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Abstract. This document supplements our paper Q-FW: A Hybrid
Classical-Quantum Frank-Wolfe for Quadratic Binary Optimization. In
particular, we first provide the detailed formulations of permutation
constraints used in the main paper as well as a way to factor in the
inequality constraints. We then provide our convergence analysis by
relating Q-FWAL to the existing literature. We also describe the early
stopping heuristics and step-size choices which saved us some D-Wave time.
Finally, we touch upon the gauge freedom inherent in the permutation
synchronization and provide additional ablation studies along with the
details of our synthetic experiments.

1 Theoretical Aspects & Discussions

1.1 Permutation-ness as a Linear Constraint

The formulation of permutation-ness into linear constraints appeared both in
QGM [14] and in QuantumSync [3]. We include a brief description here for
completeness. A permutation matrix is defined as a sparse, square binary matrix,
where each column or row contains only a single non-zero entry:

Pn := {P ∈ {0, 1}n×n : P1n = 1n , 1
⊤
nP = 1⊤

n }. (1)

where 1n denotes a n-dimensional ones vector. Every P ∈ Pn is a total permu-
tation matrix and Pij = 1 implies that point i is mapped to element j. Note,
P⊤ = P−1.

During optimization, permutation-ness could be imposed on a binary vec-
tor/matrix by introducing linear constraints Ax = b: rows and columns sum to
one as in Eq (1). Given xi = vec(Xi), this amounts to having bi = 1 and

Ai =

[
I⊗ 1⊤

1⊤ ⊗ I

]
. (2)

Put simply, the matrix Ai is assembled as follows: in row j with 1 ≤ j ≤ n, the
ones are placed in columns (j − 1) · n+ 1 to (j) · n. In a row j with j > n, ones
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will be placed at (j − n) + p · n for p ∈ {0, ..., n− 1}. To enforce the permutation-

ness of all the individual xi that make up x ∈ Rn2×m, we construct a n2 × 2n
block-diagonal matrix A = diag(A1,A2, . . . ,Am).

Ai =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 , bi = 1 =


1
1
1
1

 . (3)

1.2 On Permutation Synchronization & Gauge Freedom

A close look to the presented permutation synchronization problem reveals that
it is non-convex in (Pi,Pj), but convex when one odd, e.g. Pi, is fixed during
optimization. In fact, if Pi is considered to be fixed, this problem resembles a
matrix averaging under the metric the Frobenius norm.

The formulation in §5.2 is subject to a freedom in the choice of the reference
or the gauge [1,7,3]. In other words, the solution set can be transformed arbitrarily
by a common Pg, still satisfying the consistency constraint:

E({XiPg}) =
∑

(i,j)∈E

∥Pij − (XiPg)(XjPg)
⊤∥2F (4)

=
∑

(i,j)∈E

∥Pij −XiPgP
⊤
g X

⊤
j ∥2F (5)

=
∑

(i,j)∈E

∥Pij −XiX
⊤
j ∥2F (6)

= E({Xi}). (7)

The last equality follows from the orthogonality of permutation matrices. In
practice, a gauge can be fixed by setting one of the vertex labels to identity:
X1 = I. However, for convenience, we do not explicitly account for gauge freedom.
We transform the first node to identity, only after obtaining the full solution.

1.3 Extended Notation

Q-FW involves a lifting procedure that maps a QBO problem with n variables
and m equality constraints into a copositive program with (n+ 1)2 variables and
2m+ n+ 1 equality constraints. This dimensionality expansion complicates the
notation. For the ease of presentation, we introduce a compact notation in (§3)
of the main text. Here, we revisit this notation for clarity.

First, we define the primal and dual dimensions p = n+1 and d = 2m+n+1.
Then, our primal variable is a p × p completely positive matrix W ∈ ∆p, and
our dual variable y ∈ Rd. W relates to x ∈ Rn and X ∈ Rn×n by

W =

[
W11 x⊤

x X

]
, with the constraint W11 = 1. (8)
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Then, we define a linear map A : Rp×p → Rd and v ∈ Rd to simplify the
writing of the constraints as AW = v. Explicitly, A and v are defined by

W11

X11 − x1
...

