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Abstract. Compared with the feature normalization methods that are
widely used in deep neural network (DNN) training, feature whitening
methods take the correlation of features into consideration, which can
help to learn more effective features. However, existing feature whiten-
ing methods have several limitations, such as the large computation and
memory cost, inapplicable to pre-trained DNN models, the introduc-
tion of additional parameters, etc., making them impractical to use in
optimizing DNNs. To overcome these drawbacks, we propose a novel
Embedded Feature Whitening (EFW) approach to DNN optimization.
EFW only adjusts the gradient of weight by using the whitening ma-
trix without changing any part of the network so that it can be eas-
ily adopted to optimize pre-trained and well-defined DNN architectures.
The momentum, adaptive dampening and gradient norm recovery tech-
niques associated with EFW are consequently developed to make its
implementation efficient with acceptable extra computation and mem-
ory cost. We apply EFW to two commonly used DNN optimizers, i.e.,
SGDM and Adam (or AdamW), and name the obtained optimizers as
W-SGDM and W-Adam. Extensive experimental results on various vi-
sion tasks, including image classification, object detection, segmenta-
tion and person ReID, demonstrate the superiority of W-SGDM and W-
Adam to state-of-the-art DNN optimizers. The code are publicly avail-
able at https://github.com/Yonghongwei/W-SGDM-and-W-Adam.
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1 Introduction

The remarkable success of Deep Neural Networks (DNNs) on various vision tasks,
including image classification [7], object detection [29, 5], segmentation [5], im-
age retrieval [46, 22], etc., largely owes to the development of DNN optimization
techniques. The main goal of DNN optimization is to find a favorable local mini-
mum of the objective function by using the given training data and ensure good
generalization performance of the trained model to testing data. Meanwhile, it
is anticipated that we can accelerate the converge speed and reduce the train-
ing cost. To achieve these goals, a variety of DNN optimization techniques have
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been proposed, such as weight initialization strategies [4, 6], efficient active func-
tions (e.g ., ReLU [25]), batch normalization (BN) [13], gradient clipping [26,
27], adaptive learning rate optimizers [3, 14, 47], and so on. All these techniques
facilitate the training of very deep and effective DNN models.

Among the above techniques, normalization methods have been widely used
as a basic module to train a variety of DNN architectures [7, 9]. The most repre-
sentative method is BN [13]. Similar to BN, instance normalization (IN) [36, 12],
layer normalization (LN) [16] and group normalization (GN) [37] have also been
proposed to perform Z-score standardization on other dimensions. It has been
shown that normalization methods can both speed up the training speed and
improve the generalization performance [32, 35, 43, 41]. However, normalization
methods do not take the correlation of features into consideration. Therefore,
feature whitening or feature decorrelation methods have been developed to solve
this problem. For instance, decorrelated batch normalization (DBN) [10] was
proposed to perform ZCA-whitening on each mini-batch with a ZCA transfor-
mation matrix obtained by eigen-decomposition. IterNorm [11] aims at a more
efficient approximation of the ZCA transformation matrix with Newton’s itera-
tion. Network deconvolution (ND) [39] extends the ZCA-whitening transforma-
tion on a patch of features. The DNN models trained with whitening methods
can achieve certain performance gains over normalization methods.

Nevertheless, the existing feature whitening methods have several obvious
weaknesses, which make them hard to be widely used in practical applications.
The major disadvantage of feature whitening lies in its large computational cost.
In each iteration, the ZCA transformation matrix has to be computed by eigen-
decomposition, which is computationally expensive when the dimension of fea-
tures is high. Although some works [11, 39] adopt Newton’s iteration to speed up
the computation of ZCA transformation, the training cost is still unacceptable
compared with BN. Meanwhile, the inference time of the network will increase
largely when feature whitening is used. Moreover, feature whitening methods are
very memory-consuming in training because more intermediate features need to
be stored, especially for the iterative whitening methods. Last but not the least,
the existing feature whitening methods cannot be directly applied to optimize
pre-trained and well-defined DNN models. One needs to add a feature whitening
module into the proper layer and redefine the forward propagation. For instance,
if we want to adopt the ResNet50 [7] model pre-trained on ImageNet to down-
stream tasks, we must redefine the ResNet50 with these whitening methods and
train it again on ImageNet. All these drawbacks largely limit the practical usage
of feature whitening methods in DNN training.

To address these problems, we propose a novel approach, namely Embed-
ded Feature Whitening (EFW), to DNN optimization by adjusting the gradient
of weight with the ZCA transformation matrix. There are several advantages of
our proposed approach. First, EFW inherits the advantages of feature whitening,
i.e., accelerating the training process and improving the generalization perfor-
mance. Second, compared with existing feature whitening methods, EFW does
not introduce any module into the DNN model to be trained. As a result, it
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can be directly adopted to optimize most of the existing DNN models without
increasing the inference time. Third, its computation and memory cost is ac-
ceptable because EFW only computes the ZCA transformation matrix once for
many iterations (e.g ., 500) and it does not store any additional intermediate fea-
tures. In this paper, we adopt EFW into two widely used DNN optimizers: SGD
with momentum (SGDM) [28, 14] and Adam (or AdanW) [14, 21], and name
the obtained optimizers as W-SGDM and W-Adam. Extensive experiments are
conducted to validate the effectiveness of EFW on various vision tasks.

