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Abstract. We introduce a new neural signal model designed for efficient
high-resolution representation of large-scale signals. The key innovation
in our multiscale implicit neural representation (MINER) is an internal
representation via a Laplacian pyramid, which provides a sparse multiscale
decomposition of the signal that captures orthogonal parts of the signal
across scales. We leverage the advantages of the Laplacian pyramid by
representing small disjoint patches of the pyramid at each scale with a
small MLP. This enables the capacity of the network to adaptively increase
from coarse to fine scales, and only represent parts of the signal with
strong signal energy. The parameters of each MLP are optimized from
coarse-to-fine scale which results in faster approximations at coarser scales,
thereby ultimately an extremely fast training process. We apply MINER
to a range of large-scale signal representation tasks, including gigapixel
images and very large point clouds, and demonstrate that it requires fewer
than 25% of the parameters, 33% of the memory footprint, and 10% of the
computation time of competing techniques such as ACORN to reach the
same representation accuracy. A fast implementation of MINER for images
and 3D volumes is accessible from https://vishwa91.github.io/miner.

1 Introduction

Neural implicit representations have emerged as a promising paradigm for signal
representation and interpolation with pervasive applications in 3D view syn-
thesis [16,19,9,23], images [3], video [2], and linear inverse problems [25,3]. At
the core of such neural representations is one or several multi layer perceptrons
(MLPs) that produce a continuous mapping from signal coordinates to the values
of the signal at those coordinates.

The success of neural implicit representations relies on the ability to fit models
accurately (high representation accuracy), rapidly (short training time), and in a
concise manner (small number of parameters). However, most state-of-the-art im-
plicit representations require training a single large MLP (parameters in millions)
that suffers from high computational cost, requiring large memory footprints and
long training times. While there have been several modifications to the network
architecture [22,20,13] and inference [31], neural implicit representations are not
yet practical for handling extremely high dimensional signals such as gigapixel
images or 3D point clouds with several billion data points.

https://vishwa91.github.io/miner
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Fig. 1: Multiscale Implicit Representations. We present a novel implicit represen-
tation framework called MINER for large visual signals such as images, videos, and
3D volumes. We leverage the self-similarity of visual signals across scales to iteratively
represent models from coarse to fine scales, resulting in a dramatic decrease in inference
and training time, while requiring fewer parameters and less memory than state-of-the-
art representations. This figure demonstrates fitting of the Lucy 3D mesh over three
scales with scale 2 being the coarsest and 0 being the finest. MINER achieves high
quality results across all scales with high IoU value and achieves an IoU of 0.999 at
the finest scale in less than 30 minutes. In comparison, the state-of-the-art approach
(ACORN) results in an IoU of 0.97 in that time, while requiring far more parameters.

We introduce a multiscale implicit neural representation (MINER) that is
well-suited for representing very high dimensional signals in a concise manner.
Our key observation is that Laplacian pyramids of visual signals offer a sparse and
multiscale decomposition that naturally separates a signal’s frequency content
across spatial scales. We leverage the multiscale decomposition by representing
each spatial scale of the Laplacian pyramid with different MLPs. Instead of using
a single MLP at each scale, we represent a small disjoint image/volume patch
of fixed size with a small MLP, resulting in both a multiscale and multipatch
decomposition. Such a multipatch decomposition is well-suited for sparse signals
as most patches will have near-zero intensity, thereby not requiring an explicit
MLP for that patch. MINER enables a fast and flexible multi-resolution analysis,
as representing the signal at lower resolution requires training 2× fewer MLPs
along each spatial dimension (due to fewer patches), An example on fitting a 3D
volume across three spatial scales on one billion points is shown in Fig. 1. MINER
provides a visually pleasing result even at the coarsest spatial scale in six minutes
with as few as 600k parameters. The finest scale converges in 22 minutes. In
contrast, for the same amount of training time, state-of-the-art approaches such
as ACORN result in many artifacts while also requiring 4× more parameters. An
overview of the MINER signal model is shown in Fig. 2.
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Fig. 2: MINER trains and predicts Laplacian pyramids. Visual signals are similar
across scales and are compactly represented by Laplacian pyramids. MINER follows a
similar scheme where each scale of the Laplacian pyramid is represented by multiple,
local MLPs with a small number of parameters. The number of such MLPs increase by
a factor of 2 from coarse to fine scale, thereby representing a fixed spatial size at each
scale. This multi-scale representation naturally lends itself to a sequential, coarse-to-fine
scale training process that is fast and memory efficient.

