
model the prior probability of the missing region based on a VAE paradigm
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[42, 44]. Specifically, Zheng et al. [44] uses two coupled parallel VAEs to model
the prior probability of the missing part. In contrast, Zhao et al. [42] uses two
different encoders of VAEs to map the in-completed images and other additional
reference images in the dataset to the same low-dimensional manifold. 2) Some
gradually modulate a random noise to the repaired image [20, 43]. For exam-
ple, Liu et al. [20] first uses a pre-trained deterministic inpainting network to
obtain an initially restored image and then inject it into the generator to mod-
ulate the generation process. Furthermore, Zhao et al. [43] further introduced
the input noise of the GAN into the modulation process as well, proposing the
co-modulation scheme. 3) Some [25, 32, 40] two-stage methods model the prob-
ability of coarse low-resolution structural priors in the first stage and use GAN
in the second stage to generate rich texture details based on the previously ob-
tained structural prior. Specifically, Peng et al. [25] uses VQ-VAE to separate
and obtain discrete structural priors in the first stage. Wan et al. [32] uses a
Transformer to model the probability distribution of masked tokens (i.e., miss-
ing pixels) by borrowing ideas from MLM (masked language model [5]). Yu et
al. [40] combined the autoregressive model with MLM to further consider the
dependencies between the missing pixels (masked tokens). 4) Some more recent
diffusion-based methods [22, 28] restore images from random noise by iteration.
They have the same problem of slow inference as autoregressive-based methods.

Normalizing Flow Normalizing flows have continuously made achievements
in image generation tasks as they possess diverse generative capacity and ex-
act likelihood computation. Normalizing flows are invertible generative models
that learn a bijection function between the complex data distribution and sim-
ple predefined distribution. NICE [6], Real-NVP [7], Glow [16] are proposed in
succession to promote the fitting ability of the flow models to the original data
distribution. These efforts were later applied to audio generation [14,26, 29, 35],
image modeling [3, 9, 21, 31], and video prediction [17]. However, there is still a
blank in employing a flow model in diverse image inpainting. The flexible nature
of distribution mapping makes the flow-based model suitable for a diverse gener-
ation. Although VAEs and GANs-based methods work in diverse image genera-
tion tasks, they rely on deep-feature extraction and elaborate auxiliary modules
to model the potential distribution of data. In addition, VAEs and GANs-based
methods often suffer from mode collapse, posterior collapse, vanishing gradi-
ents, and instability. Based on the above analysis, we adopt a flow-based model
to naturally model the distribution of coarse structural prior. As a result, the
training process is more stable. In addition, conditional normalizing flow learns
a conditionally reversible bijective function between a specific distribution and
Gaussian distribution. Therefore, we can extend it to semantic transfer tasks.

3 Our Approach: Flow-Fill

Suppose we have an image Igt originally from a dataset, it degraded by a mask
M to become a masked image Im comprising the observed/visible pixels. Di-



Diverse Image Inpainting with Normalizing Flow 5

A
ct

 N
or

m
S

of
t P

er
m

ut
e

C
on

di
tio

ne
d 

A
ffi

ne

S
qu

ee
ze

S
pl

it

Feature 
Encoder �

Forward NormalizingStage One

Stage Two � �1 � �2 � �3

Structure Prior
Guided Generator �

�푔� ↓

��↓

Inversed Generation

Bilinear Upsampling

� �1 � �2 � �3

��

Invertible Flow Network  �

�−1

Fig. 2. Pipeline Overview. Our method is a two-stage diverse inpainting model. In
the first stage, we adopt a conditional normalizing flow network to transform the con-
ditional structural priors distribution p(Is|Im) to a Gaussian density pZ(z). Therefore
in the second stage, we can use the reverse mapping of the flow network to transform
the random latent variables z to stochastic structural priors and then use another gen-
erator G to generate final texture-rich results guided by structural priors. Igt: ground
truth image, Im: masked images, ↓: downscaled, Is: structural prior, Ic: repaired image.