Notation system. In the following development of this paper, we denote by
W the weight matrix, whose dimension is Cout × Cin for fully connected layers
(FC layers) and Cout×Cin×k1×k2 for convolutional layers (Conv layers), where
Cin is the number of input channels, Cout is the number of output channels, and
k1, k2 are the kernel size of convolutional layers. We denote by A = [An]

N
n=1

and X = [Xn]
N
n=1 the input and output features of the N samples in one layer.

For FC layers, A ∈ RCout×N , X ∈ RCin×N and A = WX. For Conv layers,
A ∈ RCout×h×w×N , X ∈ RCin×h×w×N and A = W ∗ X, where h and w are
the height and width of a feature map and ”∗” is the convolution operator. Let
L be the objective function, and ∂L

∂A and ∂L
∂W be its gradients on activation

and weight, respectively. U1(·) denotes the mode 1 unfold operation of a tensor.
For example, for a convolution based weight matrix W ∈ RCout×Cin×k1×k2 ,
U1(W ) ∈ RCout×Cink1k2 . vec(·) denotes the vectorization function.

2 Related Work

DNN Optimizers. The first-order optimization algorithms have been widely
adopted in training a DNN. For example, SGD with Momentum (SGDM) [28]
makes use of the momentum of gradient to avoid oscillations and strengthen the
relevant gradient direction. Adagrad [3] adapts adaptive learning rates to differ-
ent parameters, performing larger/smaller gradient steps for infrequent/frequent
ones. RMSprop and Adadelta [42] use a similar mechanism to Adagrad, and
Adam [14] further introduces the momentum of gradient into adaptive learning
rate methods. Based on Adam, Adabelief [47] considers the belief of observed
gradient to adjust the adaptive learning rates.

For the second-order optimizers, AdaHessian [38] simplifies the Hessian ma-
trix with the diagonal elements through Hessian-free techniques. Similar to Ada-
Hessian, Apollo [23] simplifies the BFGS algorithm with only diagonal elements.
Meanwhile, Kronecker Factored Approximation Curvature (KFAC) [24] uses
the Kronecker Factor decomposition to approximate the natural gradient layer-
wisely. However, in many computer vision tasks, the generalization performance
of these second-order methods does not outperform SGDM.

Feature Whitening. Feature whitening methods remove the linear cor-
relation among different channel features to perform gradient descent more
efficiently. Beyond standardization, DBN [10] was proposed to perform ZCA-
whitening by eigen-decomposition and backpropagating the transformation. Iter-
Norm [11] aims at a more efficient approximation of the ZCA-whitening matrix
in DBN with Newton’s iteration. Network deconvolution (ND) [39] adopts decon-
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Algorithm 1: Overview of Batch Feature Whitening

Input: Mini-batch input X ∈ RCout×N

Output: Output Y ∈ RCout×N

1 if Training then

2 Centralization: X̂ = Φ1(X|µB), µB = 1
N
X1;

3 Standardization or decorrelation: Y = Φ2(X̂|ΣB), ΣB = 1
N
X̂X̂T + ϵI;

4 Update the population statistics µ and Σ;

5 else
6 Calculate output Y = Φ3(X|µ,Σ);
7 end

8 Recovery Operation Ŷ = Φ4(Y )

volution filters to remove pixel-wise and channel-wise correlations. It has been
shown that feature whitening methods can boost both the optimization and
the generalization of DNNs [11, 39]. However, they usually need a lot of extra
computation and memory, making them impractical in real-world applications.

3 Embedded Feature Whitening

3.1 Overview of Batch Feature Whitening

We briefly summarize the batch whitening process in Algorithm 1. In training,
batch feature whitening [11, 39] usually involves two main steps, i.e., centraliza-
tion Φ1(X) and decorrelation Φ2(X), which are defined as follows:

Φ1(X|µ) = X − µ1T , µ =
1

N
X1,

Φ2(X|Σ) = TX, Σ =
1

N
XXT + ϵI,

(1)

where T is the whitening matrix, which is related to Σ. For different whitening
methods, T has different formulations [10, 11, 39, 33]. All the whitening matri-
ces should meet that 1

NΦ2(X)Φ2(X)T = I. Among those whitening transfor-
mations, PCA and ZCA whitening are widely used, whose whitening matrices
are T = D− 1

2UT and T = UD− 1
2UT , respectively, where Σ = UDUT is the

eigen-decomposition of Σ = XXT /N + ϵI.
In the training step, the batch statistics µB and ΣB are used to perform

whitening. Meanwhile, the population statistics µ and Σ are updated by expo-
nential moving average [11, 39]. In the inference step, the population statistics
are used to replace batch statistics, i.e., Φ3(X|µ,Σ) = Φ2(Φ1(X|µ),Σ). After
the whitening operation, an additional recovery operation Φ4(·) is used to keep
the representation capability of the network. The recovery operation is usually a
linear operation, such as affine transformation [11] and coloring operation [33],
which introduces extra parameters in training.

During the DNN training process, due to the variation of input feature statis-
tics, the whitening matrix also changes. As a consequence, whitening may change
the intermediate features acutely, making the following layers hard to learn. It
has been shown that ZCA whitening can avoid such a Stochastic Axis Swapping
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(SAS) problem, leading to better feature learning performance [10]. Actually, we
can show that the solution of the following objective function

minT ||X − Φ(X)||22, s.t. Φ(X) = TX,
1

N
Φ(X)Φ(X)T = I (2)

is T = (XXT /N)−
1
2 , which is just the ZCA whitening formulation. (The proof

can be found in the supplementary file). This ensures that the ZCA whitened
feature Φ(X) is close to the original data X and hence dilutes the SAS issue.

