Supplementary Materials

1 Experiment Details

Data Preparation. On FFHQ [2], we synthesize 500k images and use pretrained CelebA classifiers provided by [2] to generate the pseudo labels on age, gender, eyeglasses and smile. On the other datasets, there are no existing attribute prediction models. Therefore, we synthesize 10k images and manually select 30 examples for each of the chosen key attributes presented in the paper, such as car colors, car rotations and cat colors.

Model Implementation. For each attribute, we train a classifier consisting of
2 fully-connected layers with hidden layer size 16 and ReLU as the activation
function. We use the Adam optimizer with the default parameters, and use the
model with the highest evaluation accuracy from the latest epoch.

Interpolation Settings. For each W latent code corresponding to each test image, starting from its original logits of the target l_k^0 , we generate a new image from the optimized latent code at each step, and obtain new logits l'_k for the target with the pretrained attribute classifier, until the amount of change in logits for the target $\Delta l_k = |l'_k - l^0_k|$ is equal to $1.1 * |l^0_k|$, with tolerance of $0.05 * \sigma_k$, where σ_k stands for the standard deviation of semantic k logits in our image bank.

We use a fixed step size of 0.6 for our method and InterFaceGAN [4], and when the latent code overshoots, we go back to the previous position in the latent space and the step size is multiplied by 0.8. For GANSpace [1] and StyleSpace [5], we use the same bisection algorithm following [5], and the maximal/minimal manipulation strength are set to 10 and -10. For all methods, we set the maximal optimization step to 20.

Accuracy and Attribute Dependency (AD) Calculation. The full algorithm is described as follows.

- For the 3k images optimized by each method, we employ the pre-trained
 CelebA classifiers to score all 4 attributes. By thresholding the logits value,
 we obtain the labels for all attributes in the modified images. We then compare them to the original labels to compute the accuracy.
- $\begin{array}{ll}
 \begin{array}{ll}
 \begin{array}{ll}
 \begin{array}{ll}
 \begin{array}{ll}
 \begin{array}{ll}
 \end{array} & & \mbox{For each set of images with target attribute } k \in A \mbox{ being manipulated, where} & \end{subscript{035}} & \end{subscript{036}} & A \mbox{ stands for all attributes, we calculate the amount of change in the target} & \end{subscript{036}} & \end{subscript{037}} & \mbox{ attribute logits, normalized by the target population standard deviation with} & \end{subscript{037}} & \end{subscript{038}} & \end{subscript{038}} & \end{subscript{036}} & \end{subscript{036}} & \end{subscript{037}} & \end{subscript{037}} & \end{subscript{038}} & \end{subscript{036}} & \end{subscript{036}} & \end{subscript{037}} & \end{subscript{038}} & \end{subscript{037}} & \end{subscript{038}} & \end{subscript{038}} & \end{subscript{038}} & \end{subscript{038}} & \end{subscript{036}} & \end{subscript{036}} & \end{subscript{037}} & \end{subscript{038}} & \end{subscript{038}} & \end{subscript{038}} & \end{subscript{038}} & \end{subscript{038}} & \end{subscript{038}} & \end{subscript{036}} & \end{subscript{036}} & \end{subscript{037}} & \end{subscript{038}} & \end{s$
- $\begin{array}{ll} & \text{We then group the images with their } x \text{ values in intervals with lengths of} \\ & 0.2 \text{ (age and eyeglasses) or } 0.1 \text{(gender and smile), starting from the smallest} \\ & x \text{ value, and ignore groups with less than 10 samples.} \end{array}$
- Finally, for each group, we calculate mean-AD with $E(\frac{1}{|A|-1}\sum_{i\in A\setminus k}\frac{\Delta l_i}{\sigma l_i})$.
- Disentanglement Details. We list the details of channel exclusion for our
 method in (Tab. 1).

049
050
051
052
053
054
055
056
057
058
059
060

Table 1: Channel exclusion details for manipulating images generated by Style-GAN2 [3] on FFHQ [2]. For each target attribute in the Target column, union of top channels for some/ all of the other attributes.

Target	Gender	Smile	Eyeglasses	Age	Layers
Gender	х	250	100	100	2-10
Smile	х	х	х	х	2-8
Eyeglasses	200	100	х	250	1-4
Age	200	х	х	х	4-10

2 Additional Ablation Studies

In this section, we present the effects of different training data sizes and the number of attributes excluded for disentanglement quantitatively.

