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A Implementation Details

Inference Time. The run-time of our method depends on the number of used
color proposals. Fig. 14 shows that already 3 proposals yield almost maximal
PSNR scores (ours fast). Our unoptimzed PyTorch code takes approximately
1.75 seconds per frame (DAVIS, 854x480) on a NVIDIA Titan RTX. Approx-
imately 1.2 seconds are spent in color proposal generation (fast = 3x local +
3x global proposals + 12 RAFT iterations) and roughly 0.55 seconds are spent
in our unrolled refinement optimization (12 iterations) with our learned reg-
ularizer. Thus, our model takes roughly 4.3 s/MPixel, which is slightly faster
than the 5.4 s/MPixel reported by DVCP [11]. With an additional CUDA sam-
pling operator (not in main paper but on github), the inference can be improved
from 1.75 to approximately 1 seconds with similar qualitative results. Since the
feature matching and motion estimation can be precomputed once for a whole
sequence, the 0.55 seconds become the relevant part if our model is used by a
human operator in an interactive way. Page 5 provides another example of how
user input can be easily integrated into our model after training.

PSNRab. In literature, evaluation metrics are computed quite differently, e.g. dif-
ferent color spaces are considered or not mentioned at all [7,11], or some report
averages over the first t time steps [11] vs. reporting at time step t [15], and there
are also non-negligible implementation differences, which unfortunately prevent
direct comparisons of values reported across papers. We therefore identically re-
evaluated all models from their public sources on the all datasets described in
the main paper. For each time step t we compute PSNRab– the PSNR of the
chrominance ab channels of the CIE-Lab space, as luminance is kept fixed. Since
the ab-space Ωabcontains negative values, one needs to take these into account
when computing the maximum signal range. This leads to the PSNRab formula

PSNRab(I1, I2) = 10 log10
(
diam(Ωab)2

)
− 10 log10

(
1

2Np
∥Iab1 − Iab2 ∥22

)
, (14)

where we compute diam(Ωab) := max{maxx,y∈Ωa ∥x−y∥,maxx,y∈Ωb ∥x−y∥} ≈
202.3354 as the maximal diameter of the Ωab-colorspace for converted 3x8Bit-
PNG images. Furthermore, we want to raise awareness, that using uint8 for the
non-linear Lab conversion leads to a reduction of the unique ∼16.7 Mio RGB
colors to ∼2.1 Mio Lab colors, which affects PSNR computation. Thus, floating
point datatypes are required for PSNR in CIE-Lab space.
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Occlusion estimation for PSNRaboccl. We estimate occlusions masks Mo be-
tween frames using the heuristic of UnFlow [10, Eq. 1]

Mo =
∣∣∣mf

M +warp
(
mb

M ,mf
M

)∣∣∣2 < 0.01

(∣∣∣mf
M

∣∣∣2 + ∣∣∣warp(mb
M ,mf

M

)∣∣∣2)+ 0.5

(15)

based on the optical flow (using RAFT [14] with 20 iterations) between the

groundtruth color frames in forward mf
M and backward mb

M direction. Since the
occluded regions accumulate over time, we also accumulate the motion compen-
sated (warped) occlusion masks with the current occlusion masks, performing a
pixelwise logic or operation ⊕, i.e.

M̃ t
o = M t

o ⊕ warp
(
M̃ t−1

o ,mb
M

)
. (16)

As can be seen in Fig. 13, the accumulated occlusion masks M̃ t
o represent im-

age regions that have been occluded over time. Then, the PSNRab for occluded
pixels is computed by considering the areas defined by the accumulated occlu-
sion mask M̃ t

o. Note that we exclude frames with 0 occluded pixels, where the
PSNRab is undefined.
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Fig. 13. Example of the occlusion estimation process used for the computation of
PSNRab occl. Here, M t

o shows occlusions between frames and M̃ t
o their accumulation.

TDV and W- structure and details For the TDV, we use one macroblock, 3
scales, 32 feature channels, and tanh non-linearities as we also use for W. How-
ever, for the TDV we additionally use the standard zero-mean constraints and
student-t as final activation function for the energy.

To ensure the pixel-wise constraints for the fusion weights {uG,uL,uM ,u0},
as well as the weights steering the refinement {vG, vL, vM , v0}, we use a pixle-
wise softmax for both groups, where v0 and u0 are additional pixelwise weights,
allowing the sum of the other masks (G,L,M) to be ≤ 1. For vR we use a sigmoid
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function. Hence, WeightNet W can independently adjust the initial fusion, as
well as the dataterms, and the regularization strength form 0− 100%, and also
shift the balance between each type (G,L,M) based on the image data.

