
Domain Generalization by Mutual-Information
Regularization with Pre-trained Models –

Appendix

Junbum Cha1, Kyungjae Lee2, Sungrae Park3, and Sanghyuk Chun4

1 Kakao Brain 2 Chung-Ang University
3 Upstage AI Research 4 NAVER AI Lab

junbum.cha@kakaobrain.com, kyungjae.lee@ai.cau.ac.kr,

sungrae.park@upstage.ai, sanghyuk.c@navercorp.com

A Derivation of Lower Bound

Assumption 1 The variational distribution q(·|z) satisfies the regularity con-
dition such that, for any PX|z ∈ {P′

X|z | EX|z[|X|2] < ∞},

EX|z [(∇x log q(x|z)|x=X)
⊺ ∇x log q(x|z)|x=X ] < ∞, (7)

where EX|z is a conditional expectation of X given z.

Remark 1. Note that the Gaussian distribution used in our implementation sat-
isfies the regularity condition. To check the regularity condition of Gaussian
distribution, we first compute the gradient as follows,

∇x log q(x|z)|x=X (8)

= ∇x

(
C +

1

2
log |Σ(z)|+ 1

2
(x− µ(z))⊺Σ(z)−1(x− µ(z))

)
|x=X (9)

= Σ(z)−1(X − µ(z)). (10)

Hence, we get,

EX|z [(∇x log q(x|z)|x=X)
⊺ ∇x log q(x|z)|x=X ] (11)

= EX|z
[
(X − µ(z))⊺Σ(z)−2(X − µ(z))

]
< ∞. (12)

since µ(z) and Σ(z) are finite and EX|z[|X|2] is bounded. Hence, the Gaussian
distribution satisfies the regularity condition.

Under the assumption of q, we derive the lower bound.

Proof (Derivation of the Lower Bound). Based on the regularity condition, we
derive the lower bound of the term, EZf∗ ,Zf

[log q(Zf∗ | Zf )]. Before starting the
derivation, let us define d2,∞(f, g) := supx ∥f(x)− g(x)∥2. Then, the derivation
starts from Taylor’s theorem for a differentiable multivariate function. From
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Taylor’s theorem, there exists a point c such that c = tx + (1 − t)x0 for some
t ∈ [0, 1] and the following equality holds,

log q(x | y) = log q(x0 | y) +∇x log q(x | y)|⊺x=c(x− x0). (13)

Then, we can derive the following upper bound as follows,

log q(x | y) = log q(x0 | y) +∇x log q(x | y)|⊺x=c(x− x0) (14)

≤ log q(x0 | y) + |∇x log q(x | y)|⊺x=c(x− x0)| (15)

≤ log q(x0 | y) + ∥∇x log q(x | y)|x=c∥2 ∥x− x0∥2 (16)

By using this bound, we can derive the following lower bound,

EZf∗ ,Zf
[log q(Zf∗ | Zf )] = EX,X′ [log q(f∗(X) | f(X ′))] (17)

≥EX,X′
[
log q(f0(X) | f(X ′))

]
− EX,X′

[
∥∇ log q(c(X) | f(X ′))∥2

∥∥f0(X)− f∗(X)
∥∥
2

]
(18)

≥EX,X′
[
log q(f0(X) | f(X ′))

]
− EX,X′ [∥∇ log q(c(X) | f(X ′))∥2] d2,∞(f∗, f0) (19)

≥EZf0 ,Zf

[
log q(Zf0 | Zf )

]
− Cd2,∞(f∗, f0), (20)

where c(x) is the function between f0 and f∗, which selects the point satisfying
Taylor’s theorem, and C is a constant derived from the regularity condition.

B Additional Implementation Details

B.1 Hyperparameter tuning

We split the hyperparameters (HPs) into two groups: algorithm-specific HPs and
algorithm-agnostic HPs. The algorithm-agnostic HPs consist of batch size, learn-
ing rate, dropout, and weight decay, and MIRO has only one algorithm-specific
HP, λ. To reduce the computational cost, we tune the algorithm-specific HPs
and algorithm-agnostic HPs independently. We first search algorithm-specific
HPs with default algorithm-agnostic HPs, then search algorithm-agnostic HPs
with the tuned algorithm-specific HPs. That is, the λ is searched in [1.0, 0.1,
0.01, 0.001] with the batch size of 32, the learning rate of 5e-5, no dropout, and
no weight decay. Then, we search algorithm-agnostic HPs with the searched λ
following Cha et al . [3]. They propose reduced HP search space for efficiency
compared to DomainBed [5]. The protocol searches the learning rate in [1e-5,
3e-5, 5e-5], dropout in [0.0, 0.1, 0.5], and weight decay in [1e-4, 1e-6]. The batch
size per domain is fixed to 32. Since MIRO is a regularization method, we add
a case of no weight decay.

Even though we use the efficient HP search protocol, it still requires heavy
computational resources. Therefore, we tune λ only for the non-main experi-
ments, including combination with SWAD, combination with various pre-trained
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backbones, and the case study on Camelyon17. Also, we use the batch size of
16 for SWAG [10] due to the GPU memory limitation. Note that there is room
for further performance improvement by intensive HP tuning and additional us-
age of GPU memory, considering the simplified HP search protocol and limited
computational resources.

B.2 Implementation details

The variance encoder is initialized to estimate the variance of 0.1. It is chosen by
observing the convergence point of the variance. Softplus function is employed
to ensure non-negativity of the variance. Also, we empirically apply the 10 times
larger learning rate for the mean and variance encoders than the feature extractor
and the classifier.

