Bayesian Optimization with Clustering and Rollback for CNN Auto Pruning (Supplementary Material)

Hanwei Fan^{1,2}, Jiandong Mu², and Wei Zhang²

¹ The Hong Kong University of Science and Technology (Guangzhou) ² The Hong Kong University of Science and Technology {hfanah,jmu}@connect.ust.hk, wei.zhang@ust.hk

1 Analysis of the Choice of C^*

This document support our paper by providing a detailed analysis of the choice of the bridge stage C^* on MobileNetV2.

In this experiment, we divide the layers into 6 clusters and then perform the gradual rollback with different C^* . Table 1 shows the top-1 mean and variance the results. Our proposed gradual rollback method consistently outperforms the direct rollback method, showing its superiority. Although the results of different choices of C^* are slightly different, the performance is fairly robust when the choice of C^* is reasonable. Based on our experience, we recommend choosing C^* to be 2.5 times the cluster number C. Note that if the recommended C^* is larger than the original dimensionality N, there should be no need to use gradual rollback as N is not high enough.

C^*	top-1 m	top-1 σ
12	52.89	0.77
13	52.89	0.75
14	53.02	0.94
15	53.01	0.88
16	52.97	0.97
17	52.96	0.89
Direct	52.86	0.61

Table 1: Performance of different choices of C^* .