Xnn − xn
a⊤1 x
...

a⊤mx
Tr(A1X)

...
Tr(AmX)


︸ ︷︷ ︸
AW

=



1
0
...
0
b1
...
bm
b21
...
b2m


︸ ︷︷ ︸
v

(9)

1.4 Convergence Analysis

Our Q-FWAL algorithm is a special instance of Frank Wolfe with Augmented
Lagrangian (FWAL) methods where Q-FWAL uses the QUBO-specific D-Wave
solver and a tight copositive relaxation. With the observation that copositive
relaxation does not have an effect on the convergence of FWAL and the assump-
tion that the solver is exact4, it is possible to consult the FW literature for a
convergence analysis. We now present the proof of convergence rate of FWAL
(see Proposition 1 in the main text) for completeness. The original proof appears
in [15]. Our presentation closely follows the exposition in [16, Section SM1.6].

First, we exploit smoothness of Lβt
in the primal argument:

Lβt
(Wt+1,yt) ≤ Lβt

(Wt,yt) + Tr(Gt(Wt+1 −Wt)) +
1

2
βt∥A(Wt+1 −Wt)∥2F

= Lβt(Wt,yt) + ηtTr(Gt(Ht −Wt)) +
1

2
βtη

2
t ∥A(Ht −Wt)∥2F

≤ Lβt(Wt,yt) + ηtTr(Gt(Ht −Wt)) +
1

2
βtη

2
t ∥A∥2p2

≤ Lβt(Wt,yt) + ηtTr(Gt(W⋆ −Wt)) +
1

2
βtη

2
t ∥A∥2p2.

(10)
The second line follows by definition of Wt+1, the third line holds because the
Frobenius-norm diameter of ∆p is p, and the last line depends on the fact that
Ht minimizes Tr(Gt · ).

4 Although we do know currently that this is not true, quantum revolution might
enable computers, which largely satisfy this assumption in the future.
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Next, we use the definition of Gt to bound

Tr(Gt(W⋆ −Wt)) = Tr
((

C+A⊤yt + βtA⊤(AWt − v)
)(
W⋆ −Wt

))
= Tr(C(W⋆ −Wt)) +

(
yt + βt(AWt − v)

)⊤(AW⋆ −AWt

)
= Tr(C(W⋆ −Wt)) +

(
yt + βt(AWt − v)

)⊤(
v −AWt

)
= Tr(CW⋆)− Lβt(Wt,yt)−

βt
2
∥AWt − v∥2

(11)
where we used the fact that AW⋆ = v.

We combine (10) with (11) and subtract Tr(CW⋆) to get

Lβt
(Wt+1,yt)− Tr(CW⋆) ≤ (1− ηt)

(
Lβt

(Wt,yt)− Tr(CW⋆)
)

− 1

2
βtηt∥AWt − v∥2 + 1

2
βtη

2
t ∥A∥2p2.

(12)

Now, we update the penalty parameter on the right hand side,

Lβt
(Wt+1,yt)− Tr(CW⋆) ≤ (1− ηt)

(
Lβt−1

(Wt,yt)− Tr(CW⋆)
)

+
1

2
(1− ηt)(βt − βt−1)∥AWt − v∥2

− 1

2
βtηt∥AWt − v∥2 + 1

2
βtη

2
t ∥A∥2p2.

(13)

By design, our parameter choices for ηt and βt ensures that

(1− ηt)(βt − βt−1) ≤ βtηt. (14)

Therefore, we can simplify (13) to

Lβt
(Wt+1,yt)− Tr(CW⋆) ≤ (1− ηt)

(
Lβt−1

(Wt,yt)− Tr(CW⋆)
)

+
1

2
βtη

2
t ∥A∥2p2.

