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Abstract. We present a hybrid classical-quantum framework based
on the Frank-Wolfe algorithm, Q-FW, for solving quadratic, linearly-
constrained, binary optimization problems on quantum annealers (QA).
The computational premise of quantum computers has cultivated the
re-design of various existing vision problems into quantum-friendly forms.
Experimental QA realisations can solve a particular non-convex problem
known as the quadratic unconstrained binary optimization (QUBO). Yet a
naive-QUBO cannot take into account the restrictions on the parameters.
To introduce additional structure in the parameter space, researchers have
crafted ad-hoc solutions incorporating (linear) constraints in the form of
regularizers. However, this comes at the expense of a hyper-parameter, bal-
ancing the impact of regularization. To date, a true constrained solver of
quadratic binary optimization (QBO) problems has lacked. Q-FW first re-
formulates constrained-QBO as a copositive program (CP), then employs
Frank-Wolfe iterations to solve CP while satisfying linear (in)equality
constraints. This procedure unrolls the original constrained-QBO into
a set of unconstrained QUBOs all of which are solved, in a sequel, on
a QA. We use D-Wave Advantage QA to conduct synthetic and real
experiments on two important computer vision problems, graph matching
and permutation synchronization, which demonstrate that our approach
is effective in alleviating the need for an explicit regularization coefficient.

1 Introduction

Combinatorial optimization is at the heart of computer vision (CV). In a va-
riety of applications such as structure-from-motion (SfM) [66], SLAM [56], 3D
reconstruction [21], camera re-localization [65], image retrieval [51] and 3D scan
stitching [40,24], correspondences serve as a powerful proxy to visual percep-
tion. In many problems, correspondences are defined over two or multiple point
sets and can be encoded as permutation matrices that are binary assignment
operators. Recovering permutations from observations involve solving NP-hard
combinatorial problems. As a remedy, scholars have opted to relax those problems
to arrive at tractable albeit suboptimal solutions [70,8,14,43]. However, recent
advances in computer hardware urges us to re-visit our approaches.
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Quantum computers (QCs) harness the collective properties of quantum
states, such as superposition, interference and entanglement to perform calcula-
tions [60]. Thanks to the use of a more advanced physics, QCs can offer theoretical
improvements in the face of complexity classes that are challenging to handle
today [68]. With the experimental realization of quantum supremacy [4], we are
now more confident that practical quantum computing is right around the corner,
i.e. the numer of usable Qubits now reach 5000 (DWave Advantage) and are
expected to exceed beyond 7000 (DWave Advantage 2) [69].

A particular quantum computational model, known as Adiabatic Quantum
Computing (AQC), is based on the adiabatic theorem of quantum mechanics [12].
Closely related to it is Quantum Annealing (QA), which is a quantum optimization
method (AQC-type) that implements a qubit-based quantum system described
by the Ising model [42]. Albeit restricted, experimental realisations of QA, such
as DWave [22], can solve non-convex, quadratic unconstrained binary optimization
(QUBO) problems, without resorting to continuous relaxations. This premise
of AQC and QA has led to the emergence of quantum computer vision (QCV),
where researchers started to port existing computer vision problems into forms
amenable to quantum computation [36,50,32,67,75,7].

Even though employing QA to solve CV problems has shown benefit4, a
large body of computer vision algorithms rely on some form of (in)equality
constraints to be incorporated. For example, estimating correspondences require
solving QBOs for permutations and not for arbitrary binary vectors. To this
end, the state-of-the-art QCV methods either use a regularization with cherry-
picked coefficients [7] or resort to heuristics for auto-controlling the impact of
the constraints [67,75]. Unfortunately, none of these approaches are optimal and
jeopardize the solution quality guarantees of quantum computers.

In this paper, we address the above issue of incorporating (in)equality con-
straints and introduce Quantum-Frank Wolfe (Q-FW), a Frank-Wolfe framework
for satisfying linear (in)equality constraints in a QBO problem. Q-FW is based
on an equivalent copositive programming formulation of constrained QBO and
involves iteratively solving a sequence of classical, unconstrained QUBOs. At
its core, on a classical computer, Q-FW employs one of the two variants of FW
tailored for solving CP problems; FW with augmented Lagrangian (FWAL) [72]
or FW with quadratic penalty (FWQP) [73]. At every iteration, these methods
identify an update direction by minimizing a linear approximation of a penalized
proxy of the objective function. Q-FW formulates this linear minimization as a
QUBO and obtains the update direction via QA. We then take a small step in
this update direction. In addition, FWAL maintains a dual variable, updated by
a small gradient step for improved numerical performance.