verse image inpainting refers to generating multiple and diverse visually realis-
tic and semantically reasonable completed/repaired images {Ic}. We formulate
this task to learn the conditional probability distribution p(Ic|Im) over com-
pleted images, sampling from which could produce diverse inpainting results
corresponding to a given Im. As depicted in Fig. 2, we adopt the two-stage
pipeline that generates diverse structural priors Is in the first stage and texture
details in the second stage. Therefore p(Ic|Im) is decomposed into two parts
p(Ic|Im) = p(Ic, Is|Im) = p(Is|Im) · p(Ic|Is, Im), in which p(Is|Im) is stochastic
and p(Ic|Is, Im) is deterministic. We adopt a conditional normalizing flow net-
work f to model p(Is|Im), and a deterministic inpainting network G to generate
final results with rich textures: Ic = G(Is, Im).

3.1 Normalizing the Conditonal Distribution of Structural Priors

Normalizing flows are invertible density estimation models that learn a bijection
function fθ between a complex data distribution pX and a simple pre-defined
prior pZ . Given a data sample x ∈ X, the core idea of normalizing flow is that,
according to the change-of-variable formula, the probability density p(x) can be
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explicitly computed as:

p(x, θ) = pZ(fθ(x))

∣∣∣∣det ∂fθ∂x
∣∣∣∣ (1)

Here the second factor is the volume-scaling determinant of Jacobian ∂fθ
∂x . This

allows the exact maximum likelihood estimation (MLE) for p(x). Given the
conditions c, to learn the conditional distribution p(x|c) using normalizing flow,
Eq. 1 is extended to a conditional scheme:

p(x|c, θ) = pZ(fθ(x; c))

∣∣∣∣det ∂fθ∂x (x; c)

∣∣∣∣ (2)

In our work, fθ is implemented by an invertible neural network stacked by T
bijective layers fθ = f0θ ◦f1θ ◦f2θ ◦...◦f

T−1
θ . The complex x is normalized to z as if

it were a flow through a series of transformations, so such a model is called nor-
malizing flow. Thanks to the natural bijective distribution mapping properties
of normalizing flow models, we design the conditional normalizing flow network
fθ to directly map/normalize p(Is|Im) to a simple distribution pZ(z) (e.g., Gaus-
sian distribution). Therefore the conditional distribution p(Is|Im, θ) is implicitly

defined by the reverse mapping: pZ(z)
f−1
θ→ p(Is|Im, θ). We can sample Is by

sampling z ∼ pZ(z) and then use the reverse mapping to get Is = f−1
θ (z, Im).

According to Eq. 2, the probability density p(Is|Im) is computed as:

p(Is|Im, θ) = pZ(fθ(Is; Im))

∣∣∣∣det ∂fθ∂Is
(Is; Im)

∣∣∣∣ (3)

In practice, we first use another CNN network Eθ as an encoder to extract the
given masked image’s features ft = Eθ(Im), and then inject ft to flow network
fθ. We simply downsample the ground-truth images to 64×64 to get Is = Igt ↓.
Thus the first stage input masked image is also down-sampled and is denoted by
Im ↓. For network training, we calculate the negative log-likelihood (NLL) loss
to apply maximum likelihood estimation for p(Is|Im ↓):

L(θ; Is, Im) = − log p(Is|Eθ(Im ↓), θ)

= − logPZ(fθ(Is; ft))− log

∣∣∣∣det ∂fθ∂Is
(Is; ft)

∣∣∣∣ (4)

3.2 Flow Network Design

To calculate the NLL loss (Eq. 4) and to generate inpainting results using the
reverse mapping, each layer of our flow network fθ needs to be carefully designed
to calculate both the Jacobian determinant and the inverse cheaply. Our work
is based on the widely used un-conditional Glow [16] architecture and its con-
ditional extension [1, 21]. Here we briefly view the flow layers we borrow in our
network and then describe the overall stage one network architecture.
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Actnorm. Since the performance of Batch Normalizing is known to de-
grade for small per-GPU minibatch size, Glow [16] proposed the Actnorm as a
substitute for Batch Normalizing. The scaling and bias of Actnorm are data-
independent (only the initialization is data-dependent) and learnable, removing
the impact of a small minibatch size. Due to memory constraints, We choose
Actnorm to enable small minibatch size training.