Training For training, we follow [12] using the ADAM optimizer [8] with β1 =
0.5, β2 = 0.9 for 400 epochs and an initial learning rate of 10−4, halving it after
100, 150, 200, 250 and 300 epochs. To account for the different distribution of
gradient norms between the convolution kernel parameters, biases, and the scalar
parameters, i.e. step size τ or balancing weight λ), we used a 500 times larger
learning rate for the scalar parameters.

Background on the historic scene data The historic Western scene is from the
movie ’Go West’[2] by Buster Keaton from 1925, and hence already in public
domain, as also stated on the official homepage1. The theater sequence from
ARRI [1] is dated even earlier (1902) and also in the public domain. We hereby
express our gratitude to the data providers.

B Further ablations

Ablation of Backbones. Prior to the development of the full method we ran
ablations on various pre-trained CNN backbones using an early variant of our
global matching algorithm, as can be seen in Table 1.

Inst.Norm Levels Task Backbone frame: 1.0 5.0 10.0 15.0 20.0 24.0

Gray baseline 25.24 25.30 25.40 25.36 25.54 25.53

✗ 4 Class. ResNet101 [4] 32.32 28.92 28.16 27.77 27.64 27.49
✗ 4 Flow ResNet (from RAFT [14] ) 38.14 33.26 31.59 30.39 29.70 29.20
✗ 4 Segm. ResNet101 (from DeeplabV3 [3]) 37.92 32.86 31.50 30.42 29.93 29.67
✗ 4 Class. VGG16 [13] 39.47 34.23 32.96 31.70 31.17 30.79
✗ 4 Class. VGG16BN [13] 40.48 35.31 33.62 32.65 31.97 31.33

✓ 4 Class. ResNet101 [4] 32.17 28.82 28.00 27.68 27.53 27.42
✓ 4 Flow ResNet (from RAFT [14] ) 38.42 33.53 31.80 30.59 29.93 29.39
✓ 4 Segm. ResNet101 (from DeeplabV3 [3]) 38.56 33.48 32.10 31.12 30.66 30.28

✓ 2 Class. VGG16 (2Levels) [13] 40.06 34.55 33.30 31.99 31.44 31.01
✓ 4 Class. VGG16 [13] 40.77 35.37 33.81 32.82 32.24 31.56
✓ 4 Class. VGG16BN [13] 41.18 35.80 34.03 33.12 32.42 31.72

Table 1. Performance of various pre-trained backbones for global matching, measured
in PSNRab over the DAVIS evaluation sequences.

For this evaluation, we computed a global matching with 8 proposals per pixel
and reduced them to a single best matching position m̂t

G per pixel according
to the extracted confidences. We then extracted the ab colors from the best

1 https://www.busterkeaton.org/gowest
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Fig. 14. Left: PSNRab gain vs. proposal count; Right: PSNRab gain vs. training frames

match per pixel, yielding a best color estimate ĉtG, which we compared against
the ground truth. Table 1 shows the result of this evaluation, conducted over
the validation dataset described in the main paper. Surprisingly, the simple
VGG16 architecture trained with batch normalization on ImageNet classification
outperforms the more recent ResNet architecture, even when using a ResNet
backbone trained for motion estimation RAFT [14].

For VGG16 we extracted the features right after the batchnorm layers, which
corresponds to the layers 1, 8, 15 and 25. These are basically the batchnorm layers
after the first convolution layers per resolution level. Additionally, we added one
experiment, where we did not refine iteratively on each of the 4 levels but just
once (2-Levels). For the VGG16 version without batchnorm, we again use the
output of the first convolutions per resolution level, but this time directly at the
convolution layer since there is no batchnorm layer (layers 0, 5, 10, 17).

For ResNet101-type networks, we also used the outputs of the first batchnorm
layers after downsampling. Additionally, we recompute the first conv layer with
a stride of 1 to also get high-resolution input features at full resolution.

Ablation on ‘color proposal count’. The left side of Fig. 14 shows the average
gain in PSNRab when changing the number of color proposals NL, NG, per pixel
and for local and global proposal types. The gain is computed over the whole
evaluation dataset for 24 frames. On average, the gain is roughly 0.3dB when
using untrained best local or global color proposals. But even after fusion, refine-
ment and training an average gain of 0.1dB remains when using at least three
proposals per pixel for both (local and global) color proposal types.