Thanks to the convexity inherent in CP, Q-FW converges to the global
minimum regardless the choice of its algorithm parameters. By virtue of the

4 Quantum computers are still in early stages. However, a diverse set of CV experiments
present optimistic predictions regarding the future.
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exact copositive-reformulation, our solutions are oftentimes near the true global
minimum, obtained via an exhaustive search in small problems. We deploy Q-FW
on multiple computer vision tasks of permutation synchronization and graph
matching, which both have wide applicability. Our contributions are:

– We introduce Q-FW, an adaptation of the classical FW algorithm for solving
copositive programs on a hybrid classical-quantum computing system.

– We solve the challenging QUBO sub-problems using an actual experimental
realisation of a quantum annealer (QA), DWave Advantage 4.1 [62,22].

– We tackle both graph matching and permutation synchronization problems
and obtain excellent results on both synthetic and real benchmarks.

Our evaluations confirm the theoretical advantages of Q-FW: Q-FW is ro-
bust, can solve larger problems than brute-force search, can exactly satisfy
(in)equality constraints and enjoys a tight copositive relaxation. Our MATLAB
implementation as well as scripts required to run D-Wave are available under:
github.com/QuantumComputerVision/QuantumFrankWolfe.

2 Related Work

Our approach relates to different methods both in classical optimization and
quantum computer vision. In this section, we review the most related works in
QCV, copositive programming and FW.

Quantum computer vision (QCV). QCV encompasses hybrid classical-
quantum methods with parts solved on a gate-based quantum computer or
a quantum annealer. This young field seeks to identify how challenging problems
can be formulated for and benefit from quantum hardware. While it remained
predominantly theoretical at early stages [58,17], QCV methods from various
domains were evaluated on real quantum hardware during the recent few years,
including image classification [57,59,16], object detection [50], graph matching
[67], mesh alignment [5], robust fitting [25] and permutation synchronisation [7].

Some of the proposed algorithms require additional constraints formulated
as weighted linear terms (Lagrange multipliers) [67,7,75]. Such conditions rectify
the original unconstrained objective and preserve the QUBO form consumable by
modern QA. However, since the linear constraints modify the problem’s energy
landscape, the corresponding weights have to be chosen with care; too high or
too low weights can significantly decrease the probability of measuring optimal
solutions after the sampling. Birdal et al. [7] select the weights with a time-
consuming grid search (for small problem instances). Benkner et al. [67] derive
lower bounds on the rectification weights for the quadratic assignment problem.
Both policies have a common limitation: The determined weights are problem-
specific and do not generalise to other problems. Moreover, even problems of the
same type and size can demand new multipliers.

https://github.com/QuantumComputerVision/QuantumFrankWolfe
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In contrast to existing methods, our unified policy does not require selecting
the weights of linear terms in advance. Similar to Q-Match [5], our method is
iterative: a sequence of optimisation tasks are solved on QPU; in each iteration,
the control is returned to CPU to define a follow-up QUBO until convergence.
Q-Match [5] update its solutions via a series of permutation-ness-preserving
directions (collections of 2-cycles). Its policy does not generalise to other problems,
arbitrary solution encodings and weighted linear constraints, as our method does.

Copositive programming (CP). CP is a subfield of convex optimization
concerned with optimizing a linear objective under affine constraints over the cone
of copositive matrices, or its dual cone, the cone of completely positive matrices.
By definition, a matrix X ∈ Rn×n is said to be copositive if its quadratic form is
nonnegative on the first orthant (i.e. , z⊤Xz ≥ 0 for all z ∈ Rn

+) and completely
positive if X ∈ conv{xx⊤ : x ∈ Rn

+}. Compared to semidefinite programming,
CP provides a tighter relaxation of quadratic problems [63]. However, despite its
convexity, solving a CP problem is NP-Hard [10]. Several NP-Hard problems in
quadratic and combinatorial optimization are subsets of CP, including the binary
quadratic problems [13], problems of finding stability and chromatic numbers of
a graph [23,26], quadratic assignment problem [61], and training of vector-output
RELU networks [64]. We refer to the excellent surveys [27,28] and references
therein for more details.