Conditional Affine. The coupling layer was first proposed by [6]. It divides
the input into two parts and keeps one part unchanged to make the inverse and
Jacobian cheaply calculated. This also captures the dependency between the two
parts by using the information from the remaining part to transform the other
part. We use the conditional form [1, 21] of the affine coupling layer to inject
masked images’ features as conditions into the flow network:

ht+1
1 = ht1, ht+1

2 = exp(stθ(h
t
1; ft)) · ht2 + ttθ(h

t
1; ft) (5)

Where (ht1,h
t
2) = ht is a partition of t-th layer’s input activations. stθ(·) and ttθ(·)

are two arbitrary CNN networks that calculate the scaling and bias of ht2. To
further inject stronger conditional information, we use the affine injector layer
proposed in [21] to apply the affine transformation on the full activations:

ht+1 = exp(s′tθ (ft)) · ht + t′tθ (ft) (6)

Here s′tθ (·) and t′tθ (·) are two other arbitrary networks. We implement Eq. 5
and Eq. 6 together to form our Conditional Affine layer.

Squeeze. We adopt the squeeze layer [16] as the downsampling operation.
The squeeze layer reshapes every 2×2 adjacent pixel into the channel dimension.
The flow network captures long-distance dependence by reducing the spatial
resolution of activations.

Soft Permutation. Glow [16] proposed the invertible 1 × 1 convolution
as the permutation operation on the channel dimension. It can be viewed as a
linear transformation ht+1 = Wht, performed on each spatial position. Like [1],
we set the weight matrix W as a fixed orthogonal matrix. This makes it easy to
calculate both the Jacobian and the inverse of W. Hence the training process is
faster and more stable.

Overall Network Architecture of The First Stage. As depicted in Fig.
2, in the first stage, our Flow-Fill architecture consists of feature extraction
network Eθ and flow network fθ. The flow network fθ is composed of L flow-
blocks. Each flow block contains a Squeeze layer to reduce the spatial resolution
of activations, followed by K conditional flow steps. Each conditional flow step
consists of an Actnorm, a Soft Permutation, and a Conditional Affine. Except
for the last flow-block, each flow-block contains a Split layer [16] at the end,
dividing the output into two parts, one as the final output {zi}Li=1 and one
as input for the next flow-block. Our work uses the reimplemented generator
proposed in [39] as the masked images’ feature extraction network Eθ. It is
a coarse-to-fine inpainting generator with Gated Convolution. We select some
intermediate feature maps of Eθ to concatenate together as the features ft of
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the input masked images to inject into the flow network. See the Appendix for
more details about Eθ and feature selection.

3.3 Guided Texture Generation

The structural priors Is obtained in the first stage are low-resolution and have no
texture details. In the second stage, we upsample Is and concatenate it with Im as
the input of another generator Gϕ (parameterized by ϕ). Gϕ is a deterministic
inpainting network that generates the final repaired image with rich textures
under the guidance of Is. Thus the overall two-stage inpainting process is:

z ∼ pZ(z)

Is = f−1
θ (z;Eθ(Im ↓))

Ic = Gϕ(Is ↑, Im)

(7)

Here ↓ indicates downsampling, and ↑ indicates upsampling. Follow [32], Gϕ is
composed of an encoder, decoder, and several residual blocks. The difference is
that we replace all vanilla convolutions with gated convolution [39]. More details
about the network architecture of Gϕ are shown in the supplementary material.

For stage two training, we get Is by downsampling Igt and doing some degra-
dation to maintain consistency with the results generated in the first stage.
Specifically, we first calculate the latent variables z = fθ(Igt ↓, Im ↓) and replace
some dimensions of z with random noise to get the slightly disturbed z′. Then do
the reconstruction by using the disturbed z′: Is = f−1

θ (z′, Im ↓). Gϕ is optimized
by adversarial training. Specifically, the adversarial loss is,

Ladv = E[log 1−Dψ(Ic)] + E[logDψ(Igt)] (8)

Here Dψ is the discriminator parameterized by ψ. Alone with the L1 reconstruc-
tion loss,

Lrec = E(∥Ic − Igt∥1) (9)

Gϕ and Dψ are trained by solving the min-max optimization:

min
G

max
D

Ltotal = λ1Ladv + λ2Lrec (10)

In our experiments, λ1 and λ2 are empirically set at 0.1 and 1.0.