3.2 Drawbacks of Feature Whitening

Although many works have shown that feature whitening can both speed up
training and gain generalization performance, it has some obvious drawbacks
that largely limit its applications to DNN training. First, it needs to perform
eigen-decomposition or use Newton’s iteration to compute the whitening ma-
trix, both of which will significantly increase the computation and memory cost.
Second, existing feature whitening methods cannot be directly adopted to opti-
mize pre-trained DNN models (e.g ., ImageNet pre-trained models). We have to
redefine the forward propagation of DNNs by introducing a whitening module
and retrain the models. Third, the batch feature whitening methods are very
sensitive to the training batch size. When batch size is small, the statistics will
become inaccurate, leading to a large performance drop. Fourth, most of the
current whitening methods will introduce additional parameters into the recov-
ery operation step to keep the representation capability of the DNNs, which
increases the number of parameters to be optimized.

Due to the above limitations, though having many attractive properties, fea-
ture whitening methods have not been widely used to optimize DNNs yet. To
overcome the above drawbacks of feature whitening while inheriting its advan-
tages, we should not change the forward propagation of DNN or introduce new
modules (e.g ., whitening layer) in DNN, and should reduce its extra computa-
tion cost. To achieve these goals, we propose a novel approach to embed the
feature whitening operation into the optimization algorithms.

3.3 Removal of Recovery and Centralization Operations

Most batch whitening methods employ a recovery operation to keep the rep-
resentation capability of DNNs. Actually, the recovery operation may not be
necessary. According to their locations in DNN layers, whitening methods can
be divided into pre-whitening and post-whitening ones.

When the whitening layer is placed before the convolutional layer, it is a pre-
whitening layer, otherwise, it is a post-whitening layer. Traditional normalization
layers and whitening layers usually introduce an additional recovery transforma-
tion, such as affine transformation [11] or coloring operation [33], to keep the
feature representation performance. When post-whitening is adopted, the recov-
ery transformation must be introduced after the whitening operation to keep the
performance.
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When pre-whitening is adopted, however, the recovery transformation can be
removed without harming the representation power of DNNs, because it can be
assimilated by the following Conv layer. For instance, supposing that Wr ∗X is
the recovery transformation (affine and coloring transformation can be viewed
as a sparse convolutional operation), where Wr is the extra parameters to be
learned, W ∗ Wr ∗ X will be the output feature of Conv layer. We can let
W ′ = W ∗ Wr and hence only optimize the Conv layer with parameter W ′.
This property of pre-whitening inspires us to embed the whitening layer into the
optimization algorithm without changing any module of the DNN.

Meanwhile, in the traditional whitening methods, there are two main op-
erations: centralization and decorrelation. In forward propagation, we need to
introduce these two operations into the whitening layer before optimization.
However, for a well-defined DNN, the mean of input feature to a Conv or FC
layer is usually not zero since there is no centralization operation before them.
A practical way to achieve feature centralization is to introduce an extra bias
that is related to the mean of input activation. However, since the normalization
layers are usually located after the Conv layer in many popular DNNs (e.g .,
ResNet), the bias in the Conv layer will have no function. Moreover, since our
goal is to optimize a well-defined DNN without changing its forward propagation
and introducing any extra parameters, we omit the centralization operation and
only take the decorrelation into consideration.

3.4 Formulation of Embedded Feature Whitening

For a FC layer Y = WX, where W denotes the parameters to learn, suppose
there is a virtual whitening layer before FC layer, which is X̂ = TX, where T
is defined in Eq. (1). We can reformulate this FC layer with a whitening trans-
formation as Y = W ′TX, where W ′ is the new parameters to be optimized. In
this way, we can optimize the loss function w.r.t. W ′, and let W = W ′T once
the training is finished. According to the backpropagation algorithm, the gradi-
ent of W ′ can be easily obtained by ∂L

∂W ′ =
∂L
∂W T . However, the above approach

has several serious problems. First, the whitening matrix T will change during
the training process because of the update of weights in the previous layers. As
a consequence, the relationship between W and W ′ is not fixed. Second, in the
training process, T will contain a certain amount of noise due to the random
batch sampling, so it is hard to get an accurate T . Therefore, it is difficult to
obtain an accurate W from the optimization of W ′.

To maintain the benefits of batch feature whitening on optimization, we
propose to use a modified gradient ∂L

∂W T to replace the original weight gradient
∂L
∂W , and name the method Embedded Feature Whitening (EFW), which embeds
the information of feature whitening into the weight gradient. EFW can be
introduced into the FC layer, convolutional layer, and Norm layer. Compared
with the weight updating formula of SGD W t+1 = W t − η ∂L

∂W t , the updating
formula of SGD with EFW is

W t+1 = W t − η
∂L
∂W t

T t. (3)
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Table 1. The updating formulas and whitening matrices of FC, Conv and Norm layers
in SGD with the proposed EFW.