Frank Wolfe (FW). FW (also known as conditional gradient method or CGM)
is a classical method in convex optimization dating back to 1956 [30]. Initially,
the method is proposed for minimizing a convex quadratic loss function over
a polytope. The analysis is extended in [49] to minimize a generic smooth and
convex objective over an arbitrary convex and compact set. The eccentric feature
of FW is that it does not require a projection step, which is in stark contrast with
most other methods for constrained optimization, and it makes FW efficacious for
problems where projection is computationally prohibitive. FW is demonstrated as
an effective method for optimization over simplex [19] or spactrahedron domains
[35]. We refer to [41] for convergence analysis of FW and a detailed discussion
on its applications, and to [11] for a review on recent advances in FW.

The original form of FW is not suitable to tackle affine equality constraints
present in our CP formulation. Instead, we consider two design variants of
FW: FWQP [73], which equips FW with a quadratic penalty strategy for affine
constraints; and FWAL [72], which extends FWQP for an augmented Lagrangian
penalty. Our choice is inspired by [74] using FWAL for solving semidefinite
programs. We adopt a similar approach for solving CPs.

In what follows, we first formulate QBO as an instance of the more general
copositive program class §3. We then provide our Q-FW framework for solving
copositive programs in a generic way (§4). Finally, we cast graph matching (§5.1)
and permutation synchronization (§5.2) tasks as instances of QBOs with equality
constraints, which Q-FW could solve effectively.
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3 Problem Formulation

This section presents our model problem, a quadratic binary optimization (QBO)
with affine (in)equality constraints5, and an equivalent copositive program out-
lined in [13].

We assume that the problems are presented in the following form:

min
x∈Zn

2

x⊤Qx+ 2 s⊤x subject to a⊤i x = bi, i = 1, 2, . . . ,m, (1)

where x ∈ Zn
2 is the binary valued decision variable, Q ∈ Rn×n and s ∈ Rn

are the quadratic and linear cost coefficients, and {(ai, bi) ∈ Rn × R} are the
constraint coefficients. We assume bi ≥ 0 without loss of generality. Throughout,
we treat Q as a symmetric matrix since (1) is invariant under symmetrization of
Q:

x⊤Qx = 1
2x

⊤Qx+ 1
2 (x

⊤Qx)⊤ = x⊤( 12Q+ 1
2Q

⊤)x. (2)

One can also drop the linear term s⊤x from the objective, because we can translate
it into the quadratic term: Given that x is binary valued, s⊤x = x⊤Diag(s)x.

To reformulate this problem, consider the rank-one completely positive
matrix X = xx⊤ ∈ Zn×n

2 . Since x is binary valued, we have diag(X) = x. Then,
the quadratic objective in (1) can be cast as a linear function of X:

x⊤Qx = Tr(x⊤Qx) = Tr(Qxx⊤) = Tr(QX). (3)

Similarly, we rewrite affine constraints from problem (1) by using

a⊤i x = bi ⇐⇒ (a⊤i x)
2 = b2i

⇐⇒ Tr(AiX) = b2i , where Ai := aia
⊤
i ,

(4)

which holds true since (a⊤i x)
2 = x⊤aia

⊤
i x = Tr(x⊤aia

⊤
i x) = Tr(aia

⊤
i xx

⊤).

Now, we reformulate problem (1) as follows:

min
x,X

Tr(QX) + 2 s⊤x subject to a⊤i x = bi, i = 1, 2, . . . ,m,

Tr(AiX) = b2i , i = 1, 2, . . . ,m,

X = xx⊤, and x ∈ Zn
2 .

(5)

By replacing the nonconvex nonlinear constraint {X = xx⊤,x ∈ Zn
2} with

diag(X) = x, and

[
1 x⊤

x X

]
∈ ∆n+1 where ∆n := conv{xx⊤ : x ∈ Zn

2}, (6)

5 Throughout the paper we concentrate on the equality constraints and provide a
simple modification to satisfy inequality constraints in our supplementary material.
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we get a CP problem:

min
x,X

Tr(QX) subject to a⊤i x = bi, i = 1, 2, . . . ,m,

Tr(AiX) = b2i , i = 1, 2, . . . ,m,

diag(X) = x, and

[
1 x⊤

x X

]
∈ ∆n+1.