4 Experiments

4.1 Experimental Settings

Implementation Details. Our proposed method is implemented in PyTorch. We
set the flow network architecture hyperparameters L = 4 and K = 10. The flow
network fθ and the feature extraction network Eθ were trained together for a
total of 300k iterations with NLL loss (Eq. 4). For optimizer, we use Adam [15]
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Fig. 3. Qualitative comparison with state-of-the-art methods on CelebA-
HQ. The completion results of our method are with better quality and diversity.

Input GC EC PIC1 PIC2 PIC3

ICT1 ICT2 ICT3 Ours1 Ours2 Ours3

Input GC EC PIC1 PIC2 PIC3

ICT1 ICT2 ICT3 Ours1 Ours2 Ours3

Fig. 4. Qualitative comparison with state-of-the-art methods on Places2. The
completion results of our method are with better quality and diversity.
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Input GT GC EC PIC1 PIC2 PIC3

Ours1 Ours2 Ours3 Ours4 Ours5 Ours6 Ours7

Fig. 5. Qualitative comparison with state-of-the-art methods on Paris
StreetView. The completion results of our method are with better quality and diver-
sity.

with β1 = 0.9 and β2 = 0.999. The learning rate is initialized as 5 · 10−4 and
halved at 50%, 75%, 90%, and 95% of the training iterations. To train the guided
inpainting generator Gϕ we use Adam [15] optimizer with fixed learning rate 1e-
4, β1 = 0.0 and β2 = 0.9. The first stage of training takes about one day on a
single NVIDIA(R) Tesla(R) V100 GPU with a minibatch size of 16. The second
stage of training takes about four days on a single NVIDIA(R) Tesla(R) V100
GPU with a minibatch size of 8.

Datasets and Evaluation Metrics. We conduct our experiments on three
datasets, including CelebA-HQ [13], Places2 [45], and Paris StreetView [24].
We follow the selection in [20] to produce the training, and validation sets for
Places2. For CelebA-HQ and Paries StreetView, we keep the original training,
validation, and testing split. All images are scaled to the resolution of 256× 256
before inputting into the network. For non-square images in Pairs StreetView,
random cropping is used. We train and evaluate our model with the irregular
mask [18]. We adopt reconstruction-based metrics, including peak signal-to-noise
ratio (PSNR), structural similarity (SSIM [33]), and mean ℓ1 error, to measure
the low-level similarity between the inpainting result and ground truth. Our goal
is to generate diverse, visually realistic, and semantically reasonable inpainting
results that are unnecessarily similar to ground truth. Therefore, we further use
Fréchet Inception Distance (FID [11]) as perceptual quality metrics, which are
consistent with human judgment.

4.2 Performance Evaluation

We compare our method with the following state-of-the-art inpainting algo-
rithms: GC [39], EC [23], PIC [44], ICT [32], and BAT [40]. GC and EC are
single-solution methods. PIC, ICT, and BAT are multiple-solution methods.
The performance of the compared methods was acquired by using the publicly
available pre-trained models or implementation codes.
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Table 1. Quantitative comparison over CelebA-HQ and Places2 datasets.
For each metric, the best score is highlighted in bold, and the second-best score is
highlighted in underline.

Methods Dataset
FID↓ ℓ1(%) ↓ PSNR↑ SSIM↑

20-40% 40-60% Random 20-40% 40-60% Random 20-40% 40-60% Random 20-40% 40-60% Random

EC [23]

CelebA-HQ [13]

9.06 16.45 12.46 2.19 4.71 3.40 26.60 22.14 24.45 0.923 0.823 0.877
GC [39] 14.12 22.80 18.10 2.70 5.19 3.88 25.17 21.21 23.32 0.907 0.805 0.858
PIC [44] 10.21 18.92 14.12 2.50 5.65 4.00 25.92 20.82 23.46 0.919 0.780 0.852
BAT [40] 6.32 12.50 9.33 1.91 4.57 3.18 27.82 22.40 25.21 0.944 0.834 0.890
Ours 7.75 14.91 11.29 1.42 3.31 2.34 28.06 23.10 25.60 0.944 0.856 0.895

