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6 Appendix

6.1 Validity of Eq. (14)

In the iterative process (13) that solves the problem (9a), it is formed by the
alternating iteration of two points: rt and xt. In Eq. (13a) (which is always called
the gradient descent step), the step size β is always chosen from (0, 1

Lf
] [14][4][6],

where f(x) = 1
2 ∥y −Ax∥22 and Lf is the smallest Lipschitz constant of ∇f(x).

Indeed, Lf = ∥A∥22, where ∥A∥2 is the spectral norm of A. From Eq. (13a), we
can observe that rt − xt−1 = βAT

(
y −Axt−1

)
, which implies∥∥rt − xt−1

∥∥2
2
= β

∥∥AT
(
y −Axt−1

)∥∥2
2

(29a)

≤ β
∥∥AT

∥∥2
2

∥∥y −Axt−1
∥∥2
2

(29b)

= β ∥A∥22
∥∥y −Axt−1

∥∥2
2

(29c)

≤ 1

Lf
∥A∥22

∥∥y −Axt−1
∥∥2
2

(29d)

=
∥∥y −Axt−1

∥∥2
2
. (29e)

As the problem (9a) is convex provided Ψ is a linear operator, the PGD (prox-
imal gradient descent) algorithm (which is the iterative process (13)) is global-
convergence [4][3]. Let x̄ = lim

t→∞
xt−1, by inequality (29), we have

lim
t→∞

∥∥rt − xt−1
∥∥
2
≤ ∥y −Ax̄∥2 . (30)

On the other hand, if the penalty coefficient λ of problem (9a) is small enough,

the magnitude of the regularization term λ
∑n

i=1
|xi|

(|c̄i|+εi)
1−q is smaller than

f(x) = 1
2 ∥y −Ax∥22. This implies the optimal solution x̄ to the problem (9a)

leads to a relatively small value 1
2 ∥y −Ax̄∥22. In other words, if λ is small enough,

by inequality (30), we can validate Eq. (14) as

r̄ = lim
t→∞

rt ≈ lim
t→∞

xt−1 = x̄. (31)

Moreover, the two points rt and xt−1 are close if t is sufficiently large, β ∈
(0, 1

Lf
], and λ is sufficiently small. Under the circumstance, instead of choosing

c̄ = xt as the solution to the problem (9b), the approximation

c̄ ≈ rt, (32)

where rt is the iterative point of the proximal gradient descent algorithm that
solves the problem (9a), is adopted. The benefits of using the approximate op-
timal solution instead of the exact optimal solution to problem (9b) will be
described in Sec. 3.3.
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Fig. 5: The flowchart of QISTA-ImageNet. The sensing is the operation y =
A · vec (X0), where vec(X0) is a vector representation of an image X0. The
initial solution is obtained from Eq. (28). The descent direction corresponds to
Eq. (27a). The shrinkage corresponds to the operator η (·; γt) in Eq. (27b).

6.2 Flowchart of QISTA-ImageNet

Fig. 5 illustrates the structure of QISTA-ImageNet.

6.3 Training Details

We adopted a similar training setting with SCSNet [31] (and CSNet+ [32]) in that
the measurement matrix A is operated on the image block with size 32×32. Thus,
certain pre-processing and post-processing are required in Step 2 of QISTA-
ImageNet. In Step 2, the input has a size of 64×64× b, where 64×64 is the size
of a patch of training data and b is the training batch size. The pre-processing
and post-processing in this step are as follows. To simplify the discussion, here
we suppose the batch size b = 1.

1. Pre-processing: As the operator A is unfolded by A ∈ Rm×1024 (the measure-
ment rate is m

1024 ) and the input xt−1 has a size of 64× 64, we first divided
the patch xt−1 into 4 blocks, each of which has a size of 32 × 32. Next,
we vectorized each block into a vector-form R1024 (here we have four vec-
tors: x1, x2, x3, x4) and obtained the measurement vectors yi = Axi ∈ Rm,
i = 1, 2, 3, 4. The input size change during pre-processing can be summarized
as

64× 64
divide−−−−−→ 32× 32× 4 → 1024× 4

A−→ m× 4. (33)

2. Post-processing: For the operator B, as y−Axt−1 ∈ Rm×4 and B is unfolded
by AT ∈ R1024×m, we have B

(
y −Axt−1

)
∈ R1024×4. After being operated
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by B, we reverse the pre-processing that we performed before A, which leads
the results back into the patch form of size 64 × 64. The input size change
during post-processing can be summarized as

m× 4
B−→ 1024× 4 → 32× 32× 4

merge−−−−−→ 64× 64. (34)

The pre-processing in Eq. (33) and post-processing in Eq. (34) reduce the
memory usage of the measurement matrix A. When an image is sensed by A
with the measurement rate r0, r0 is fixed regardless of whether the image block
size is 64× 64 or 32× 32, but the required storage usage for A is different. For
example, if the size of a patch is 64 × 64, A has a size of m × 4096, whereas if
the size of a patch is 32× 32, A has a size of m× 1024.