(7)

This reformulation is tight, see Theorem 2.6 in [13] for the technical derivation.
Our numerical experiments demonstrate the tightness of this reformulation
empirically for the graph matching and permutation synchronization problems.

Compact notation. We introduce a compact notation for problem (7) for
convenience. Let p = n+ 1, denote the new decision variable by W ∈ ∆p, and
introduce a new cost matrix C =

[
0 s⊤

s Q

]
. Further, let d = 2m + n + 1 and

introduce a linear map A : Rp×p → Rd and vector v ∈ Rd combining all affine
constraints in problem (7), including {a⊤i x = bi}, {Tr(AiX) = b2i }, diag(X) = x,
and W1,1 = 1.

In this notation, problem (7) becomes

min
W∈∆p

Tr(CW) subject to AW = v. (8)

This is a convex optimization problem, but it is NP-Hard because of the complete
positivity constraint.

4 Quantum Frank-Wolfe (Q-FW)

In the light of the copositive reformulation above, we now develop the main
algorithm for solving a constrained-QBO. We describe the algorithm with FWAL.
FWQP is covered as a special case by removing the dual steps of FWAL.

First, we construct the augmented Lagrangian of problem (8) by introducing
a dual variable y ∈ Rd and a penalty parameter β > 0:

Lβ(W;y) = Tr(CW) + y⊤(AW − v) +
β

2
∥AW − v∥2 for W ∈ ∆p. (9)

The goal is to minimize Lβ(W;y) with respect to the primal variable W and
maximize with respect to the dual variable y:

min
W∈∆p

max
y∈Rd

Tr(CW) + y⊤(AW − v) +
β

2
∥AW − v∥2. (10)

Note, the inner maximization gives an indicator function for AW = v:

max
y∈Rm

y⊤(AW − v) =

{
0 if AW = v

+∞ otherwise
(11)
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Hence, the saddle point problem (10) is equivalent to our model problem (8).

The FWAL iteration employs a simple optimization strategy with two main
steps, performed on the augmented Lagrangian loss function Lβ(W;y):
(1) A primal step to update W, inspired by the FW algorithm, and
(2) A dual gradient ascent step to update y.
The penalty parameter, β, is increased at a specific rate to ensure convergence of
W to a feasible solution. Next, we describe the algorithm steps in detail.

Initialization. Choose an initial penalty parameter β0 > 0, and initial primal
and dual estimates W0 ∈ ∆p and y0 ∈ Rd. In practice, we let β0 = 1, and we
choose W and y as the matrix/vector of zeros.

At iteration t = 1, 2, . . ., we increase the penalty parameter βt = β0

√
t+ 1

and perform the following updates:

Primal step. For primal step, we fix the dual variable yt and take a FW step
on the primal variable Wt with respect to the augmented Lagrangian loss (9).
First, we compute the partial derivative of Lβt

with respect to W:

Gt = C+A⊤yt + βtA⊤(AWt − v). (12)

Then, we find an update direction Ht ∈ ∆p by minimizing the first-order Taylor
expansion of Lβt

:

Ht ∈ argmin
W∈∆p

Lβt
(Wt;yt) + Tr(Gt(W −Wt)) ≡ argmin

W∈∆p

Tr(GtW). (13)

This step can be written as a standard, unconstrained QUBO. Specifically,

if wt ∈ argmin
w∈Zp

2

w⊤Gtw, then Ht := wtw
⊤
t ∈ argmin

W∈∆p

Tr(GtW). (14)

Therefore, we can implement and solve this step effectively on an AQC.
This is a key observation for our framework.

Finally, we update the primal variable Wt by taking a step towards Ht:

Wt+1 = (1− ηt)Wt + ηtHt, with step-size ηt =
2

t+ 1
. (15)

Dual step. For dual step, we fix Wt+1 and take a gradient ascent step on the
dual variable with respect to the augmented Lagrangian loss (9). The partial
derivative of Lβt with respect to y is

gt = AWt+1 − v. (16)

Then we take a gradient step in this direction

yt+1 = yt + γtgt, with step-size γt ≥ 0. (17)
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There are two different strategies for the dual step-size γt, for more details we
refer to Section 3.1 in [72]. In practice, we choose a constant step-size γt = β0.