Layer Updating formula Whitening matrix

FC layer W t+1 = W t − η ∂L
∂W tT

t T t =
(
XtXtT

)− 1
2

Conv layer U1(W
t+1) = U1(W

t)− ηU1(
∂L

∂W t )T
t T t =

(
XtXtT

)− 1
2

Norm layer

[
γt+1

βt+1

]
=

[
γt

βt

]
− ηT t

[
∂L
∂γt

∂L
∂βt

]
T t =

([
vec(Xt)T

1T

]
[vec(Xt),1]

)− 1
2

The detailed updating formulas are summarized in Table 1. We ignore the factor
1/N in the second-order statistic because of the gradient norm recovery opera-
tion, which will be explained in Section 3.5.

For the FC layer, we need to calculate the second-order statistic of input

activation, i.e., XtXtT , and the whitening matrix T t, which can be obtained

by SVD decomposition of XtXtT . For the Conv layer, the difference from the
FC layer lies in that we need to unfold the convolution operation to matrix
multiplication first. The convolution operation can be formulated as a matrix
multiplication with the im2col operation [39, 44], and then the Conv layer can
be viewed as an FC layer. The updating formula of weights for the Conv layer
is listed in TABLE 1, where U1(·) is the mode 1 unfold operation of a tensor
and X is the matrix of Xt after im2col operation. The normalization layers
usually have a channel-wise affine transformation, which is also a linear opera-
tion. Suppose that the normalized features are Xt and the parameters of affine
transformation are γ and β for one channel, we can obtain the updating rules
for γ, β as shown in the bottom row of TABLE 1. If the mean and variance of
Xt are zero and one, the second-order statistics will be a diagonal 2× 2 matrix.
For example, when BN [13] and IN [36, 12] are used, the update rules for (γ, β)
degrade to the case of SGD. However, for other normalization methods such as
GN [37] and LN [16], the mean and variance of each channel may not be zero
and one.

In practice, to avoid that the condition number of the statistic matrixXtXtT

is too large, we need to add an additional term ϵI to the statistic matrix, where
I is an identity matrix and ϵ is the dampening parameter. We will discuss how
to choose a proper ϵ in the next section.

3.5 Implementation of EFW

Momentum. The estimation of the second-order statistics of X is very im-
portant for the whitening methods. The original batch whitening method can
only use the current batch statistics for computation, and hence they are very
sensitive to the training batch size. When the training batch size is small, the
batch statistics will have large noise so that the training will be unstable. In con-
trast, our proposed EFW method works directly on the final weight updating
stage, and it does not change the forward propagation and backward propagation
during training. Therefore, EFW can adopt the statistics from more batches to
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Algorithm 2: Algorithm of EFW

Input: Txx, Tsvd, α, M t−1
xx , T t−1, ϵ, input activation Xt, gradient ∇W tL

Output: G̃t

1 Gt = ∇W tL;
2 if t%Txx = 0 then

3 M t
xx = αM t−1

xx + (1− α)XtXtT % Momentum step
4 else
5 M t

xx = M t−1
xx

6 end
7 if t%Tsvd = 0 then
8 UDUT = M t

xx % SVD decomposition

9 T t = U(D + ϵdmaxI)
−1/2UT % Whitening matrix with dampening

10 else
11 T t = T t−1

12 end

13 Ĝt = GtT t % Adjust gradient with whitening matrix

14 G̃t = Ĝt ||Gt||2
||Ĝt||2

; % Gradient norm recovery

achieve a more accurate estimation of feature statistics. Specifically, we compute
the momentum of the batch statistics as follows:

M t
xx = αM t−1

xx + (1− α)XtXtT , (4)

where M t
xx is the momentum of statistics XXT in iteration t and α is the mo-

mentum parameter. As an approximation to the population of feature statistics,
momentum can significantly reduce the noise caused by random batch sampling.

Statistics Computation. Feature whitening methods need to compute the
second-order statistics and then compute the whitening matrix for feature learn-
ing. The previous batch whitening methods need to perform these computations
in each iteration for each batch because the batch statistics and whitening matrix
are involved in forward and backward propagations. This however introduces a
large amount of computational burden.

Different from the previous batch whitening methods, in our proposed EFW
there is no need to compute the second-order statistics and the whitening ma-
trix in each iteration. We only need to compute them once for many iterations.
Two hyperparameters, Txx and Tsvd, are introduced to control the interval for
updating the statistics matrix and the whitening matrix, respectively. For the
whitening matrix, the updating interval should be set larger because its compu-
tation involves SVD decomposition, which is more computationally expensive.
In our experiments, we set Txx = 50 and Tsvd = 500 and we find that they
work effectively to improve the DNN optimization performance without intro-
ducing much additional computational cost. Meanwhile, we also implement a
cross-GPU synchronization method to facilitate the computation of more reli-
able feature statistics when using multiple GPUs.

Adaptive dampening. The dimension of M t
xx is very high and it is usually

a very singular matrix. When the condition number of M t
xx is too large, it will
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be unstable to compute the inverse square root of it. To avoid such a case, in
practice we need to add an additional term ϵI to the statistic matrix, where I
is an identity matrix and ϵ is a dampening parameter.