The multiscale, multi-MLP architecture lends itself to a fast and memory
efficient training procedure. At each spatial scale, the parameters of the MLPs
are trained for the corresponding Laplacian pyramid scale. We then sequentially
train MLPs from coarsest scale to the finest scale. The near-orthogonality of the
Laplacian transform across scales ensures that new information is added at every
scale, thereby resulting in an iterative refinement framework. We leverage the
sparsity of the Laplacian transform by comparing the upsampled signal from the
fine block and the target signal at that fine block – if the error in representation
(or variance of signal) is smaller than a threshold, we prune out the blocks before
training starts. This leads to fewer blocks to train at finer resolutions.

MINER is 10× or more faster compared to state-of-the-art implicit represen-
tations in terms of training process for a comparable number of parameters and
target accuracy. MINER can represent gigapixel images with greater than 38dB
accuracy in less than three hours, compared to more than a day with techniques
such as ACORN [13]. For 3D point clouds, MINER achieves an intersection over
union (IoU) of 0.999 or higher in less than three minutes, resulting in two orders of
magnitude speed up over ACORN. Due to the multiscale representation, MINER
can be used for streaming reconstruction of images, as with JPEG2000 [21], or
efficiently sampling for rendering purposes with octrees [31] – making neural
representations ready for extremely large scale visual signals.

2 Prior Work

MINER draws inspiration from classical multiscale techniques and more recent
neural representations. We outline some of the salient works here to set context.
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Implicit neural representations. Implicit neural representations learn a contin-
uous mapping from local coordinates to the signal value such as intensity for
images and videos, and occupancy value for 3D volumes. The learned models are
then used for a myriad of tasks including image representations [3], multi-view
rendering [16], and linear inverse problems solving [25]. Recent advances in the
choice of coordinate representation [27] and non-linearity [22] have resulted in
training processes that have high fitting accuracy. Salient works related to implicit
representations include the NeRF representations [16] and its many derivatives
that seek to learn the 3D geometry from a set of multi-view images. Despite
the interest and success of these implicit representations, current approaches
often require disproportionately large number of parameters compared to the
signal dimension. This culminates in a large memory footprint and training times,
precluding representation of very high-dimensional signals.

Architectural changes for faster learning. Several interesting modifications have
been proposed to increase training or inference speed. KiloNeRF [20] and deep
local shapes [1] replaced the large MLP with multiple small MLPS that fit only a
small, disjoint part of the 3D space. Such approaches dramatically speed up the
inference time (often by 60×) and in some cases enable better generalization [15],
but they have little to no effect on the training process itself. ACORN [13]
utilized an adaptive coordinate decomposition to efficiently fit various signals.
By utilizing a combination of integer programming and interpolation, ACORN
reduced training time for fitting of images and 3D point clouds by one to two orders
of magnitude compared to techniques like SIREN [22] and the convolutional
occupancy network [19]. However, ACORN does not leverage the cross-scale
similarity of visual signals, and this often leads to long convergence times for very
large signals. Moreover, the adaptive optimized blocks requires several hundreds
of thousands of gradient steps which can be prohibitively expensive.