This completes one FWAL iteration. The following proposition, a simple
adaptation from [72, Theorem 3.1], establishes the convergence rate of FWAL
for our model problem (8).

Proposition 1. Consider FWAL for problem (8). Choose an initial penalty
parameter β0 > 0. Assume that the solution set is nonempty, strong duality
holds6, and the effective dual domain is bounded (i.e. , there exists D < +∞ such
that ∥yt∥ ≤ D at every iteration). Then, the primal sequence Wt ∈ ∆p converges
to a solution W⋆ with the following bounds on the error:

Tr(CWt)− Tr(CW⋆) ≤
1√
t

(
6β0p

2∥A∥2 + D2

2β0

)
(objective suboptimality)

(18)

∥AWt − v∥ ≤ 1√
t

(
2
√
3p∥A∥+ 4D

β0

)
(infeasibility error) (19)

where ∥A∥ := sup{∥AX∥ : ∥X∥F ≤ 1} is the operator norm of A.

Remark 1. We recover FWQP from FWAL by choosing y0 = 0 and γt = 0,
in other words, by removing the dual steps. These two methods have similar
guarantees with the same rate of convergence up to a constant factor, but FWAL
is reported to perform better for most instances in practice [72].

Rounding. We can immediately extract a solution for the original QBO problem
(1) from a solution W⋆ of CP reformulation (8). However, in practice, with finite

time and computation, we get only an approximate solution Ŵ. A naive estimate
that we extract from Ŵ can be infeasible for (1). To this end, we implement

the following rounding procedure: First, we get X̂ by removing the first row and
first column of Ŵ. Next, we compute the best rank-one approximation x̂x̂⊤ of
X̂ with respect to the Frobenius norm.7 Finally, as an optional step, we project
x̂ onto the feasible set of (1). The set of permutation matrices is the feasible set
in our numerical experiments. We use Hungarian algorithm [46] for projection.

Quantum Annealing (QA). QA converts a QUBO objective to the equivalent
Ising problem that is then solved by a meta-heuristic governed by quantum
fluctuations [29]. Since this analogue optimisation process is prone to different
physical disturbances (e.g., state decoherence and cosmic radiation)—and is,
hence, non-deterministic—multiple repetitions are required to obtain an optimal
solution with high probability. Furthermore, the current experimental QA real-
isations do not easily allow defining high-level constraints; the latter must be
integrated so that the QUBO structure is preserved. In practice, constraints are

6 Strong duality is a standard assumption for primal-dual methods in optimization.
7 This amounts to computing the top singular vector of X̂ [54].
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formulated as weighted linear terms adjusting qubit couplings and biases [67,7].
Finding optimal weights (e.g., by a grid search) is a tedious procedure that does
not guarantee the generalisation of the selected multipliers across the problems.
We provide further details on quantum annealing in our supplementary material.

On computational complexity. The convergence of FW is sub-linear and hence
may require significant number of iterations, e.g. 200-1000. At each iteration,
Q-FW attempts to solve an NP-Hard QUBO problem whose computational
complexity class is FPNP-complete8 [71]. Thanks to the exploitation of quantum
phenomena, QA can bring a quadratic improvement reducing the theoretical

complexity from O(eN ) to O(e
√
N ), in a similar vein to Grover algorithm [1,34].

Though, it is not straightforward to get a problem-specific, realistic estimate of
the time complexity of the QA process. Nevertheless, fixing a constant annealing
time and a constant number of repetitions, as we do for our small problems, can
lead to an optimistic, polynomial time algorithm [3].

5 Experimental Evaluation

The proposed approach (Q-FWAL) is general and not tailored towards a specific
problem. Hence, we assess its validity in realizing quantum versions two differ-
ent problems, graph matching and permutation synchronization, both requiring
equality constraints to be accounted for.9 We use problem-specific synthetic and
real datasets to showcase the effectiveness of our approach.