Ablation on ‘training frame count’. The right side of Fig. 14 shows the gain
in PSNRab vs. the amount of frame propagation augmentation NA used during
training. The PSNRab gain for later frames increases with higher amount of
training frame propagations. This confirms our qualitative findings that results
appear improved when more accumulated errors are also present during training.

Ablation on TDV iterations. Fig. 15 shows the improvements on PSNRab vs. dif-
ferent amounts of refinement iterations, when varying the number of refinement
steps after training. The diagram on the left shows, that performance improves
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Fig. 15. Gain in PSNRabv.s. number of TDV iterations on DAVIS-2017-val.

with more iterations, but saturates at around 8-12 iterations. The curves are
shown for different frames, revealing more PSNRabgain for earlier frames. The
images on the right provide a qualitative comparison for the same setup.

C Example of interpretable results with user interaction.

Fig. 16 gives an example on how our method allows to integrate user interactions
on the example of overriding the initial fusion decisions. The top row shows the
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Fig. 16. Example of possible integration of user interaction for a particular hard case.
Our method allows to override the weight masks (here shown for the initial fusion
masks u) to correct hard cases, even before the final refinement.

best color proposal per type for a very hard case for demonstration, as indicated
by the arrows. Due to large motion the appearance of the trousers changes so
much that parts of it now better match to the red pullover, which has a similar
grayscale appearance. Furthermore, even though the motion’s color proposal
would provide correct colors for that region, the motion is so large and complex
that W gets confused and trusts more on the colors from the local and global
color proposals. While such stain type artifacts also can happen in methods
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like DVCP if appearance similarity is misleading, we can show where each color
proposal comes from, allowing a user – if desired – to override a bad proposal
fusion already before our TDV refinement. Note that the weight masks U, which
simply represent the percentage of how much each proposal is used on a per
pixel level, is shown underneath the color proposal images.

The bottom row of Fig. 16, shows the result after an user interaction with
a simple GUI. This result was generated by letting a user draw strokes on the
motion mask (overlaid by the according proposal image). To keep the constraints
on the masks, we performed a simplex projection after each user input.

Such types of insights, and hence options to override network decisions are
also possible for other parts of the network, such as the dataterm and regular-
ization masks. Therefore our method can be used to fully automatic propagate
colors as well as integrated into tools with user interaction.

D Derivation of the proximal mapping for the multi-well
dataterm.

In what follows, we derive the proximal map for the multi-well dataterm. Let

Cγ,p =
{
cnγ,p

}Nγ

n=1
be a set of Nγ plausible color proposals per pixel p, of an

arbitrary type γ, and let D be a multi-well dataterm which is given by

D(x,Cγ) = λγ

NP∑
p=1

vγ,p min
c̃γ,p∈{cnγ,p}

Nγ
n=1

1

2
∥x− c̃γ,p∥22, (17)

where λγ is a non-negative scalar and vγ,p a pixelwise non-negative mask. Then
the proximal map for the dataterm is given by

proxτD( · ,Cγ))

(
x̄i
)
=

x̄i + τλγvγ ⊙ c̃iγ
1 + τλγvγ

, (18)

where c̃iγ denotes the pixelwise closest color proposal to x̄i in every iteration i. To
show this, we start by inserting τD into the definition of the proximal mapping

proxτD( · ,Cγ))

(
x̄i
)
= argmin

x

{
τD(x,Cγ) +

1

2
∥x− x̄i∥22

}
= argmin

x

{
τλγ

NP∑
p=1

vγ,p min
cγ,p∈{cnγ,p}Nγ

n=1

1

2
∥xp − cγ,p∥22 +

1

2
∥xp − x̄i

p∥22

}
. (19)

Since the function on the right-hand side of (19) is non-negative, lower semi-
continuous and coercive, the minimum x̂ is attained by the direct method of the
calculus of variations. Due to the multi-well structure, all Nγ possible n ∈ Nγ

proposals for the minimum need to be checked simultaneously. We therefore
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compute all possible minima {x̂n}Nγ

n=1 independently for all pixels and select the
one with the lowest dataterm energy. The individual optimization steps are:

0
!
= τλγvγ(x̂

n − cnγ ) + (x̂n − x̄i) (20)

= τλγvγ x̂
n − τλγvγc

n
γ + x̂k − x̄i (21)

⇒ x̂n =
x̄i + τλγvγc

n
γ

1 + τλγvγ
(22)

Using Nγ = {1, . . . , Nγ}, and inserting into the pixelwise version of the dataterm d
reveals the index np for the lowest energy per pixel p as follows:

np = argmin
n∈Nγ

d(x̂n
p , {cnγ,p}) (23)