Multi-scale representations. Visual signals are similar across scales, and this
has been exploited for a wide variety of applications. In computer vision and
image processing, the wavelet transform and Laplacian pyramids are often used
to efficiently perform tasks such as image registration [28], optical flow com-
putation [29], and feature extraction [11]. Multi-scale representations such as
octrees [14,4] and mip-mapping are used to speed up the rendering pipeline. This
has also inspired neural mipmapping techniques [9] that utilize neural networks to
represent texture at each scale. Along the same lines, spatially adaptive progres-
sive encoding [6] enables a coarse-to-fine training approach that gradually learns
higher spatial frequencies. Multi-scale representations are also utilized for several
linear inverse problems such as multi-scale dictionary learning for denoising [24],
compressive sensing [17], and sparse approximation [12]. Some recent works have
focused on a level-of-detail approach to neural representations [26] (NGLOD)
where the multiple scales are jointly learned. The implicit displacement fields
(IDF) approach [30] similarly learns a smooth approximation of the surface,
along with a high frequency displacement at each spatial point to represent
the shape. While efficient in rendering, NGLOD and IDF have no advantage in
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the training phase, as it relies on training all levels of detail at the same time.
MINER also results in an LOD representation, but the underlying approach is
significantly different. MINER relies on a block-wise representation at each scale
with sequential training from coarse to fine scales, which enables more compact
representation with faster training times.

3 MINER

MINER combines Laplacian pyramid with a block decomposition of the signal.
We now describe the MINER signal model and the training process.

3.1 Signal model
Let x be the coordinate and I(x) be the target. We will assume that the coordi-
nates lie in [−1, 1]. Let Dj be the domain specific operator that downsamples
the signal by j times, and Uj be the domain-specific operator that upsamples
the signal by j times. We will leverage J implicit representations, Ij(x) ≈ Nj for
j ∈ [0, J − 1], where Nj is the MLP at the jth level of a Laplacian pyramid, a
multiscale representation which separates the input signal into scales capturing
unique spatial frequency bands. Two desirable properties of such a bandpass pyra-
mid is that signals across scales are approximately orthogonal to one another [5]
and are sparse. We found in our experiments that these properties dramatically
reduce the training and inference times compared to a lowpass pyramid such as
the Gaussian pyramid (see Fig. 3a).

Letting Rj denote the MLP modeling the residual signal at scale j, our
Laplacian pyramid representation may be written as:

IJ−1(x) = DJ−1(I)(x) ≈ NJ−1(x) (1)
IJ−2(x) = DJ−2(I)(x) ≈ RJ−2(x) + U2(NJ−1(x/2)) (2)

...
I(x) ≈ R0(x) + U2(N1(x/2)) (3)

≈ N0(x) + U2(N1(x/2)) + · · · + U2J−1(NJ−1(x/2J−1)), (4)

where eq. (1) is the coarsest representation of the signal. At finer scales (as
in eq. (2)), we write the signal to be approximated as a sum of the upsampled
version of the previous scale and a residual term. This results in a recursive
multi-resolution representation that naturally shares information across scales.

We make two observations about MINER:
– Signals at coarser resolutions are low-dimensional, and therefore require smaller

MLPs. These MLPs are faster for inference, which is beneficial for tasks such
as mipmapping and LOD-based rendering.

– The parameters of the MLPs up to scale j only rely on the signal at scales
q = j, j + 1, · · · , J − 1. This implies the MLPs can be trained sequentially from
coarsest to finest scale. We will see next that this offers a dramatic reduction
in training time without sacrificing quality.
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Using multiple MLPs per scale. Equation (4) implies that obtaining a value
at a spatial point x requires evaluating a total of J MLPs across scales. Such joint
evaluation has no computational benefit compared to a single scale approach
like SIREN [22] with comparable number of parameters. Further, the residual
signals at finer scales are often low-amplitude, a consequence of visual signals
being composed of several smooth areas. To leverage this fact and make inference
faster, we split the signal into equal sized blocks at each scale. We create an MLP
for each block that requires significantly fewer parameters than a single full MLP
at that scale. Moreover, blocks with small residual energy can be represented as
a zero signal, and do not even need to be represented with an MLP.

