Improved Masked Image Generation with Token-Critic Supplementary Material

1 Comparison to related work on ImageNet 512x512

1.1 Base models

In Figures 1, 2, 3 and 4 we compare the result of sampling from Token-Critic with one competing GAN, BigGAN [1], and one diffusion model, ADM with classifier guidance (ADM+G) [2]. We compare on ImageNet 512x512 as this is the more challenging case.

Our goal here is to directly compare the performance of the original models in capturing the class-conditional distributions of 512x512 real images. Thus, we do not include classifier rejection for Token-Critic or upsampling for ADM, as the resulting samples would depend on a separate process.

Results for ADM+G [2] were obtained using the authors' publicly available source code¹. Results for BigGAN [1] were obtained using the authors' implementation. Note that BigGAN uses one step, ADM+G 1000 steps, and Token-Critic 18 forward steps and 18 critic steps.

1.2 Combined models

In Figure 5 we compare the models that obtain better FID and Inception scores in Table 2 by leveraging an external process. For Token-Critic, the external process is classifier-based rejection sampling using a ResNet50 classifier. For ADM with guidance and upsampling (ADM+G+U) [2], the external process consists in using an upsampling diffusion model to rescale samples from 128x128 to 512x512. Results for [2] were obtained using the authors' publicly available source code. Note that ADM+G+U uses 250 steps for 128x128 generation and 250 steps for upsampling. Token-Critic with rejection sampling with 20% acceptance rate uses five times 18 forward steps and 18 critic steps.

¹ https://github.com/openai/guided-diffusion

(a) Token-Critic (FID/IS 6.80/182.1)

(b) ADM+G (FID/IS 7.72/172.7)

(c) BigGAN (FID/IS 8.43/177.9)

Fig. 1. Comparison on 512x512 class-conditional image generation on ImageNet class "jacamar" (95).

(a) Token-Critic (FID/IS 6.80/182.1)

(b) ADM+G (FID/IS 7.72/172.7)

(c) BigGAN (FID/IS 8.43/177.9)

Fig. 2. Comparison on 512x512 class-conditional image generation on ImageNet class "white wolf" (270).

(a) Token-Critic (FID/IS 6.80/182.1)

(b) ADM+G (FID/IS 7.72/172.7)

(c) BigGAN (FID/IS 8.43/177.9)

Fig. 3. Comparison on 512x512 class-conditional image generation on ImageNet class "llama" (355).

(a) Token-Critic (FID/IS 6.80/182.1)

(b) ADM+G (FID/IS 7.72/172.7)

(c) BigGAN (FID/IS 8.43/177.9)

Fig. 4. Comparison on 512x512 class-conditional image generation on ImageNet class "schooner" (780).

(a) Token-Critic + Classifier-based rejection (FID/IS 4.03/305.2)

(b) ADM + Guidance + Upsampling (FID/IS 3.85/221.7)

Fig. 5. Comparison on 512x512 class-conditional image generation with ADM+G+U [2], for ImageNet classes "beagle" (162), "lion" (291), "ladybug" (301) and "llama" (355).

2 On Token-Critic training objective.

As motivated in the main manuscript, we seek to match the distributions of 1) real masked images and 2) masked images obtained by the method, after estimating \mathbf{x}_0 with the generator G_{θ} and selecting the mask with Token-Critic. The masking rate is indicated by t. Next we show that the Token-Critic training objective approximates optimizing the KL divergence between these two distributions.

$$KL(q(\mathbf{x}_t) \| p_{\theta,\phi}(\mathbf{x}_t)) = -\mathbb{E}_{q(\mathbf{x}_t)} \log \frac{p_{\theta,\phi}(\mathbf{x}_t)}{q(\mathbf{x}_t)}$$
(1)

$$= -\mathbb{E}_{q(\mathbf{x}_t)} \log \sum_{\mathbf{x}'_t} \sum_{\hat{\mathbf{x}}_0} \frac{p_{\theta,\phi}(\mathbf{x}_t, \hat{\mathbf{x}}_0, \mathbf{x}'_t)}{q(\mathbf{x}_t)} d\hat{\mathbf{x}}_0 d\mathbf{x}'_t$$
(2)

$$= -\mathbb{E}_{q(\mathbf{x}_t)} \log \sum_{\mathbf{x}'_t} \sum_{\hat{\mathbf{x}}_0} \frac{p_{\phi}(\mathbf{x}_t | \hat{\mathbf{x}}_0) p_{\theta}(\hat{\mathbf{x}}_0 | \mathbf{x}'_t) q(\mathbf{x}'_t)}{q(\mathbf{x}_t)} d\hat{\mathbf{x}}_0 d\mathbf{x}'_t \quad (3)$$

$$\leq -\mathbb{E}_{q(\mathbf{x}_t)}\mathbb{E}_{q(\mathbf{x}_t')}\mathbb{E}_{p_{\theta}(\hat{\mathbf{x}}_0|\mathbf{x}_t')}\log\frac{p_{\phi}(\mathbf{x}_t|\hat{\mathbf{x}}_0)}{q(\mathbf{x}_t)}$$
(4)

$$\approx -\mathbb{E}_{q(\mathbf{x}_t)}\mathbb{E}_{p_{\theta}(\hat{\mathbf{x}}_0|\mathbf{x}_t)}\log p_{\phi}(\mathbf{x}_t|\hat{\mathbf{x}}_0) + C, \tag{5}$$

$$= -\mathbb{E}_{q(\mathbf{x}_t)} \mathbb{E}_{p_{\theta}(\hat{\mathbf{x}}_0 | \mathbf{x}_t)} \log p_{\phi}(\mathbf{m}_t | \hat{\mathbf{x}}_0) + C, \tag{6}$$

where C is constant with respect to Token-Critic parameters ϕ . In (5) we used Jensen's inequality and in (6) we approximate the expectation by choosing $\mathbf{x}'_t = \mathbf{x}_t$, noting that for most random pairs of \mathbf{x} and \mathbf{x}'_t in the dataset this quantity will be very small. Finally, the last step results from \mathbf{x}_t being completely determined by $\hat{\mathbf{x}}_0$ and \mathbf{m}_t .

References

- 1. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)
- 2. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Advances in Neural Information Processing Systems **34** (2021)

8