B.3 Mutual information estimation

In Section 2.2, we estimate the mutual information using Mutual Information
Neural Estimator (MINE) [1]. The mutual information is estimated by MINE as
follows:

̂I(Zf∗ ;Zf ) = sup
θ∈Θ

EPZf∗Zf
[Tθ]− log

(
EPZf∗⊗PZf

[
eTθ

])
. (21)

For the features Zf∗ and Zf , the features after global average pooling are
uniformly collected by domains. The statistics network, Tθ, consists of two hidden
linear layers with 512 dimensions and ELU activation functions, following [1].
In the case of fine-tuning, such as ERM−, ERM+, and MIRO, the models are
trained as many as the number of target domains. Therefore, we estimate the
mutual information for each model and report their average value.

C Additional Analysis and Discussion

C.1 Variations on the assumptions of domain generalization

Table 5: Performances of class-conditional MIRO.

Algorithm PACS VLCS OfficeHome TerraInc Avg.

ERM 84.2±0.1 77.3±0.1 67.6±0.2 47.8±0.6 69.2

MIRO 85.4±0.4 79.0±0.0 70.5±0.4 50.4±1.1 71.3

C-MIRO 85.3±0.5 78.5±0.5 70.8±0.3 49.4±0.3 71.0

In general, domain generalization (DG) assumes that there are multiple
source domains, source domain labels are available, and the same input has
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the same label between source and target domains. Here, we can make the vari-
ations on the problem settings by changing the assumption. Single-source DG
does not assume the multiple source domains [3, 4]. Several studies try to solve
DG problem without domain labels [2, 3, 8]. Heterogeneous DG deals with the
label set shift, i.e., the same input can have different labels between source and
target domains [7,11]. In this task, it is assumed that a classifier is learnable in
the target domain and the methods focus on the feature extractor. The proposed
method exploits pre-trained models instead of assuming available multiple source
domains or source domain labels, and focuses on the feature extractor instead
of the classifier. Therefore, MIRO is directly applicable to single-source DG, DG
without domain labels, and heterogeneous DG problems. On the other hand,
we can consider a more specific type of distribution shift. In this case, we may
need a different mutual information (MI) strategy. For example, we can employ
class-conditional MI for class-conditional distribution shift (C-MIRO) by using
I(Zf∗ ;Zf |Y ) instead of I(Zf∗ ;Zf ). In Table 5, C-MIRO achieves comparable
scores with MIRO and outperforms ERM even though the problem setting is
not class-conditional. From the results, we believe that MIRO can be adapted
to other distribution shifts by choosing the proper MI strategy.

C.2 The relationship between mutual information and domain
generalization performance

Table 6: Average accuracies of ERM−, ERM+, and MIRO in PACS. ERM−
and ERM+ indicate ERM without and with pre-trained model, respectively.

Pre-trained model ERM− ERM+ MIRO

ResNet-50 (ImageNet) 51.6 84.2 85.4

RegNet-16GF (Instagram-3.6B) 51.5 89.6 97.4

Our method assumes that knowledge of the oracle model helps domain gen-
eralization and it is transferable to the target model by maximizing mutual
information (MI). These assumptions are quite intuitive, but there is no the-
oretical guarantee that MI with the oracle model is directly correlated with
DG performance. Empirically, we observe that a high MI model shows better
DG performance if the empirical loss constraint of Equation (2) holds; the pre-
trained model itself has high MI but does not satisfy this constraint. In the
main text, Figure 1 shows the rankings of MI for ERM−, ERM+, and MIRO
are in order. Table 6 shows that the rankings are the same for accuracies: ERM−
(51.6%), ERM+ (84.2%), and MIRO (85.4%) in ImageNet pre-trained ResNet
and ERM− (51.5%), ERM+ (89.6%), and MIRO (97.4%) in Instagram-3.6B
pre-trained RegNet, respectively.
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D Additional Results

D.1 Visual comparison between ImageNet and Camelyon17

(a) ImageNet (pre-train) (b) Camelyon17 (fine-tuning)

Fig. 4: Example images of ImageNet and Camelyon17. Large distribution shift
occurs between pre-training (ImageNet) and fine-tuning (Camelyon17). ImageNet is a
multiclass objective recognition task and Camelyon17 is a binary classification task for
reading whether the image contains tumor tissue. Instagram-3.6B examples are omitted
since it is not publicly available.

Figure 4 shows a huge visual gap between pre-training (ImageNet) and fine-
tuning (Camelyon17) datasets. The tasks are also different; ImageNet is an ob-
ject recognition task and Camelyon17 is a binary classification of breast cancer.
Despite the large gap between pre-training and fine-tuning distribution, the pro-
posed method shows consistent performance improvement (See Table 4 in the
main text).

D.2 Relationship between the pre-training scale and the intensity
of the mutual information regularization

In this section, we provide the extended results of Figure 3 in the main text.
Figure 5 shows the additional comparison of three pre-trained backbones accord-
ing to λ about OfficeHome, TerraIncognita, and DomainNet. The comparisons
show similar trends with the results in PACS. ImageNet pre-trained backbone,
such as ResNet-50 pre-trained in ImageNet [6], has a negative correlation be-
tween the performance difference and λ in some target domains. Large-scale
pre-trained backbones, such as SWAG [10] and CLIP [9], tend to consistently
make significant performance improvements at high λ and become less sensitive
to the choice of λ.
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(b) TerraIncognita
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Fig. 5: Comparison of three pre-trained models according to λ. Y-axis indicates
the performance difference of MIRO to ERM. λ is the intensity of the mutual informa-
tion regularization. We compare three models: ResNet-50 pre-trained in ImageNet [6],
RegNetY-16GF pre-trained by SWAG [10], and ViT-B pre-trained by CLIP [9].
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