Implementation details. In both of the experiments we use the DWave Ad-
vantage 4.1 system [53] which has at least 5,000 qubits and ∼35,000 couplers.
Except the ablation studies, we use 50 or 250 annealing cycles of 20µs in each
iteration with an annealing schedule of 100µs breaks. We set the chain strength
ξ according to the maximum chain strength criterion: We inspect the minor
embedding calculated by Cai et al. [15] and set ξ = smax+ω, with smax being the
maximum chain length in the minor embedding and ω = 0.5 is the strengthening
weight. If we observe frequent chain breaks for larger problems, we increase ω to
3.0. We access DWave at each iteration through the Leap2 API [20]. We investi-
gate three modes of Q-FW: (i) with intermediary exhaustive solution instead of
DWave (FWAL), (ii) without Hungarian rounding (Q-FWAL relaxed) and (iii)
the full configuration (Q-FWAL). Note that vanilla FWAL (i) cannot be applied
to large problems due to the combinatorial explosion. In all of our problems, we
are interested in linear permutation constraints, as those are the most common in
CV problems. Hence, we use Hungarian algorithm [46] as the projector onto the
constraint set (cf. Rounding in §4) and formulate permutation-ness into linear
constraints as in [7,67] (cf.supplementary material).

8 A binary relation P (x, y), is in FPNP if and only if there is a deterministic polynomial
time algorithm that can determine whether P (x, y) holds given both x and y.

9 While still providing a way to handle inequalities in our supplementary material, we
leave it as a future work to study problems with inequality constraints.
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Table 1: Evaluations of graph matching on random problem instances with
different sizes [67]. We report mean normalized energies over ten instances (the
lower the better). Last five columns correspond to the variants of our method.

[67] [67] [6] [44] Q-FWAL Q-FWAL Q-FWAL Q-FWAL
N ins. row. DS* SA FWAL relaxed (50) (50) relaxed (250) (250)

3 1.49 2.12 0.85 0.82 7e-4 1.72 0.093 1.72 7e-4
4 5.68 7.37 0.43 2.43 1.3e-3 3.41 1.82 0.23 1.43e-3

5.1 Quantum Graph Matching (QGM)

In general, 3D vision problems relate two abstract shape/image manifolds M1

and M2. In many applications, these manifolds can be sampled by two point
clouds (e.g. keypoints) X1 ∈ RN1×n and X2 ∈ RN2×n where n is the dimensionality
of the problem domain, e.g. two for images, three for meshes and etc. We further
assume a distance function ϕ(.) defined over the points of these point clouds. The
quadratic assignment problem (QAP) then takes the form:

max
Π

vec(Π)⊤ QQGM vec(Π) subject to Π ∈ P (20)

where P denotes the set of (partial) permutations and vec(·) acts as a vectorizer.

Assuming N := N1 = N2, i.e. total permutations (TP), QQGM ∈ RN2×N2 denotes a
ground cost matrix or the quadratic energy measuring the gain of matching M1

and M2 by a sub-permutation Π, computed using the distance ϕ(·).

Baselines & dataset. We benchmark QGM against the exhaustive solution,
obtained by searching over all possible permutations, as well as against the first
AQC approach which was proposed by Benkner et al. [67] who used multiple
strategies (e.g. inserted, row-wise) to inject soft-permutation constraints into
QUBO. This required tuning of a parameter λ ∈ R, whose large values are found
to cause problems [7,67,75]. As a heuristic, [67] suggested a spectral-gap10 analysis
to bound the regularization coefficient λ. We also include: (i) the result obtained
by running simulated annealing (SA) [44] on a CPU (the implementation from
the Ocean tools [20]); (ii) a state of the art classical graph matching algorithm [6].

To assess, we use two sets of ten random problem instances with N = 3 and
N = 4 as in §5.1 of [67]. The ground-truth permutations are calculated by brute
force and compared qualitatively with the expected outcomes on real data. The
number or qubits in the minor embeddings equals to 14 (N = 3) and 40 (N = 4).

Results. We report the mean normalized energies over ten instances in Tab. 1.
This quantity is obtained by first shifting all energies by the minimum energy
(of the ground-truth solution) and then averaging them. Clearly, FWAL and
Q-FWAL perform the best on this experiment. However, FWAL cannot be scaled

10 the difference between the lowest and second-lowest energy state / eigen-value
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to large problems, and as we will see later in §5.2, Q-FWAL is able to handle much
larger problems thanks to the advances in AQCs. DS* is a powerful classical
algorithm, yet it cannot match the errors we achieve. SA is good for small
problems, but its solution quality quickly drops with the problem size. Finally, it
is visible that 50 cycles might be insufficient to get high quality results. Note, in
practical scenarios where the number of keypoints across two images/scenes are
different (e.g. N1 ̸= N2), we will have to adopt partial permutations as non-square
matrices yielding inequality constraints. We provided how inequality constraints
can be factored into our framework, theoretically (cf. supp. §1.5).