A too-small dampening may not improve the condition number ofM t
xx, while

a too strong dampening may reduce the accuracy of statistics. Therefore, it is
important to choose a proper dampening parameter ϵ. For different layers in a
DNN, the statistics M t

xx may have different magnitude. Thus, it is improper to
use a uniform dampening scheme for all layers. By taking the magnitude of dif-
ferent features into consideration, we choose an adaptive dampening parameter
ϵdmax, where dmax is the max singular value of M t

xx. It is easy to show that the
condition number of M t

xx + ϵdmaxI is dmax+ϵdmax

dmin+ϵdmax
< 1+ϵ

ϵ . In practice, we can

first compute the SVD decomposition of M t
xx, i.e., UDUT = M t

xx, and then
obtain the whitening matrix by T t = U(D+ ϵdmaxI)

−1/2UT . The computation
cost of adaptive dampening is the same as fixed dampening.

Gradient Norm Recovery. SGDM and Adam are among the most com-
monly used optimizers in training DNNs. Their hyperparameters, including learn-
ing rate and weight decay, have been well-tuned by researchers on many specific
tasks. For example, in objection detection, SGDM with a learning rate 0.02 and
weight decay 0.0001 is widely adopted. A natural question is can we hold these
well-tuned hyperparameters in the proposed method to ease the tedious work of
hyperparameter tuning? If this can be done, EFW can be easily used for solving
various vision tasks without further hyperparameter tuning.

In the proposed EFW, the scale of adjusted gradient Ĝt = GtT t might
be changed. This implies that the optimal setting of hyperparameters should
be changed for the adopted optimizer, limiting the application of the proposed
method. Fortunately, this problem of gradient scale changing can be easily ad-
dressed by recovering the gradient norm, which is

G̃t = Ĝt ||Gt||2
||Ĝt||2

, (5)

It is easy to see that G̃t and Gt have the same L2 norm. With the gradient
norm recovery operation, G̃t can be readily used in the employed optimizers
(e.g ., SGDM and Adam) to achieve favorable performance without additional
hyperparameter tuning. Of course, one may further improve the performance by
tuning fine-grained hyperparameters around their default settings.

Algorithm of EFW. The complexity of EFW is T (O(
C3

in

Tsvd
) + O(

C2
inN
Txx

) +

O(C2
inCout)) for a FC layer, and T (O(

C3
ink

3
1k

3
2

Tsvd
)+O(

C2
ink

2
1k

2
2N

Txx
)+O(C2

ink
2
1k

2
2Cout))

for a Conv layer, where T is the total number of iterations. Since Txx and Tsvd

can be set as large numbers in our implementation (50 and 500, respectively), the
complexity is acceptable. The algorithm of EFW is summarized inAlgorithm 2.
In the experiments, we apply EFW to the two commonly used DNN optimizers,
i.e., SGDM and Adam (or AdamW), and name the obtained new optimizers
as W-SGDM and W-Adam accordingly. We found that EFW only introduces
10% ∼ 20% extra memory consumption in our experiments.
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Table 2. Testing accuracies (%) on CIFAR100/CIFAR10. The best and second best
results are highlighted in bold and italic fonts, respectively. The numbers in red color
indicate the improvement of W-SGDM/W-Adam over SGDM/AdamW, respectively.
”-” means that the result is not available due to the problem of ”out of memory”.

CIFAR100

Model SGDM AdamW [21] RAdam [19] Ranger Adabelief [47] AdaHessian [38] Apollo [23] W-SGDM W-Adam

R18 77.20±.30 77.23±.10 77.05±.15 76.75±.11 77.43±.36 76.73±.23 77.65±.11 79.28±.27 (↑2.08) 78.75±.16 (↑1.52)
R50 77.78±.43 78.10±.17 78.20±.15 78.13±.12 79.08±.23 78.48±.22 79.25±.26 80.90±.23 (↑3.12) 80.15±.22 (↑2.05)
V11 70.80±.29 71.20±.29 71.08±.24 70.58±.14 72.43±.16 67.78±.34 72.35±.33 73.42±.28 (↑2.62) 72.92±.14 (↑1.72)
D121 79.53±.19 78.05±.26 78.65±.05 78.28±.08 79.88±.08 - 79.83±.16 81.23±.10 (↑1.70) 80.10±.25 (↑2.05)

MobileNet 68.03±.37 70.07±.19 69.55±.32 69.35±.15 71.40±.12 69.45±.30 70.75±.22 70.35±.21 (↑2.32) 71.92±.16 (↑1.85)
CIFAR10

R18 95.10±.07 94.80±.10 94.70±.18 94.75±.18 95.12±.14 94.70±.15 95.20±.12 95.43±.08 (↑0.33) 95.20±.10(↑0.40)
R50 94.75±.30 94.72±.10 94.72±.10 95.27±.12 95.35±.05 95.35±.11 95.37±.10 95.80±.15 (↑1.05) 95.70±.07(↑0.98)
V11 92.17±.19 92.02±.08 92.00±.18 92.10±.07 92.45±.18 91.85±.16 92.58±.04 92.95±.20 (↑0.78) 92.88±.19(↑0.86)
D121 95.37±.17 94.80±.07 95.02±.08 95.45±.11 95.37±.04 - 95.23±.10 95.72±.14 (↑0.35) 95.47±.12(↑0.67)

MobileNet 90.90±.14 92.08±.10 92.08±.25 92.05±.08 92.33±.19 91.25±.12 92.03±16 91.30±.12(↑0.40) 92.45±.18(↑0.37)

4 Experiment Results

4.1 Experiment Setup

We evaluate the proposed W-SGDM and W-Adam on various vision tasks, in-
cluding image classification (on CIFAR100/CIFAR10 [15] and ImageNet [31]),
object detection and segmentation (on COCO [18]), and Person Re-identification
(Person ReID, on Market1501 [46] and DukeMTMC-ReID [30]). The compared
methods include the representative and state-of-the-art DNN optimizers, includ-
ing SGDM, AdamW [21], RAdam [19], Ranger [19, 45, 40] and Adabelief [47],
AdaHessian1 [38] and Apollo [23]. For the competing methods, we use the de-
fault settings for most of their hyper-parameters, and tune their learning rates
and weight decays to report their best results.