(15)

Then, we change the dual variable on the left hand side of the inequality to
obtain a recursion:

Lβt
(Wt+1,yt+1)− Tr(CW⋆)

= Lβt(Wt+1,yt)− Tr(CW⋆) + (yt+1 − yt)
⊤(AWt+1 − v)

= Lβt
(Wt+1,yt)− Tr(CW⋆) + γt∥AWt+1 − v∥2

≤ Lβt(Wt+1,yt)− Tr(CW⋆) + βtη
2
t ∥A∥2p2,

(16)

where the last line is ensured by the assumptions on the choice of γt. We combine
(15) and (16),

Lβt(Wt+1,yt+1)− Tr(CW⋆) ≤ (1− ηt)
(
Lβt−1(Wt,yt)− Tr(CW⋆)

)
+

3

2
βtη

2
t ∥A∥2p2.

(17)
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Using this recursion for iterations 1. . . . , t, we obtain

Lβt(Wt+1,yt+1)− Tr(CW⋆) ≤ (1− η1)
(
Lβ0(W1,y1)− Tr(CW⋆)

)
+

3

2
∥A∥2p2

t∑
i=1

βiη
2
i

t∏
j=i+1

(1− ηj).
(18)

The first term on the right side is 0 since η1 = 1. We focus on the second term:

t∑
i=1

βiη
2
i

t∏
j=i+1

(1− ηj) = 4β0

t∑
i=1

1

(i+ 1)3/2

t∏
j=i+1

j − 1

j + 1

= 4β0

t∑
i=1

1

(i+ 1)3/2
i(i+ 1)

t(t+ 1)
≤ 4β0
t(t+ 1)

t∑
i=1

i1/2 ≤ 4β0√
t+ 1

.

(19)

Hence, we conclude that

Lβt
(Wt+1,yt+1)− Tr(CW⋆) ≤

6β0∥A∥2p2√
t+ 1

. (20)

The bound on the objective residual follows immediately from (20), since

Lβt
(Wt+1,yt+1) = Tr(CWt+1) + y⊤

t+1(AWt+1 − v) +
βt
2
∥AWt+1 + v∥2

= Tr(CWt+1)−
1

2βt
∥yt+1∥2 +

βt
2
∥AWt+1 + v − β−1

t y∥2

≥ Tr(CWt+1)−
D2

2βt
,

(21)

where the last line depends on the boundedness assumption on yt. We combine
(20) and (21) and get

Tr(CWt+1)− Tr(CW⋆) ≤
6β0∥A∥2p2√

t+ 1
+

D2

2β0
√
t+ 1

. (22)

It remains to prove the bound on infeasibility. We revisit (22), invoke Cauchy-
Schwarz inequality and the boundedness assumption on y to obtain

Lβt
(Wt+1,yt+1)− Tr(CW⋆)

= Tr(CWt+1)− Tr(CW⋆) + y⊤
t+1(AWt+1 − v) +

βt
2
∥AWt+1 + v∥2

≤ 6β0∥A∥2p2√
t+ 1

.

(23)

Based on the strong duality assumption, we use the Lagrangian saddle point
theory [5, Section 5.4],

Tr(CW⋆)︸ ︷︷ ︸
L0(W⋆,y⋆)

≤ Tr(CWt+1) + y⊤
⋆ (AWt+1 − v)︸ ︷︷ ︸

L0(Wt+1,y⋆)

.
(24)
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We combine (23) and (24):

(yt+1 − y⋆)
⊤(AWt+1 − v) +

βt
2
∥AWt+1 + v∥2 ≤ 6β0∥A∥2p2√

t+ 1
. (25)

We use Cauchy-Schwarz and the boundedness assumption on y to obtain a
second-order inequality of ∥AWt+1 − v∥:

− 2D∥AWt+1 − v∥+ βt
2
∥AWt+1 + v∥2 ≤ 6β0∥A∥2p2√

t+ 1
. (26)

By solving this inequality for ∥AWt+1 − v∥ ≥ 0, we get

∥AWt+1 − v∥ ≤ 1

βt

(
4D + 2

√
3β0p∥A∥

)
. (27)

1.5 On the Dual Step-size of FWAL

Theoretical analysis of FWAL depends on the assumption that the dual step-size
γt ≥ 0 satisfies

γt∥gt∥2 ≤ βtη2t p2∥A∥2 (28)

and the bounded travel condition ∥yt+1∥ ≤ D. Note, the largest step-size that
satisfies this condition can be computed analytically. First, we take the square,

∥yt+1∥2 = ∥yt + γtgt∥2 = ∥yt∥2 + 2γty
⊤
t gt + γ2t ∥gt∥2 ≤ D2. (29)

Then, by solving this inequality for γt ≥ 0, we obtain

γt ≤
−y⊤

t gt +
√
(y⊤
t gt)

2 + (D2 − ∥yt∥2)∥gt∥2
∥gt∥2

. (30)

Combining (28) and (30), we can choose

γt ≤ min

{
βtη

2
t p

2∥A∥2

∥gt∥2
,
−y⊤

t gt +
√

(y⊤
t gt)

2 + (D2 − ∥yt∥2)∥gt∥2
∥gt∥2

}
(31)

and γt = 0 if ∥gt∥ = 0. Prior work [15,16] invoke also the fixed threshold γt ≤ β0
to avoid very large steps when ∥gt∥ is small:

γt ≤ min

{
β0,

βtη
2
t p

2∥A∥2

∥gt∥2
,
−y⊤

t gt +
√

(y⊤
t gt)

2 + (D2 − ∥yt∥2)∥gt∥2
∥gt∥2

}
. (32)

Note, γt = 0 always satisfies this condition hence is a valid choice. In fact, FWQP
is a special case of FWAL with y0 = 0 and γt = 0.

In numerical experiments, we use a constant step-size γt = β0. This choice
may fail the conditions in (32) but works well in practice.
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1.6 Inequality Constraints

The problems addressed in our paper are concerned with equality constraints.
However, many problems such as resolving partial permutations might require us
to naturally handle inequalities. In this section we present one possible way to
accommodate affine inequality constraints in Q-FW and leave it as a future study
to experiment on tasks with such constraints. Our particular solution requires
the evaluation of D-Wave Quantum Computer only as many times as in the case
of equality constraints.

Without loss of generality, we assume that the inequality constraints are
given in the form of

e⊤i x ≤ fi, i = 1, 2, . . . , q. (33)

Since x is binary valued, we can derive trivial lower and upper bounds

−αi ≤ e⊤i x ≤ βi, where

αi = −
n∑
j=1

min{(ei)j , 0}, and βi =

n∑
j=1

max{(ei)j , 0}.
(34)

In other words, αi is the sum of absolute values of the negative coefficients of
ei, and βi is the sum of its positive coefficients. By definition, αi and βi are
nonnegative. We assume fi < βi, because otherwise the constraint is redundant
and we can remove it. We also assume that −αi ≤ fi. Otherwise, the feasible set
is empty and there are no solutions.

We combine (33) and (34), add αi to both sides:

0 ≤ e⊤i x+ αi ≤ fi + αi, i = 1, 2, . . . , q. (35)

Since all sides are nonnegative, we can now take the squares and get

0 ≤ (e⊤i x)
2 + α2

i + 2αi(e
⊤
i x) ≤ (fi + αi)

2, i = 1, 2, . . . , q. (36)

Then, we replace (e⊤i x)
2 = Tr(x⊤eie

⊤
i x) = Tr(eie

⊤
i xx

⊤) by Tr(EiX) where
Ei = eie

⊤
i . We subtract α2

i and get

−α2
i ≤ Tr(EiX) + 2αi(e

⊤
i x) ≤ f2i + 2αifi, i = 1, 2, . . . , q. (37)