Fig. 1: Willow Dataset [18]. (left) Manual annotations of keypoints. (right)
Ground truth multi-image matches.

5.2 Quantum Permutation Synchronization (QPS)

Many multi-shape/view/instance computer vision problems can be solved by
synchronization, including shape (point set) alignment [31,37], structure from
motion [9,33], multi-view matching [52,8] and motion segmentation [38,2].

A specific branch, permutation synchronization seeks to find globally con-
sistent image/shape matches from a set of relative matches over a collection. In
particular, consider a collection of K point sets X1, . . . ,XK

11 of N points each
such that there exists a bijective map for each pair (Xi,Xj). We assume the
availability of a set of noisy relative permutations {Pij : Xi → Xj}ij estimated in
isolation, i.e. independently. Our goal is then to solve this multi-graph matching
problem even when a significant fraction of the pairwise matches are incorrect.
To this end, a large body works minimize a cycle-consistency loss, that is shown
to be equivalent to a QUBO (cf. [7] for a proof):

argmin
{Xi∈Pn}

∑
(i,j)∈E

∥Pij −XiX
⊤
j ∥2F = argmin

{Xi∈Pn}
x⊤QQPSx. (21)

Here, x = [· · ·x⊤
i · · · ]⊤ and xi = vec(Xi) depict the canonical ordering of

points. The first AQC approach to this problem is proposed by Birdal et al. [7],
who, similar to [67], regularize QQPS to incorporate permutation-ness as a soft
constraint. Note that, this whole problem has a gauge freedom, where we can
freely choose X0 e.g. , as an identity matrix (cf. supplementary material).

11 Such sets are easy to obtain by keypoint detection or sampling either on images or
on shapes, e.g. by detecting N landmarks per image, in a M -view image collection.
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Table 2: Evaluations on Willow Dataset.
Car Duck Motorbike Winebottle Average

MatchEIG [52] 0.81 ± 0.083 0.86 ± 0.102 0.77 ± 0.059 0.87 ± 0.107 0.83 ± 0.088
MatchALSS [76] 0.84 ± 0.095 0.90 ± 0.102 0.81 ± 0.078 0.94 ± 0.092 0.87 ± 0.092
MatchLIFT [39] 0.84 ± 0.102 0.90 ± 0.103 0.81 ± 0.078 0.94 ± 0.092 0.87 ± 0.094
MatchBirkhoff [8] 0.84 ± 0.094 0.90 ± 0.107 0.81 ± 0.079 0.94 ± 0.093 0.87 ± 0.093
QuantumSync [7] 0.84 ± 0.104 0.90 ± 0.104 0.81 ± 0.080 0.93 ± 0.095 0.87 ± 0.096
[7]-search 0.84 ± 0.104 0.91 ± 0.115 0.82 ± 0.10 0.95 ± 0.096 0.88 ± 0.104

Q-FWAL (ours) 0.92 ± 0.094 0.97 ± 0.072 0.89 ± 0.093 0.99 ± 0.044 0.94 ± 0.076

Datasets. As a real dataset, we follow [7] and use the kindly provided subset of
the Willow Object Classes [18] composed of four categories (duck, car, winebottle,
motorbike) with 40 RGB images each, acquired in the wild (cf. Fig. 1). This
subset contains multiple sets of four points sampled out of ten annotations. This
leads to 35 small problems per category each of which is a fully connected graph
of all four consecutive frames. Initial permutations are obtained via a Hungarian
algorithm [55] applied to matching costs obtained by Alexnet [45] features. As
the data is manually annotated, the ground-truth relative maps are known.

Baselines. We compare Q-FWAL against the classical algorithms of MatchEIG
[52], MatchALS [76], MatchLift [39], MatchBirkhoff [8] as well as the first Quan-
tum approach, QuantumSync [7]. QuantumSync uses λ = 2.5 in all experiments.
The exhaustive solution is obtained by enumerating all possible permutations.
Note that due to the limitations in the available DWave time, we had to imple-
ment an early-stopping heuristic whose details are provided in the supplementary
document. The number or qubits in the minor embeddings in this experiment
(for Q ∈ R64×64) was ≈270, and the chain length did not exceed eight.