During training, we adopted the Adam optimizer [21] with a learning rate of
0.0001. The network was trained for 120 epochs with a batch size of 64.

6.4 More Recovery and Visual Results in Sec. 4.3

As having been described in Sec. 4.3, we show more recovery (Table 4, Table
5, and Table 6) and visual results (Figure 6, Figure 7, and Figure 8) here.
The SOTA methods used for comparisons with our method (QISTA-ImageNet)
include ReconNet [22], [1], MS-CSNet [30], DR2-Net [19], {0, 1}-BCSNet [32]1,
{−1,+1}-BCSNet [32]2, CSNet+ [32]3, SCSNet [31], AMP-Net-9-BM [43], and
OPINE-Net+ [41].

Table 4: Average PSNR (dB) and SSIM comparisons of different methods with
various measurement rates (MRs) on Set5.
Set5 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MR 40% 20% 10% 5% 1%

[22] - - - - 25.98 0.734 - - - -
[1] - - 34.55 0.939 31.31 0.894 - - - -
[30] - - 36.26 0.950 32.82 0.909 - - - -
[19] - - - - 27.79 0.798 - - - -
[32]1 38.24 0.967 32.31 0.898 29.99 0.851 28.57 0.816 23.79 0.636
[32]2 38.62 0.964 35.24 0.939 32.20 0.898 29.39 0.840 24.07 0.645
[32]3 40.11 0.974 36.05 0.948 32.59 0.906 29.74 0.849 24.18 0.648
[31] 40.44 0.976 36.15 0.949 32.77 0.908 29.74 0.847 24.21 0.647
[43] 40.95 0.975 36.88 0.950 33.42 0.914 29.82 0.853 23.48 0.652
[41] 39.56 0.972 35.57 0.947 33.77 0.924 28.89 0.854 22.95 0.621
Ours 41.63 0.977 37.25 0.953 33.85 0.919 30.38 0.863 23.64 0.650

6.5 Ablation Study on Dictionary in Sec. 3.4

In this paper, the dictionary Ψ and its “left-inverse” Ψ̃ are adopted from Eqs.
(22) and (23), respectively. Here we conducted a comparison with the dictionary
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Table 5: Average PSNR (dB) and SSIM comparisons of different methods with
various measurement rates (MRs) on Set14.
Set14 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MR 40% 20% 10% 5% 1%

[22] - - - - 24.18 0.640 - - - -
[1] - - 31.21 0.885 28.54 0.814 - - - -
[30] - - 32.26 0.896 29.29 0.820 - - - -
[19] - - - - 24.38 0.706 - - - -
[32]1 34.52 0.938 29.25 0.816 27.36 0.756 26.09 0.694 22.48 0.553
[32]2 34.81 0.934 31.55 0.880 28.78 0.805 26.67 0.724 22.74 0.562
[32]3 36.16 0.950 32.15 0.894 29.13 0.817 26.93 0.733 22.83 0.563
[31] 36.54 0.953 32.19 0.895 29.22 0.818 26.92 0.732 22.87 0.563
[43] 37.44 0.956 33.17 0.902 29.92 0.831 27.25 0.744 22.79 0.575
[41] 36.08 0.952 31.74 0.899 29.98 0.841 26.13 0.740 22.48 0.555
Ours 38.10 0.959 33.54 0.906 30.26 0.835 27.75 0.753 22.83 0.571

Table 6: Average PSNR (dB) and SSIM comparisons of different methods with
various measurement rates (MRs) on BSD100.
BSD100 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MR 40% 20% 10% 5% 1%