EC [23]

Places2 [45]

25.64 39.27 30.13 2.20 4.38 2.93 26.52 22.23 25.51 0.880 0.731 0.831
GC [39] 24.76 39.02 29.98 2.15 4.40 2.80 26.53 21.19 25.69 0.881 0.729 0.834
PIC [44] 26.39 49.09 33.47 2.36 5.07 3.15 26.10 21.50 25.04 0.865 0.680 0.806
ICT [32] 21.60 33.85 25.42 2.44 4.31 2.67 26.50 22.22 25.79 0.880 0.724 0.832
BAT [40] 17.78 32.55 22.16 2.15 4.64 2.84 26.47 21.74 25.69 0.879 0.704 0.826
Ours 19.03 33.26 25.40 1.87 3.92 2.47 26.76 22.38 25.84 0.892 0.799 0.847

Qualitative Comparisons. We conduct qualitative comparisons over CelebA-
HQ [13], Places2 [45] and Paris StreetView [24] datasets. For CelebA-HQ and
Paris StreetView, our mthdod is compared with GC [39], EC [23], and PIC [44].
For Places2, our method is compared with GC, EC, PIC, and ICT [32]. All
results are the direct output of the model without any post-processing.

Fig. 3 shows the results on CelebA-HQ [13]. GC [39], and EC [23] generate
generally reasonable content, but with some artifacts, they can only generate
a single result. The results of PIC [44] have better fidelity than GC and EC
but limited diversity. Compared to these methods, ours is superior in both pho-
torealism and diversity. Fig. 5 shows the case of large missing areas on Paris
StreetView [24]. This time GC and PIC generate incongruent content with the
visible region. EC is much better but lacks sharp details. Again, ours have the
best fidelity and diversity. Results on nature scenery images are shown in Fig. 4.
EC’s results have pronounced artifacts, while GC’s are much better. The PIC’s
results look more realistic than ICT’s [32], but the diversity is not as good as
ICT’s. Only ours look both natural and varied.

Quantitative Comparisons. We quantitatively compare our method with
other deterministic and non-deterministic inpainting methods on ClebabA-HQ
[13] and Places2 [45]. All tests use irregular masks [18], categorized according to
the mask ratios. Here ’Random’ indicates that the mask from this category has
a mask ratio from 20% to 60%. Unlike PIC [44], which unitizes its discriminator
to sort the results, our method uses all random samples without any selection
to better evaluate our model’s average performance. As shown in Tab. 1, Ours
achieve the best reconstruction scores and have comparable perceptual quality.

4.3 Region-specific Semantic Transfer

Given a masked region as a condition, Flow-Fill can build a bijection between
semantic contents in this area and latent variable space. With this property,
we can directly calculate the latent variables z that contain the target image’s
semantic information and fill it in different source images by reverse inference
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Fig. 6. Specific-region semantic transfer results. We use the target image to
compute the latent variable in the first stage and thus obtain an inpainting result
similar to the target style (eyes, eyebrows, mouth, glasses, etc.).

(no need to retrain the inpainting model). Note that in the semantic transfer
task, we use z inverted from target images instead of randomly sampled.

Specifically, given a target image It and a masked source image Im (masked
with maskM), we first normalizing it to the latent variables z = fθ(It ↓;Eθ((It ·
M) ↓)). Then we generate the structural prior Is by inversed generation: Is =
f−1
θ (z;Eθ(Im ↓)). Finally, the result with rich texture is generated: Ic = Gϕ(Is ↑
, Im). Experimental results are shown in Fig. 6. By selecting the target image,
we can control the hairstyle, lip color, whether to open the mouth, whether to
wear glasses, etc., of the inpainting result.

Table 2. Quantitative comparison on Paris StreetView dataset. The best score
is highlighted in blod.