We now combine the Laplacian representation with the multi-MLP approach
stated above. Let x̃ be a local coordinate at the finest scale in a block with
coordinate (m, n), where m ∈ 1, 2, · · · M is the number of vertical blocks, and
n ∈ 1, 2, · · · , N is the number of horizontal blocks. To evaluate the signal at x,

I(x) = I

(
x̃ +

[
mH

M
,

nW

N

])
= R(m,n)

0

(
x̃ +

[
mH

M
,

nW

N

])
+ · · ·

+ · · · U2

(
N (⌊m/2⌋,⌊n/2⌋)

1

(
x̃ +

[⌊
mH

2M

⌋
,

⌊
nW

2N

⌋]))
, (5)

where ⌊·⌋ is the floor operator, and N (m,n)
j is the MLP for block at (m, n) and at

scale j. With this formulation, we require evaluation of at most J small MLPs
instead of large MLPs, thereby dramatically reducing inference time.

3.2 Training MINER

MINER requires estimation of parameters at each scale and each block. We now
present an efficient sequential training procedure that starts at the coarsest scale
and trains up to the finest scale.

Training at coarsest scale. The training process starts by fitting IJ−1(x), the
image at the coarsest scale. We estimate the parameters of each of the MLPs
N (m,n)

J−1 by solving the objective function,

min
N (m,n)

J−1

∥∥∥∥IJ−1

(
x̃ +

(
mH

2J−1M
,

nW

2J−1N

))
− N (m,n)

J−1 (x̃)
∥∥∥∥2

. (6)

Let ÎJ−1(xJ−1) be the estimate of the image at this stage.

Pruning at convergence. As the training proceeds, some MLPs, particularly for
blocks with limited variations, will converge to a target mean squared error
(MSE) earlier than the more complex blocks. We remove those MLPs that have
converged from the optimization process and continue with the remaining blocks.
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Fig. 3: Laplacian pyramid enables faster convergence. The plot in (a) shows
training error across time for a 2048 × 2048 image of Pluto. MINER when combined
with a Laplacian pyramid offers a significantly faster convergence as the MLPs at
finer scale capture orthogonal information. This also results in small jumps in training
accuracy that is strongly present when MINER is trained with a Gaussian pyramid,
or ACORN. (b) shows PSNR as a function of time for various approaches for a one
megapixel Pluto image. MINER achieves higher accuracy at all times, and converges
significantly faster than competing approaches. Moreover, the drop in accuracy when
changing from coarse to fine scale is less severe for MINER compared to when ACORN
re-estimates coordinate decomposition.

Training at finer scales. As with the coarsest scale, we continue to fit small MLPs
to blocks at each finer scale. For scale J − 2, the target signal is given by

RJ−2(x) = IJ−2(x) − U2(̂IJ−1)(x/2). (7)

We leverage the fact that blocks within each scale occupy disjoint regions and
can optimize each MLP independently of one another:

min
R(m,n)

J−2

∥∥∥∥RJ−2

(
x̃ +

(
mH

2J−2M
,

nW

2J−2N

))
− R(m,n)

J−2 (x̃)
∥∥∥∥2

. (8)

Pruning before optimization. Due to the sparseness of gradients of visual signals,
we expect a large number of spatial regions to have little to no signal. Nominally,
the number of blocks and MLPs double along each dimension at finer scales.
However, some blocks may already be adequately represented by the corresponding
MLP at the coarser scale. In such a case, we do not assign an MLP to that block
and set the estimate of the residue to all zeros. Depending on the frequency
content in the image, this decision dramatically reduces the number of total MLP
parameters, and thereby the overall training and inference times. In cases where
a priori information about residual energy is not available (such as view synthesis
from images), we can rely on each block’s variance. Blocks with low variance
likely converge at the coarser scale and hence can be pruned from training.
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4 Experimental Results

Baselines. For fitting to images and 3D volumes, we compared MINER against
SIREN [22], KiloNeRF [20], and ACORN [13]. We also compared MINER against
convolutional occuppancy networks [19] for 3D volumes. We used code from the
respective authors and optimized the training parameters for a fair comparison.