By combining (35) and (37), we reformulate q inequality constraints of the
original QBO problem as 2q inequality (box) constraints in our CP relaxation:

− αi ≤ e⊤i x ≤ fi, i = 1, 2, . . . , q

− α2
i ≤ Tr(EiX) + 2αi(e

⊤
i x) ≤ f2i + 2αifi, i = 1, 2, . . . , q

(38)
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Finally, we introduce a linear map E : Rp×p → R2q and two vectors l,u ∈ R2q

to simplify the notation to l ≤ E(W) ≤ u, or explicitly,

−α1

...
−αq
−α2

1
...
−α2

q


︸ ︷︷ ︸

l

≤



e⊤1 x
...

e⊤q x
Tr(E1X) + 2α1(e

⊤
1 x)

...
Tr(EqX) + 2αq(e

⊤
q x)


︸ ︷︷ ︸

E(W)

≤



f1
...
fq

f21 + 2α1f1
...

f2q + 2αqfq


︸ ︷︷ ︸

u

(39)

where the inequalities are entrywise.

Next, we present FWAL steps for inequality constraints. This extension is
detailed in [16, Section D.4], we present it here for completeness. We use the
following augmented Lagrangian formulation to derive FWAL steps:

Lβ(W;y;y′) = Tr(CW) + y⊤(AW − v) +
β

2
∥AW − v∥2

+ min
l≤ω≤u

{
y′⊤(EW − ω) +

β

2
∥EW − ω∥2

}
.

(40)

Then, the partial derivative of Lβt
with respect to the first variable is

Gt = C+A⊤yt + βtA⊤(AWt − v) + E⊤y′
t + βtE⊤(EWt − ω⋆t ),

where ω⋆t = arg min
l≤ω≤u

{
y′
t
⊤
(EWt − ω) +

βt
2
∥EWt − ω∥2

}
.

(41)

The ω⋆t subproblem amounts to a projection, which in turn is a clipping (thresh-
olding) operator:

ω⋆t = arg min
l≤ω≤u

{
y′
t
⊤
(EWt − ω) +

βt
2
∥EWt − ω∥2

}
= arg min

l≤ω≤u

{
∥EWt − ω + β−1

t y′
t∥2

}
= proj[l,u](EWt + β−1

t y′
t) := clip(EWt + β−1

t y′
t, l,u).

(42)

The update rule for the dual variable y remains the same. Similarly, for y′,
we take a small gradient ascent step by using the partial derivative of Lβ with
respect to the third variable,

g′
t = EWt+1 − ω⋆t , and y′

t+1 = y′
t + γtg

′
t. (43)

1.7 Early Stopping Heuristics

As D-Wave provides a limited amount of computation, we are bound to use our
resources wisely. To this end, for some of the synchronization experiments5, we

5 usually for QPS, we solve larger problems than QGGM
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opt for (i) a faster update, (ii) an automatic termination when good quality
solutions are found. We take a different approach and propose two modifications
to the original Q-FWAL:

1. projecting the solution to the feasibility set at each iteration and switching
the current solution with the projected, if:

Tr(CĤt) < Tr(CWt) (44)

where Ĥt is obtained by lifting the rounded, intermediate solution at time
t, i.e. for permutations, applying Hungarian algorithm on the left singular
vectors of Xt.

2. the stopping criteria that checks the constraints are satisfied and the cost
remains unchanged in consecutive iterations:

∥AWt − v∥ = 0 and Tr(CWt) = Tr(CWt−1) (45)

Note that, typical Frank Wolfe-type algorithms usually make use of the duality
gap as a practical stopping criterion motivated by the fact that this quantity
upper bounds the primal gap while at the same time enjoying the same asymptotic
guarantees. [10,11,16]. However, we find that in practice this is still a very soft
barrier, satisfied only at high number of iterations. This is the reason why we
preferred the two proposed modifications above.