We first testify W-SGDM and W-Adam with different DNN models on CI-
FAR100/CIFAR10, including VGG11 [34], ResNet18, ResNet50 [7], DenseNet-
121 [9] and MobileNet [8]. Then we perform experiments on ImageNet to validate
their performance on the large-scale datasets. After that, we test W-SGDM on
COCO for detection and segmentation, and test W-Adam on Market1501 [46]
and DukeMTMC-ReID for Person ReID to demonstrate that EFW can be eas-
ily adopted to finetune pre-trained models. All experiments are conducted un-
der the Pytorch 1.7 framework with NVIDIA GeForce RTX 2080Ti and eight
3090Ti GPUs. For the hyper-parameters of EFW, we set α = 0.95, Txx = 50
and Tsvd = 500, ϵ = 0.001 throughout the experiments if not specified. Ablation
studies on hyperparameter selection are also provided.

4.2 Image Classification

Results on CIFAR100 and CIFAR10: CIFAR100 and CIFAR10 [15] are two
popular datasets to testify DNN optimizers. They include 50K training images
and 10K testing images from 100 categories and 10 categories, respectively, and
the resolution of the input image is 32 × 32. We conduct experiments on these
two relatively small-scale datasets to illustrate the effectiveness of W-SGDM

1 Since AdaHessian is very memory expensive, we can only give partial results in the
following experiments.
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Table 3. Top 1 accuracy (%) on the validation set of ImageNet. The numbers in red
color indicate the improvement of W-SGDM/W-Adam over SGDM/AdamW, respec-
tively. ”-” means that the result is not available due to the problem of ”out of memory”.

Model SGDM AdamW [21] RAdam [19] Ranger Adabelief [47] AdaHessian [38] Apollo [23] W-SGDM W-Adam

R18 70.47 70.01 69.92 69.35 70.08 70.08 70.39 71.43 (↑0.96) 71.59(↑1.58)
R50 76.31 76.02 76.12 75.95 76.22 - 76.32 77.48(↑1.17) 76.83 (↑0.81)
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Fig. 1. Training and validation accuracy curves of SGDM, W-SGDM, AdamW and
W-Adam on ImageNet with ResNet18 and ResNet50.

and W-Adam with different DNN backbone models, including VGG11 (V11),
ResNet18 (R18), ResNet50 (R50), DenseNet121 (D121) and MobileNet2. All
the DNN models are trained for 200 epochs with batch size 128 on one 2080Ti
GPU. The learning rate is multiplied by 0.1 for every 60 epochs. We tune the
learning rate in {1e−4, 5e−4, 1e−3, 5e−3, 1e−2, 5e−2, 0.1, 0.15} and weight decay
in {1e−4, 5e−4, 1e−3, 5e−3, 1e−2, 5e−2, 0.1, 0.5, 1}, and choose the best combina-
tion of them for all methods. The detailed settings can be found in the supple-
mentary material. We use the default settings for other hyperparameters.

The experiments are repeated 4 times and the results are reported in Table
2 in mean ± std format. We can see that W-SGDM and W-Adam achieve the
best and second-best testing accuracies for all the used DNN models. More
specifically, W-SGDM improves SGDM from 1.7% to 3.12% on CIFAR100, and
from 0.33% to 1.05% on CIFAR10, while W-Adam improves AdamW from 1.52%
to 2.05% on CIFAR100, and from 0.37% to 0.98% on CIFAR10. Among the
adaptive learning rate methods, Adam, AdamW, RAdam and Ranger perform
worse than SGDM. Only Adabelief outperforms SGDM but it is still much worse
than W-SGDM and W-Adam. It can be seen that W-SGDM and W-Adam
significantly surpass other optimizers in generalization performance, validating
the effectiveness of our proposed EFW scheme.

Results on ImageNet: We then evaluate W-SGDM andW-Adam on the large-
scale image classification dataset ImageNet [31], which consists of 1.28 million
training images and 50K validation images from 1000 categories. ResNet18 and
ResNet50 are employed as the backbone models with training batch size 256 on
four 2080Ti GPUs. The standard settings in [1] are used, where the models are
trained for 100 epochs. We refer to the strategies in [47] to set the learning rate
and weight decay. The detailed settings for different optimizers can be found in
the supplementary material. The top 1 accuracies of competing optimizers
on the validation set are reported in Table 3. We can see that W-SGDM and

2 These models for CIFAR100/10 can be downloaded at the repository
https://github.com/weiaicunzai/pytorch-cifar100.
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Table 4. Detection results of Faster-RCNN
on COCO. ∆ means the gain of W-SGDM
over SGDM.