Training details. We implemented MINER with the PyTorch [18] framework.
Multiple MLPs were trained efficiently using the block matrix multiplication
function (torch.bmm) and hence, we required no complex coding outside of stock
PyTorch implementations. All our models were trained on a system unit equipped
with Intel Xeon 8260 running at 2.4Ghz, 128GB RAM, and NVIDIA GeForce
RTX 2080 Ti with 12GB memory. For all experiments, we excluded any time
taken by logging activities such as saving models, images, meshes, and computing
intermittent metrics such as PSNR and IoU.

Fitting images. We split up RGB images into 32 × 32 × 3 patches at all spatial
scales. For each patch and at each scale, we trained a single MLP with two hidden
layers and sinusoidal activation function [22]. We fixed the number of features to
be 20 for each layer. We did not add any further positional encoding. We used
the ADAM [8] optimizer with a learning rate of 5 × 10−4 and an exponential
decay with γ = 0.999. At each scale, we trained either for 500 epochs, or until the
change in loss function was greater than 2 × 10−7. We used an ℓ2 loss function at
all scales with no additional prior. We pruned a block from the training pipeline
if the block MSE was smaller than 10−4. Similarly, a block was not added at the
starting of the training process if the block MSE was smaller than 10−4. The
effect of block-stopping threshold is analyzed in the supplementary material.

Figure 3a shows training error for a 4 megapixel (MP) image of Pluto across
epochs for MINER by representing a Laplacian pyramid, a Gaussian pyramid,
and ACORN. MINER converges rapidly to an error of 10−4 compared to other
approaches. Moreover, the periodic and abrupt increase in error are more prevalent
in Gaussian representation, and ACORN, which further hamper their performance,
but not with Laplacian pyramid due to near-orthogonality of signal across scales.
Figure 3b shows training error for a 1 MP image for various approaches with a
fixed number of parameters (900k). MINER with four scales is nearly two orders
of magnitude faster than all approaches. Figure 4 shows the fitting result for a
64 megapixel Pluto image across training iterations. The times correspond to
the instances when MINER converged at a given scale. MINER maintains high
quality reconstruction at all instances due to the multiscale training scheme and
rapidly converges to a PSNR of 40dB within 50 seconds. In contrast, ACORN
achieves qualitatively good results after 10s and achieves a PSNR of 30.8 dB after
50s, and KiloNeRF achieves a qualitatively good result only after 50s. SIREN
Results are not shown in the plot as the first epoch was completed after 4 minutes.
Results with analysis on effect of parameters such as number of scales and patch
size is included in supplementary.
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Fig. 4: Image fit over time. The figure compares fitting of the 16 megapixel pluto
image at various times during the training process. A distinct advantage of MINER is
that the signal is similar to the final output (albeit downsampled) from the starting
itself which enables an easy visual debug of the fitting process.

Figure 3b shows a plot of PSNR as a function of time for various approaches.
We also note that ACORN curve shows significant drop in accuracy as a result
of re-computation of coordinate blocks. In contrast, the drop in accuracy for the
MINER curve due to scale change is significantly smaller than ACORN. Figure 5
shows results on training a 2 megapixel image with active blocks at all scales. The
blocks are concentrated around the high frequency areas (such as the antennae of
the grasshopper) as the scale increases from coarse to fine. MINER took less than
10s to converge to 40dB fitting accuracy. In contrast, KiloNeRF took 6 minutes
to converge and ACORN took 7 minutes to converge to 40dB with approximately
equal number of parameters.

Figure 6 compares MINER, KiloNeRF, and ACORN in terms of time taken to
achieve 36dB and GPU memory for fitting a 16MP image of Pluto. For Fig. 6 (a),
we used author’s implementation of ACORN with default batch size and number
of layers and only varied the number of hidden features. For Fig. 6 (b), we set
batch size such that up to all pixels were trained simultaneously. Similarly, we set
the batchsize for MINER to train all pixels simultaneously to keep comparisons
fair. MINER consistently achieves 36dB faster than competing methods and
requires significantly smaller memory footprint while being able to train on the
whole signal at a time, making it highly scalable for large-sized problems.