2 Adiabatic Quantum Computing

Adiabatic quantum computing (AQC) is only one of the two quantum computing
models. AQC and gate-based quantum computing paradigms are said to be
polynomially equivalent, in theory (experimental confirmations are ongoing). In
the gate-based model, all computations on qubits can be represented as unitary
transformations (that can potentially cover the entire Hilbert space); hence, all
operations before qubit measurements are invertible. AQC model, instead, is
defined in terms of Hamilton operator evolution. Note, QA can be performed
both in an adiabatic and non-adiabatic manner (faster than what the adiabatic
theorem dictates). Current AQC implementations such as DWave [8] implement
QA, and the quantum system evolution is not guaranteed to be adiabatic. For a
more comprehensive overview of the AQC foundations, see [12,9,13].

The weight matrix of a QUBO problem defines a logical problem [2], i.e., each
its binary variable is said to be a logical qubit in the idealised quantum hardware
context. Every logical problem is abstracted from real quantum hardware and
assumes arbitrary connectivity patterns between the qubits. This contrasts
with the notion of physical qubits, i.e., qubits available in hardware with their
connectivity patterns. Since physical qubits are not arbitrarily connected to each
other on modern AQCs, multiple of them are required to represent a single
logical problem qubit [8]. Finding a mapping of a logical QUBO problem to
the hardware qubit graph is known as minor embedding ; it can be performed
with such algorithms as Cai et al. [6]. We give an example involving logical and
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Fig. 1: Graphs of the logical problems (the left column) arising in our experiments
with 27 (the top row) and 64 logical qubits (the bottom row), along with their
minor embeddings on the Pegasus topology [8] obtained by Cai et al.’s method [6]
(the right column). Each node in the logical problem graph represents a logical
qubit, and each edge stands for couplings between the logical qubits. Physical
qubits build chains in the minor embedding to represent a single logical qubit.

embedded graphs of two of our problems in Fig. 1. We now briefly describe
quantum annealing.

A QUBO optimization is equivalent to minimizing the energy of a classical
Ising Hamiltonian J with no bias field, where the variables si are interpreted as
classical spin values. Hence, the minimum of the QUBO objective is equivalently
obtained as the ground state of Quantum Ising Hamiltonian:

HP =
∑
ij

Jijσ
(i)
P σ

(j)
P , (46)

where σ
(i)
P denotes the Pauli matrix applied to the ith qubit of an n-qubit system.

In contrast to a classical bit, a qubit |ψ⟩ can continuously transition between
the states |0⟩ and |1⟩ (the equivalents of classical states 0 and 1) fulfilling the
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equation |ψ⟩ = α |0⟩+β |1⟩, with probability amplitudes satisfying |α|2+ |β|2 = 1.
The eigenvalues of the Hamiltonian correspond to the possible system’s energies.
As such, the same minimization can be written as:

min
|ψ⟩∈C2n

⟨ψ|HP |ψ⟩ . (47)

Adiabatic Quantum Annealing (AQA) solves Eq (47) by evolving the Hamiltonian
to one where the ground state corresponds to the optimal solution:

H(τ) = [1− τ ]HI + τ HP , (48)

with HI being an initial Hamiltonian realized as a superposition with equal
probabilities of measuring |0⟩ or |1⟩ for every qubit. The adiabatic theorem of
quantum mechanics [4] implies that if a system transits gradually enough (the
concrete meaning of gradually depends on many factors), then the system will
continue to stay in its ground state in the course of the entire evolution. Hence,
by the end of the transition, the system will be measured in the ground state of
the problem Hamiltonian, i.e., the global optimiser.

A hybrid algorithm involving QA always has multiple steps that cover the
preparation of a QUBO problem, minor embedding, a series of anneals, problem
unembedding (from the graph of physical qubits to the logical problem graph),
solution selection and solution interpretation.