Number of Training Samples. In (Tab. 2) we compare the accuracy of our method trained on different dataset sizes. The performance of our method can be further improved if trained on larger datasets.

Table 2: Attribute manipulation accuracy in a disentangled manner for our method trained on different numbers of samples for each attribute. A true positive should only have the target attribute changed.

Accuracy	Gender	Smile	Eyeglasses	Age
Ours(1000)	0.7204	0.9378	0.7197	0.6532
Ours(100)	0.7470	0.9253	0.6830	0.6089
Ours(30)	0.6937	0.9254	0.6626	0.6139

Different Levels of Disentanglement In section 4.3, we present a qualitative example of how excluding different attributes affects disentanglement for the gender attribute. In (Fig. 1) we evaluate it quantitatively and plot mean-AD for the 4 different choices. In particular, we only modify the gender attribute for the same 3k images used in our quantitative experiments, and compute the mean-AD with the same procedure.

3 Additional Qualitative Results

In this section, we present more results on the FFHQ, LSUN car and LSUN
cat datasets in (Fig. 2, Fig. 4). We also show more real image editing results in
(Fig. 3).

0.5

0.6

0.4

Fig. 1: Mean-AD for editing gender with top channels for predicting different attributes excluded. When all 3 attributes (age, smile, eyeglasses) are excluded (green), we achieve the lowest mean-AD as change in the amount of logits increases, i.e., the best disentanglement.

0.3 gender_delta_logits

Effects of Per-Layer Editing

0.0

0.1

0.2

Multiple previous works [1,2] have shown that different style layers in Style-GAN [2] control different levels of semantics, e.g., early layers control attributes that affect the image globally, such as the orientation of an object, whereas later layers control more fine-grained details, such as the tone of the image. In (Fig. 5) we inspect the effects of interpolating the style vector in different layers. We notice that the major meaningful changes happen when interpolating the top & middle layers, whereas the bottom layers only change irrelevant details like the overall color tone.

Limitation $\mathbf{5}$

Despite the overall success of our method in achieving versatile controls, we notice some failure cases with unrealistic results and identity changes as shown in (Fig. 6). For LSUN cars rotation, the process sometimes lacks 3D understanding, as the gradient tends to point in the direction that a minimal amount of change is required to achieve the target. For FFHQ, control for the identity attribute is challenging as it has high correlations with multiple attributes, such as age. Nevertheless, as the control for each labelled attribute learned by our method covers some part of the identity attribute, in general conditioning on multiple attributes should preserve the identity properly, such as adjusting the smile direction by excluding the union of top 100 channels for the rest.

Fig. 2: Additional StyleGAN2 [3] FFHQ [2] editing results in a disentangled manner.

- Fig. 4: Additional StyleGAN2 [3] LSUN [6] editing results.

270	R	leferences	270
271			271
272	1.	Härkönen, E., Hertzmann, A., Lehtinen, J., Paris, S.: Ganspace: Discovering in-	272
273		terpretable gan controls. Advances in Neural Information Processing Systems 33,	273
274	0	9841-9850 (2020) 1, 3	274
275	2.	Aarras, I., Laine, S., Alia, I.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVE conference on computer	275
276		vision and pattern recognition pp 4401–4410 (2019) 1 2 3 4	276
277	3.	Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing	277
278		and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF	278
219		conference on computer vision and pattern recognition. pp. $8110-8119(2020)/2, 4,$	219
200	4	Shen Y Yang C Tang X Zhou B · Interfacegan: Interpreting the disentangled	200
282	1.	face representation learned by gans. IEEE transactions on pattern analysis and	282
283	5	Wu Z Lischinski D Shochtman E Stylospace analysis: Disontangled controls	283
284	5.	for stylegan image generation In: Proceedings of the IEEE/CVF Conference on	284
285		Computer Vision and Pattern Recognition. pp. 12863–12872 (2021) 1	285
286	6.	Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: Construction	286
287		of a large-scale image dataset using deep learning with humans in the loop. arXiv	287
288		preprint arXiv:1506.03365 (2015) 5	288
289			289
290			290
291			291
292			292
293			293
294			294
295			295
296			296
297			297
298			298
299			299
300			300
301			301
302			302
303			303
304			304
305			305
306			306
307			307
308			308
309			309
31U 211			310
311			311
312 212			312
313			313
314			314