MINER scales up graciously for extremely large signals. We trained ACORN
on a gigapixel image shown in Fig. 7 over 7 scales. We set the number of features
per each block to be 9, and used a patch size of 32 × 32. MINER converged to
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Fig. 5: MINER adaptively selects window sizes. MINER adaptively selects the
appropriate scale for each local area resulting in patch sizes that are chosen according
to texture variations within the window. The figure above shows a macro photograph of
a grasshopper fit by MINER (left image). Large parts of the image such as background
have very smooth texture implying that they can be fit accurately at a coarser scale –
which translates to large spatial size for low frequency areas. In contrast, area around
the antennae are made of high spatial frequencies, which required fitting at finer scales.
ACORN provides a similar decomposition (right image) but represents image at only a
single image, thereby not being amenable to multiscale analysis.

Fig. 6: MINER requires shorter training time and memory footprint. The plot
shows the time taken to achieve 36 dB and the GPU memory utilization to fit a 16MP
image (Pluto) with ACORN and MINER for varying number of parameters. MINER
is an order of magnitude faster than ACORN and requires less than one third of the
GPU memory as ACORN – implying MINER is well-suited to train very large models.

a PSNR of 38.5dB in 3.1h and required a total of 164 million parameters. In
contrast, after 44h of training, ACORN converged to only 32.6dB while using a
total of 175 million parameters. We trained both ACORN and MINER on an
11GB NVIDIA RTX 2080 Ti GPU, which required us to decrease the maximum
number of patches for ACORN to 3072 from the original authors’ implementation
they ran on a 48GB GPU. MINER also enables compression of the image. Storing
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Fig. 7: Fitting gigapixel images. The figure shows the results on fitting a gigapixel
image (20, 480 × 56, 420) with MINER and ACORN. MINER required 188 million
parameters and converged to 38.5dB in 3.1 hours. In contrast, even after 44 hours of
training, ACORN, which required 175 million parameters, achieved only 32.6dB.

the image image as 16-bit tiff format required 2.4GB of disk space. In contrast,
MINER required 650 MB with 32 bit precision, implying MINER enables very
high compression for images with high dynamic range.

Fitting 3D point clouds. cnspired by Convolutional occupancy networks [19], we
utilized signed density function where the value was 1 inside the mesh and 0
outside. We sampled a total of one billion points, resulting in a 1024×1024×1024
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Scale 2 | 6s | 4.4 mil. params. Scale 1 | 11s | 4.6 mil. params. Scale 0 | 1.3min | 5.5 mil. params.

Fig. 8: Active blocks reduce with increasing scale. The figure shows MINER
results at the end of training at each scale and the active blocks at each scale. As the
iterations progress, only the blocks on the surface of the object remain, which leads to
a dramatic reduction in non-zero blocks, and hence the total number of parameters.

occupancy volume. We then optimized MINER over four scales for a maximum
of 2000 iterations at each scale. We experimented with logistic loss and MSE
and found the MSE resulting in signficantly faster convergence. We divided
the volume into disjoint blocks of size 16 × 16 × 16. The learning rate was
set to 10−3. We set the number of features to 16 and the number of hidden
layers to 2 for MLP for each block at all scales. As with images, we set the
per-block MSE stopping threshold to be 10−4, and did not include positional
encoding for the inputs. We then constructed meshes from the resultant occupancy
volumes using marching cubes [10]. We compared our results against ACORN
and convolutional occupancy networks for accuracy and timing comparisons.
For ACORN, we used the implementation and the hyperparameters provided
by the original authors. For convolutional occupancy networks, we used 200,000
randomly sampled points from the volume as input. Comparisons against screened
Poisson surface reconstruction (SPSR) [7], which does not utilize neural networks
but requires local normals, is included in the supplementary.