2.1 Psuedocode

We are now ready to provide the pseudocode for Q-FW. In the main paper we
always use the equality constraints as these are the most common in the tasks
we address. However, for the sake of generality we present in Alg. 1 the generic
Q-FW approach for handling inequality and equality constraints. We will make
our implementation available upon publication.

3 Additional Evaluations

On synthetic data. Our synthetic data serves the purpose of being able to
execute our exhaustive binary solver for obtaining a globally optimal solution to
QUBO small problems (n = 3 and m = 3). Similar to [3], we visualize in Fig. 2,
some noisy and noise-free examples from our random synthetic dataset. For
illustration purposes we show the case of n = 4 and m = 4, although we used
smaller problems in the experiments. The important cues are the correspondences
denoting permutations, whose rows might be randomly swapped to inject noise.

On the evolution of sub-problems & sparsity. We now visually compare
the sub-problems emerging in solving the noiseless, synthetic synchronization
problem (detailed in the previous experiment and in our supplementary material),
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Algorithm 1 Q-FW for Quadratic Binary Optimization.

Input: Cost matrix Q ∈ Rn×n, Equality constraints {(ai, bi)}mi=1, Inequality

constraints {(ei, fi)}qi=1, # of iterations T , penalty parameter β0 > 0 (default 1)

Preparation: p← n+1, d← 2m+n+1, d′ ← 2q. Form C←
[
0 0⊤

0 Q

]
. Construct

(A,v) as defined in (9), and (E , l,u) as in (39).

Initialization: W← 0p×p, y← 0d, y′ ← 0d
′

Main loop [FWAL]:

for t = 1, . . . , T do

η ← 2/(t+ 1), and β ← β0
√
t+ 1

g← AW − v, and g′ ← EW − clip(EW + β−1y′, l,u)

G← C+A⊤(y + βg) + E⊤(y′ + βg′)

w← argmin {w⊤Gw : w ∈ Zp2} // QUBO subproblem

W← (1− η)W + ηww⊤

g← AW − v, and g′ ← EW − clip(EW + β−1
+ y′, l,u) // β+ = β0

√
t+ 2

y← y + γg, and y′ ← y′ + γg′ // In practice, we use γ = β0

Main loop [FWQP]:

for t = 1, . . . , T do

η ← 2/(t+ 1), and β ← β0
√
t+ 1

g← AW − v, and g′ ← EW − clip(EW, l,u)

G← C+ βA⊤g + βE⊤g′

w← argmin {w⊤Gw : w ∈ Zp2} // QUBO subproblem

W← (1− η)W + ηww⊤

Rounding: (Option 1) Extract x by taking the first column of W and removing

its first entry. (Option 2) Extract X by removing the first row and first column

of W. Compute x as the top singular vector of X. – Project x onto Zn2 .

Output: Solution W ∈ ∆p for the copositive program, and x ∈ Zn2 for the QBO.
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(a) Ground truth
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Fig. 2: Samples from our fully connected synthetic dataset for different values
of swap ratio σ. In the figure, each group (indicated using differently colored
points) corresponds to a view and each inter-group correspondence corresponds
to a permutation that we optimize for. Note that the points are drawn as a grid
to ease visual perception. Neither our algorithm nor the state-of-the-art methods
we compare would use this information.

for our exact method and for the D-Wave implementation. As seen in Fig. 3,
there is no noticeable difference between the two evolutions, confirming that
D-Wave could solve the sub-QUBO-problems reliably. Moreover, over iterations
the sparsity pattern of Wt is fixed, which means that we could compute the
minor embedding6, and re-use it throughout Q-FW. This ability of avoiding
repetitive minor embeddings is a by-product of our approach and makes it a
practically feasible algorithm.
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Fig. 3: Evolution of the gradient Wt for 0 < t < 100 sampled in steps of 10:
FWAL (top) and Q-FWAL (bottom).
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