Backbone Algorithm AP AP.5 AP.75 APs APm APl

SGDM 37.4 58.1 40.4 21.2 41.0 48.1
R50 W-SGDM 39.4 60.6 43.1 23.1 42.9 50.7

∆ ↑2.0 ↑2.5 ↑2.7 ↑1.9 ↑1.9 ↑2.6
SGDM 39.4 60.1 43.1 22.4 43.7 51.1

R101 W-SGDM 41.1 61.6 45.1 24.0 45.2 54.3
∆ ↑1.7 ↑1.5 ↑2.0 ↑1.6 ↑1.5 ↑3.2

Table 5. Detection and segmentation re-
sults of Mask-RCNN on COCO. ∆ means
the gain of W-SGDM over SGDM.

Backbone Algorithm APb APb
.5 APb

.75 APm APm
.5 APm

.75

SGDM 38.2 58.8 41.4 34.7 55.7 37.2
R50 W-SGDM 39.8 60.8 43.4 36.4 57.6 38.9

∆ ↑1.6 ↑2.0 ↑2.0 ↑1.7 ↑1.9 ↑1.7
SGDM 40.0 60.5 44.0 36.1 57.5 38.6

R101 W-SGDM 41.7 62.5 45.5 37.9 59.4 40.8
∆ ↑1.7 ↑2.0 ↑1.5 ↑1.8 ↑1.9 ↑2.2

AdamW 42.7 65.2 46.8 39.3 62.2 42.2
Swin-T W-Adam 43.4 65.7 47.5 40.1 63.0 43.2

∆ ↑0.7 ↑0.5 ↑0.7 ↑0.8 ↑0.8 ↑1.0

W-Adam are the top 2 performers. Specifically, W-SGDM outperforms SGDM
by 0.96% and 1.17%, and W-Adam outperforms AdamW by 1.58% and 0.81%
for ResNet18 and ResNet50, respectively. The training and validation accuracy
curves of SGDM vs. W-SGDM and AdamW vs. W-Adam are plotted in Fig. 1.
For ResNet18, the learning rate and weight decays of W-SGDM andW-Adam are
the same as SGDM and AdamW, respectively. While for ResNet50, the weight
decays of W-SGDM and W-Adam are set larger than SGDM and AdamW. It can
be seen that W-SGDM and W-Adam achieve both higher training accuracy and
validation accuracy than SGDM and AdamW. This indicates that EFW can not
only boost the generalization performance but also speed up the training process
of DNN models on large-scale datasets.

4.3 Object Detection and Segmentation

We then test EFW on COCO [18] detection and segmentation tasks to show that
it can be adopted for fine-tuning pre-trained models without changing the well-
tuned hyper-parameters of default optimizer, such as learning rate and weight
decay. The pre-trained models are downloaded from the PyTorch official web-
sites. They are fine-tuned on COCO train2017 (118K images) with four 3090Ti
GPUs and 4 images per GPU, and then evaluated on COCO val2017 (40K im-
ages). The latest version of MMDetection [2] toolbox3 is used as the framework.
We adopt the official implementations and settings for all experiments here. The
backbone networks include ResNet50 (R50), ResNet101 (R101) and Swin-T vi-
sion transformer [20]. The Feature Pyramid Network (FPN) [17] is also used. The
learning rate schedule is 1X for both Faster-RCNN [29] and Mask-RCNN [5].

As we discussed in Section 3.5, with the gradient norm recovery operation in
EFW, we can directly adopt the hyperparameters of SGDM into W-SGDM, and
the hyperparameters of AdamW into W-Adam. Table 4 lists the Average Pre-
cision (AP) of object detection by Faster-RCNN. One can see that the models
trained by W-SGDM achieve a clear performance boost of 2.0% for ResNet50
and 1.7% for ResNet101. Table 5 reports the APb of detection and APm of seg-
mentation by Mask-RCNN. W-SGDM gains APb by 1.6% and 1.7% on object
detection and 1.7% and 1.8% on segmentation for ResNet50 and ResNet101,
respectively. W-Adam achieves 0.7% APb gain and 0.8% APm gain on Swin-
T backbone, showing that EFW can work well on the self-attention layer and

3 https://github.com/open-mmlab/mmdetection
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Fig. 2. Training loss curves on COCO by
ResNet50.

Table 6. Rank1(%) and mAP(%) on
Market1501 and DukeMTMC-reID. ∆
means the gain of W-Adam over Adam.

Dataset Market1501 DukeMTMC

Backbone Algorithm Rank1 mAP Rank1 mAP

Adam 91.7 77.8 82.5 68.8
R18 W-Adam 91.8 79.2 83.5 70.4

∆ ↑0.1 ↑1.4 ↑1.0 ↑1.6
Adam 94.5 85.9 86.4 76.4

R50 W-Adam 94.5 86.5 87.5 77.2
∆ ↑0.0 ↑0.6 ↑1.1 ↑0.8

Adam 94.5 87.1 87.6 77.6
R101 W-Adam 95.0 87.9 88.2 78.3

∆ ↑0.5 ↑0.8 ↑0.6 ↑0.7

transformer backbones. Fig. 2 shows the training loss curves of Faster-RCNN
and Mask-RCNN with ResNet50 backbone. One can see that W-SGDM accel-
erates the training process and achieves a more favorable local minimum than
SGDM. This experiment clearly validates that EFW can be readily embedded
into existing optimizers without extra hyper-parameter tuning.