= argmin
n∈Nγ

{
λγvγ,p

2
∥x̂n

p − cnγ,p∥22
}

(24)

= argmin
n∈Nγ

λγvγ,p
2

∥∥∥∥∥ x̄i
p + τλγvγ,pc

n
γ,p

(1 + τλγvγ,p)
− cnγ,p

∥∥∥∥∥
2

2

 (25)

= argmin
n∈Nγ

λγvγ,p
2

∥∥∥∥∥ x̄i
p − cnγ,p

(1 + τλγvγ,p)

∥∥∥∥∥
2

2

 (26)

= argmin
n∈Nγ

{∥∥x̄i
p − cnγ,p

∥∥2
2

}
. (27)

Hence, the index only depends on the initial distance between x̄i and the different
cnγ . However, there is still the possibility that multiple color proposals share the

same distance to x̄i. In this case, we choose the first proposal – since they are
ordered by confidence. Hence, we favor a single proposal over a color blending.
Using Eqn.(27), we select the best per pixel reference per iteration i as

c̃iγ,p = ci,np
γ,p with np = argmin

n∈Nγ

{∥∥x̄i
p − cnγ,p

∥∥2
2

}
. (28)

Combining the above results, the proximal mapping can be written as

proxτD( · ,Cγ))

(
x̄i
)
=

x̄i + τλγvγ ⊙ c̃iγ
1 + τλγvγ

, (29)

using the Hadamard product ⊙ with broadcasting along color channels, and the
simplification that c̃iγ uses the best proposal for each pixel location. Here, we

also denote the i subscript, to clarify that this has to happen in every iteration!
To combine the global and local multi-well dataterms with the standard

motion dataterm we use the following approximation

proxτD
(
x̄i
)
=

x̄i + τ
∑

γ∈{M,G,L} λγvγ ⊙ c̃iγ

1 + τ
∑

γ∈{M,G,L} λγvγ
, (30)
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which generalizes the individual proximal mappings and follows a similar deriva-
tion. It is an approximation for efficiency, as it assumes that the different dataterms
are independent and neglects jumps among different minimizers. Therefore, each
multi-well color proposal’s best index per pixel can be efficiently precomputed,
only considering the distance to the initial starting point x̄i. For all cases, where
this index does not change if the dataterms are used independently or jointly,
the approximation is also exact. Note that the best color proposal can change
freely between the different iteration of the optimization scheme.

E User Evaluation details

We conducted a user evaluation asking 30 people to rank different color propa-
gation methods. As input we use real color videos from DAVIS, where we use the
initial color frame as reference, and convert the remaining frames to gray before
passing them to the different color propagation methods to restore the colors.
During the rating process the user sees the results from the methods side-by-side
simultaneously as synchronized videos, next to the initial real color frame. The
spatial ordering of the methods changes randomly for each sequence, and the
sequence is shown in a loop until the user finishes the rating and continues to
the next sequence. All users were using the same PC setup and similar lightning
conditions. The group consisted of only non-color blind people, with 23 males
and 7 females, and ages ranging from 24 to 38 years with a mean age of 30.0
years. All users where asked for their consent in written form and provided with
information on how the data will be used, and how they can opt out if desired.

The Tables 2 show the percentage of the ranks (Top 1=best, Top 3=worst)
and the average rank over all sequences of each dataset and over all users.
Since we do not have access to DVCP results for DAVIS-2017-test we use Deep-
Remaster as the next best alternative. As can be seen, our method is ranked
best 73.6% of the time for DAVIS-2017-val and 69.3% for DAVIS-2017-test. This
greatly outperforms all competing methods, also on average rank.

rank DVCP DEB LVVCP (Ours)

Top 1 9.3% 17.1% 73.6%
Top 2 26.9% 53.3% 19.8%
Top 3 63.8% 29.5% 6.7%

Avg rank 2.5± 0.7 2.1± 0.7 1.3 ± 0.6

rank DeepRemaster DEB LVVCP (Ours)

Top 1 2.5% 28.3% 69.3%
Top 2 6.7% 65.4% 27.9%
Top 3 90.9% 6.3% 2.8%

Avg rank 2.9± 0.4 1.8± 0.5 1.3 ± 0.5

Table 2. User Evaluation - Average Ranks on DAVIS-2017-val (Left) and DAVIS-
2017-test (Right). On average, our method is the Top 1 choice of the users.