Method Mask Ratio PSNR ↑ SSIM ↑ ℓ1(%) ↓ FID ↓ LPIPS ↑
PIC [44]

20%− 40%
24.80 0.817 3.43 56.83 0.046

BAT [40] 26.52 0.864 3.43 36.19 0.076
Ours 26.87 0.897 1.95 33.98 0.078

PIC [44]
40%− 60%

20.12 0.570 7.47 90.91 0.127
BAT [40] 21.89 0.678 5.83 64.20 0.147
Ours 22.35 0.798 3.99 65.86 0.151

PIC [44]
Random

22.97 0.718 4.94 72.16 0.082
BAT [40] 24.50 0.786 3.96 48.19 0.106
Ours 24.58 0.849 2.90 50.18 0.109
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4.4 Analysis

Diversity. Following [44, 46], we utilize the LPIPS distance [41] to measure
the diversity score. LPIPS is computed based on the in-depth features of the
VGG [30] model pre-trained on ImageNet. Specifically, we randomly sampled
five output pairs for each masked input image to calculate the average score.
Because results with high variability are likely to be unreasonable, we measured
PSNR, SSIM [33], mean ℓ1 error, and FID [11] simultaneously. Tab 2 shows the
results. Our model achieves the best diversity while maintaining high fidelity in
all cases.

Computational time. We randomly selected 200 images on the test set
of Places2 [45] and calculated the average computational time per image. As
shown in Tab. 3, our method achieves a real-time inference speed approximately
87 times faster than autoregressive-based models and 142 times faster than
diffusion-based models. All tests were performed on an NVIDIA(R) GeForce
RTX 3090 GPU.

GT Input Output GT Input Output

Fig. 7. Inpainting results of our method. We achieve the first flow-based large
missing region complementation.

Table 3. Comparison of inference speed. Rows and columns correspond to differ-
ent masked areas and methods respectively.

BAT [40] ICT [32] Palette [28] Ours

20-40% 11.33s 9.40s 27.01s 0.18s
40-60% 22.21s 15.53s 27.23s 0.19s
random 16.60s 13.03s 27.13s 0.19s
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Table 4. Ablation studies on CelebA-HQ. The mask ratio is 20-60%. The best
score is highlighted in blod.

First stage resolution FID↓ ℓ1(%) ↓ PSNR↑ SSIM↑
32 × 32 12.44 2.54 25.04 0.888

48 × 48 11.86 2.40 25.46 0.892

64 × 64 11.29 2.34 25.60 0.895

96 × 96 13.19 2.61 24.95 0.883

256 × 256 41.94 3.86 22.31 0.844

Ablation study on first stage resolution. We ablate the resolution for the
first stage. As shown in Tab. 4, normalizing flow is difficult to generate high-
quality images with high resolution. We use normalizing flow to complement a
low-resolution (64×64) coarse result in the first stage and use GAN to generate
a high-resolution visual pleasing result in the second stage. Thus we circumvent
the difficulties of flow models in generation and achieve the first flow-based large
missing region complementation. Some inpainting examples for large regions of
missing images are shown in Fig. 7.

Searching for flow network structure hyperparameters. Our flow net-
work consists of L flow-blocks, and each flow-blocks consists of K flow-steps.
In general, the larger the L, K, the better the model performance. To reduce
the model size while maintaining a good inpainting performance, we form this
problem to a constrained optimization problem:

L∗,K∗ = argmax
L,K

Q(L,K) + λT (L,K)

s.t. 12 ≤ L+K ≤ 15
(11)

Where Q, T denotes the inpainting performance and network size function with
respect to L, K. After a rough grid search, the best L and K are 4 and 10.

5 Conclusion

We propose a novelty two-stage image inpainting framework named Flow-Fill,
which can directly estimate the joint probability density of the missing regions
without reasoning pixel by pixel. Hence it achieves real-time inference speed
and eliminates discretization assumptions. In addition, as a flow-based model,
Flow-Fill can directly calculate the latent variables containing the specified se-
mantic information, which allows us to control the reverse inpainting process to
a certain extent. Experiments on benchmark datasets qualitatively and quan-
titatively verify that Flow-Fill achieves superior diversity and fidelity in image
inpainting.
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