Figure 1 shows reconstructed meshes for the Lucy 3D model at each scale.
MINER converges in 22 minutes to an Intersection over Union (IoU) of 0.999.
In the same time, ACORN achieved an IoU of 0.97 with worse results than
MINER. ACORN took greater than 7 hours to converge to an IoU of 0.999,
clearly demonstrating the advantages of MINER for 3D volumes. We also note
that MINER required less than a third of the number of parameters as ACORN
– this is a direct consequence of using a block-based representation – most blocks
outside the mesh and inside the mesh converge rapidly within the first few scales,
requiring far fewer representations than a single scale representation. An example
of active blocks at each scale is shown in Fig. 8. As iterations progress, the
number of active blocks after pruning reduce, which in turn results in more
compact representation, and fewer parameters. Figure 9 visualizes the meshes fit
with various reconstruction approaches for a fixed duration. The time for each
experiment was chosen to be when MINER achieved an IoU of 0.999. MINER
has superior reconstruction quality compared to ACORN and convolutional
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Fig. 9: Comparisons against state-of-the-art for 3D volume fitting. We 3D
occupancy fitting for a fixed duration with MINER, ACORN, and Convolutional
occupancy [19]. The number of parameters of MINER was chosen adaptively according
to model complexity. MINER achieves high accuracy in a short duration for arbitrarily
complex shapes, which is not possible with prior works, even though some models such
as the engine (second row) require significantly more parameters.

occupancy networks [19]. Table 1 compares IoU after a fixed time, GPU memory
for training, number of parameters, testing (inference) time, and disk space
for MINER at various scales, and competing approaches. The memory usage
of ACORN increased from 3.9GB at the start (with no further splitting) to
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Table 1: Comparison on the Thai Statue 3D Point Cloud. For all experiments,
we fixed the batch size to the equivalent of 1024 16 × 16 × 16 blocks. MINER requires
lower training and testing times, similar GPU memory, fewer parameters, and smaller
size on disk compared to state-of-the-art techniques. MINER also occupies smaller disk
space compared to storing the mesh as a ply file, thereby enabling compression.

IOU GPU Mem. #Params. Test time Storage

MINER - scale 3 0.95 (17s) 1.8GB 900k 0.02s 3.5MB
scale 2 0.97 (42s) 2.5GB 1.3 million 0.04s 4.8MB
scale 1 0.98 (1.9min) 5.0GB 2.8 million 0.16s 10.6MB
scale 0 0.99 (6min) 6.6GB 9.9 million 0.8s 37.9MB

ACORN [13] 0.99 (53min) 8.0GB 17 million 18.1s 68MB
Conv. Occ [19] 0.82 5.8GB 160k − 64KB
ply file − − − − 180MB

8GB, which we reported. MINER achieves high accuracy (IoU) within 17s at
the coarsest scale where GPU utilization, number of parameters (and hence
size on disk) are low. At the finest scale, MINER achieves very high accuracy,
and requires fewer parameters, thereby enabling training on very large meshes.
Moreover, MINER occupies a third of the size on disk compared to a standard
ply file, thereby enabling mesh compression.

5 Conclusions

We have proposed a novel multi-scale neural representation that trains faster,
requires same or fewer parameters, and has lower memory footprint than state-
of-the-art approaches. We demonstrated that the advantages of a Laplacian
pyramid including multiscale and sparse representation enable computational
efficiency. We showed that leveraging self-similarity across scales is beneficial
in reducing training time drastically while not affecting the training accuracy.
MINER naturally lends itself to rendering where level-of-detail is of importance
including representation and mipmapping for texture mapping. MINER can be
combined with fast, multiscale rendering approaches [31] to achieve real time
neural graphics. With the low computational complexity and fast training and
inference time, MINER opens avenues for rendering extremely large and complex
geometric shapes that was previously impractical.
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