4.4 Person Re-identification

We then use two widely used Person ReID benchmarks, Market1501 [46] and
DukeMTMC-ReID [30], to show that W-Adam can also be easily adopted into
pre-trained models without extra hyperparameter tuning. In this task, the Adam
with L2 regularization weight decay usually outperforms other optimizers and
its hyperparameters have been well-tuned. The person ReID baselines in [22] are
used4. The default hyperparameters of Adam, such as learning rate and weight
decay, are directly applied to W-Adam. The experiments are repeated 4 times,
and the average results are reported. Table 6 shows the Rank1 and mAP on
Market1501 and DukeMTMC-ReID with ResNet18, ResNet50 and ResNet101
backbones. It is clear that W-Adam outperforms Adam, especially in mAP.
This experiment again demonstrates the advantages of EFW as a general DNN
optimization technique.

4.5 Ablation Study

Hyper-parameter Tuning: We first tune the dampening parameter ϵ and
momentum parameter α. A too small ϵ cannot improve the condition number
of the statistic matrix, while a too large ϵ will suppress the useful information
in the second order statistics. The results of ResNet18 trained by W-SGDM on
CIFAR100 with different ϵ and α are shown in Table 7 and Table 8. We choose
the settings with ϵ = 1e−3 and α = 0.95 as our default settings. We then tune
Txx and Tsvd to balance the performance and efficiency. Because of the high
computational cost of SVD decomposition, Tsvd should be set larger than Txx.
We test six combinations of Txx and Tsvd, and report their testing accuracies and
training time per epoch (sec/epoch) in Table 9. The baseline methods are SGDM

4 https://github.com/michuanhaohao/reid-strong-baseline
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Table 7. Testing accuracies (%) of
ResNet18 by W-SGDM on CIFAR100
w.r.t. dampening ϵ.

ϵ 1e−4 5e−4 1e−3 5e−3 1e−2

Acc 79.05 79.18 79.28 79.12 78.88

Table 8. Testing accuracy (%) of
ResNet18 by W-SGDM on CIFAR100
w.r.t. momentum α.

α 0.5 0.8 0.9 0.95 0.99 0.999

Acc 79.08 79.15 79.25 79.28 78.88 78.50

Table 9. Testing accuracy (%) and train-
ing efficiency of ResNet18 by W-SGDM
and W-Adam on CIFAR100 w.r.t. Txx

and Tsvd.

Algorithm
Txx 5 10 20 50 100 200

baseline
Tsvd 50 100 200 500 1000 2000

W-SGDM
Acc 79.40 79.33 79.23 79.28 79.11 79.02 77.20

Sec/epoch 85.50 58.32 38.93 29.78 26.03 24.25 23.45

W-Adam
Acc 78.84 78.79 78.76 78.75 78.67 78.40 77.23

Sec/epoch 90.17 60.1 40.9 30.18 27.14 25.55 24.21

Table 10. Testing accuracy (%) and
training efficiency of whitening methods
on CIFAR100/CIFAR10.

Dataset CIFAR100 CIFAR10

Method Model R18 R50 V11 R18 R50 V11

SGDM-IterNorm
Acc 77.15 79.65 72.30 95.30 95.52 92.45

sec/epoch 109.27 388.08 98.85 103.12 367.73 96.49

SGDM-ND
Acc 78.65 80.20 72.70 95.37 95.73 93.03

sec/epoch 65.37 218.34 32.18 64.12 213.45 30.39

W-SGDM
Acc 79.28 80.90 73.42 95.43 95.80 92.95

sec/epoch 29.78 95.05 13.98 29.02 92.12 13.51

and AdamW. We can see that EFW costs less than 30% additional training time
over the original SGDM/AdamW but achieves convincing performance gain over
them. The combination of Txx = 50 and Tsvd = 500 can balance the performance
and efficiency well, and it is chosen as our default setting.

Training Efficiency: We further compare EFW with another two represen-
tative whitening methods, i.e., ND [39] and IterNorm [11], with the SGDM
optimizer. ND and IterNorm need to redefine the forward propagation of DNN
models by replacing the normalization layers with whitening layers. Table 10
shows the testing accuracy (%) and training efficiency (sec/epoch) of different
whitening methods on CIFAR100/CIFAR10. One can see that the proposed W-
SGDM clearly outperforms ND and IterNorm in both accuracy and efficiency.
ND and IterNorm cost more than two times the training time of EFW. Clearly,
EFW is much more efficient to perform feature whitening and achieves a more
favorable performance boost than conventional whitening methods. It overcomes
the major drawbacks of whitening methods and inherits their advantages.

5 Conclusion

In this work, we proposed a novel DNN optimization technique, namely Em-
bedded Feature Whitening (EFW), to address the drawbacks of conventional
feature whitening methods, such as large computation cost, extra parameter in-
troduction, inapplicable to pre-trained DNN models, and so on. Different from
the existing feature whitening methods, which usually perform a whitening oper-
ation on features during forward propagation, EFW only adjusts the gradient of
weight with the whitening matrix without changing the forward and backward
propagation processes of DNN model training. Meanwhile, we developed the
associated momentum, statistics matrix computation, adaptive dampening and
gradient norm recovery techniques to make EFW effective and efficient to use.
By adopting EFW to the popular SGDM and Adam optimizers, the resulting
W-SGDM and W-Adam methods demonstrated their superiority to other lead-
ing DNN optimizers in various vision tasks with acceptable extra computation,
including image classification, detection, segmentation and person ReID.
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