[30] - - 31.15 0.874 28.61 0.786 - - - -
[32]1 33.41 0.928 28.65 0.785 27.05 0.722 26.04 0.658 23.49 0.541
[32]2 33.67 0.925 30.50 0.855 28.21 0.770 26.55 0.689 23.70 0.547
[32]3 34.91 0.944 31.05 0.872 28.53 0.783 26.78 0.698 23.76 0.548
[31] 35.21 0.947 31.10 0.873 28.57 0.784 26.77 0.697 23.78 0.548
[43] 35.76 0.949 31.58 0.878 28.87 0.792 26.78 0.702 23.42 0.553
[41] 34.03 0.943 30.09 0.873 28.83 0.803 25.47 0.695 23.03 0.529
Ours 36.07 0.951 31.84 0.880 29.07 0.794 27.09 0.708 23.59 0.551

design in ISTA-Net [40], which is expressed as:

Ψ ′ = C′
1 ◦ ReLU ◦ C′

0 (35)

and
Ψ̃ ′ = C′

3 ◦ ReLU ◦ C′
2 (36)

where all C′
is, i = 0, 1, 2, 3 are convolutional operators. Table 7 shows that the

pair (Ψ and Ψ̃) obtaines better recovery results than the pair (Ψ ′ and Ψ̃ ′) in all
testing datasets described in Sec. 4.3 under a range of measurement rates.
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(a) “Parrots” in dataset
Set11

(b) ground-truth (c) CSNet+ (d) SCSNet

(e) AMP-Net-9-
BM

(f) OPINE-Net+
(g) QISTA-
ImageNet

Fig. 6: Reconstruction result of (c) CSNet+, (d) SCSNet, (e) AMP-Net-9-BM,
(f) OPINE-Net+, and (g) QISTA-ImageNet with 10% measurement rate.

(a) “barbara” in dataset
Set14

(b) ground-truth (c) CSNet+ (d) SCSNet

(e) AMP-Net-9-
BM

(f) OPINE-Net+
(g) QISTA-
ImageNet

Fig. 7: Reconstruction result of (c) CSNet+, (d) SCSNet, (e) AMP-Net-9-BM,
(f) OPINE-Net+, and (g) QISTA-ImageNet with 10% measurement rate.
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(a) “ppt3” in dataset Set14

(b) ground-truth (c) CSNet+ (d) SCSNet

(e) AMP-Net-9-
BM

(f) OPINE-Net+
(g) QISTA-
ImageNet

Fig. 8: Reconstruction result of (c) CSNet+, (d) SCSNet, (e) AMP-Net-9-BM,
(f) OPINE-Net+, and (g) QISTA-ImageNet with 10% measurement rate.

Table 7: Ablation study on the dictionary design in terms of recovery perfor-
mance. MR represents the measurement rate.

MR
Dataset Set11 BSD68 Set14 BSD100

Dictionary PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Ψ & Ψ̃
1%

21.30 0.5717 22.39 0.5347 22.83 0.5712 23.59 0.5506

Ψ ′ & Ψ̃ ′ 21.19 0.5646 22.36 0.5312 22.75 0.5657 23.57 0.5472

Ψ & Ψ̃
4%

26.07 0.7869 25.43 0.6773 27.01 0.7254 26.52 0.6816

Ψ ′ & Ψ̃ ′ 25.74 0.7757 25.16 0.6713 26.64 0.7167 26.26 0.6763

Ψ & Ψ̃
10%

30.01 0.8853 28.06 0.7949 30.26 0.8347 29.07 0.7942

Ψ ′ & Ψ̃ ′ 29.62 0.8799 27.86 0.7896 29.98 0.8294 28.88 0.7892

Ψ & Ψ̃
25%

35.41 0.9529 32.03 0.9067 34.82 0.9257 32.97 0.9050

Ψ ′ & Ψ̃ ′ 34.97 0.9498 31.78 0.9033 34.49 0.9223 32.72 0.9014

Ψ & Ψ̃
30%

36.64 0.9618 33.08 0.9255 35.94 0.9397 34.02 0.9240

Ψ ′ & Ψ̃ ′ 36.17 0.9593 32.83 0.9224 35.56 0.9361 33.76 0.9209

Ψ & Ψ̃
40%

38.84 0.9734 35.15 0.9520 38.10 0.9585 36.07 0.9508

Ψ ′ & Ψ̃ ′ 38.53 0.9722 34.92 0.9503 37.82 0.9569 35.83 0.9490

Ψ & Ψ̃
50%

40.87 0.9820 37.19 0.9690 40.09 0.9709 38.09 0.9684

Ψ ′ & Ψ̃ ′ 40.59 0.9806 36.94 0.9678 39.73 0.9692 37.84 0.9668