Results. We follow the protocol of Birdal et al. [7] and report in Tab. 2, the
portion of correct bits i.e. accuracy. Our approach consistently and significantly
outperforms both the classical algorithms and the state-of-the-art quantum
approach, QuantumSync [7]. [7]-search denotes the softly-constrained search
detailed in [7]. Overall, Q-FW is more applicable to problems of growing size.

5.3 Ablation Studies

Tightness of the copositive relaxation. To assess the tightness of our algo-
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rithm, we randomly generate fully connected, syn-
thetic synchronization problems with N = 3 and K = 3
with different noise levels σ ∈ {0, 0.2}. For this small
problem we could use an exact QUBO solver and
monitor the convergence of the relaxed problem to
the ground truth (GT): εCC = |Tr(QXt)−Tr(QXgt

t )|
where Xgt is obtained by lifting the GT permutations.
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(a) Graph matching
(Q ∈ R9×9)
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(c) Synchronization
(Q ∈ R64×64).

Fig. 2: Solving two graph matching and one synchronization problem using Q-
FWAL. The problem gets more complex from left to right. Thus, the required
number of iterations to converge increases.

As shown on the right, εCC decreases monotonically for all methods, even in the
case of noise. Moreover, our D-Wave implementation strictly matches FWAL.

Monitoring convergence. As heuristic fearly stopping criteria are harmful for
the convergence guarantees we provide, it is of interest to see how our algorithm
behaves as iterations progress. In Fig. 2 we plot minimization curves for different
problems we consider: two graph matching (a,b) and one synchronization (c).
For each problem, we plot the QUBO objective, infeasibility eror (constraint
objective) and the error attained after Hungarian rounding. It is visible that
simplicity of the problem has a positive impact on finding good solutions early
on. For larger problems, settling on a good solution can take > 200 iterations,
when early stopping is not used. We also note that the QUBO ojective converges
to the rounded objective, indicating the tightness of our relaxation.

On the evolution of sub-problems & sparsity. We now visually compare
the sub-problems emerging in solving the noiseless, synthetic synchronization
problem (detailed in the previous experiment and in our supplementary material),
for our exact method and for the D-Wave implementation. As seen in Fig. 3,
there is no noticeable difference between the two evolutions, confirming that
D-Wave could solve the sub-QUBO-problems reliably. Moreover, over iterations
the sparsity pattern of Wt is fixed, which means that we could compute the
minor embedding12, and re-use it throughout Q-FW. This ability of avoiding
repetitive minor embeddings makes Q-FW a practically feasible algorithm.

6 Discussions and Conclusion

We have proposed Q-FW, a quantum computation backed, hybrid Frank Wolfe
Augmented Lagrangian method. Thanks to the tight copositive relaxation and
the QUBO formulation, our algorithm has successfully satisfied linear (in)equality

12 requires solving a combinatorial optimization problem with heuristics.
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Fig. 3: Evolution of the gradient Wt for 0 < t < 100 sampled in steps of 10:
FWAL (top) and Q-FWAL (bottom).

constraints, such as permutation-ness, arising in many computer vision applica-
tions. We have solved the intermediary QUBO problems on a quantum computer
to obtain high quality update directions and demonstrated the validity of Q-FW
both on graph matching and permutation synchronization.

Limitations. The most obvious concern is the sub-linear convergence of our
algorithm, which could sometimes require a large number of iterations particularly
if high accuracy is needed. However,the rates of FWAL (hence, Q-FWAL) are
optimal, i.e. they match the worst-case computational lower bounds for a generic
class of linear optimization based convex programming algorithms [48]. Certain
design variants of FW with stronger oracles [47] achieve faster rates. Such variants
and their implications for Q-FWAL pose valuable questions for future study. We
observed in practice a maximum of 300-400 iterations can be sufficient thanks to
the high quality of the DWave solver. We are also limited by the small problem
sizes, just likes the previous studies [7,67]. Yet, quantum computers evolve steadily
and we are hopeful that the problems we could solve will only grow with time.

Looking forward. Q-FWAL leaves ample room for future works. First, a plethora
of QCV methods concerned with constraint satisfaction can benefit our approach.
Using our algorithm to ensure constraints other than permutations (especially
inequalities like partial permutations) is a future study. We would also like to
deploy our algorithm in training vector-output RELU networks [64].
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