F Limitations, assumptions, corner cases

Color propagation vs. colorization Our method is designed for faithful color prop-
agation from a reference and puts focus on keeping details and minimizing color
drift. Colorization of new objects with very different appearance than provided
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Fig. 17. Failure Case comparison: Fixed zoom in on the soapbox sequence to reveal
failure cases. Semantic similarity matching allows us to propagate color to the ini-
tially occluded second knee and the crowd in the background, while refinement reduces
bleeding and artifacts.

in any of the references (global or previous frame) is not a main application.
However, as our method allows to integrate multiple color proposals, a possible
future extension could investigate the inclusion of color proposals for new ob-
jects from a pure colorization technique. Likewise, our method could easily be
extended to add additional references - similar to the 2 reference example - but
only for regions that contain new objects entering the scene.

Large untextured regions with different colors. Like most color propagation and
colorization methods, our method relies on the gray image. If the reference image
features different colors in regions that are hard to distinguish in the gray image,
our method, like most methods can get confused. To remedy such problems,
future work could focus on regularizers with larger receptive fields in combination
with special losses such as spatial smoothness and adversarial training.

Failure case comparison - with and without appearance changes. As color prop-
agation is a very ill-posed task, quality of all current methods decreases over
distance to the reference, as indicated by the PSNR curves. Here, we investigate
different failure cases of the best methods on the example of the moving objects
in the soapbox sequence. While the first part shows how our method is very
well able to handle e.g. disocclusions if reasonable references are present, the
second part compares how our method and the baselines start to struggle as the
appearance changes become larger.

Fig.17 shows the first half of the sequence. Up to frame 10 all methods
propagate well. In frame 13 the people with blue and red shirts of the small
crowd in the background are fully occluded and become dis-occluded from frame
15 onward. Our method is the only one that can recover the colors of these
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Fig. 18. Failure Case comparison: Fixed zoom in on the soapbox sequence to reveal
failure cases - hard cases. We show more temporal stability, while keeping more regions
colored; See text for detailed description.

details, although they are visible in the global reference. Also visible from frame
15 onward is a loss of color in DVCP, and a color drift in DEB due a lack of
temporal consistecy as reported in [5, arXiv Appendix F. Fig. 16]. The latter is
visible, e.g., on the helmet turning red or the arms and knees and shirts turning
blue. In contrast, our method manages to keep these details colored faithfully. In
addition, we manage to colorize the initially occluded second knee of the man on
the back of the soapbox, as it is similar to the reference and the other foot in the
previous frame. This highlights the ability of our model to colorize new objects
provided that they are similar to other objects in the previously colorized frame
or the global reference frame.

Next, we focus on the harder cases shown in Fig. 18. DVCP has already lost
most colors and further fades out. DEB still has colors, but red and blue tones
are bleeding onto the shirt and the soapbox. Also some regions drift back and
forth between red and blue such as the original blue disc on the left with the
donkey head, or between gray and red such as the helmet and the head. While
we keep such regions that are visible in the previous frame colorized, there is
also an interesting failure case of our method on the knees of the rider in the
back. After being hidden in frame 30, the knees gradually appear in frame 33/35
where our method sees more similarity to the close by blue stick, than to the
initial knee. Hence, a wrong color is selected. As the knee gradually becomes
larger, the self-similarity to the previous frame leads to a temporal consistent
but a consistently wrong coloring of the knee. A similar effect happens to the
shirt of the driver, gradually appearing after frame 15. One way to resolve such
issues is by loosening temporal consistency such as for DEB, where the left knee
starts blue and turns red later. A more promising way could be to also consider
future frames when colorizing the current frame, which we pursue in future work.
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G More Results and metrics

Qualitative training results vs. overfitting. The following images are from eval-
uating on our training set, and show an interesting behavior, about how our
model resolves newly appearing input. As we built our model structure to stay
faithful to the initially provided color reference, we avoid the blind creation of
new colors. Hence, newly appearing objects need to be colorized in the style of
the reference. Fig. 19 demonstrates this well by the signs in the background.
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Fig. 19. Our model continues to propagate colors from the provided reference frame
001 even if it is different from the trained color – see the ’TONE’ sign in frame 20, 24.
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Fig. 20. Newly appearing hurdles to the right are being colorized according to the
reference in frame 001.

For instance, although the ‘TONE’ sign is red and white during training, our
model colorizes it in the style of the reference frame, where the only colored sign
is blue and yellow. The same effect can be seen in Fig. 20, where the hurdle
appearing on the right is green in the training data, but the style provided by
the reference image is red. Even though both sequences have been part of the
training set – teaching it a different color via the loss – our model has learned
to colorize the new objects according to the provided reference. We expect this
to further improve with dedicated losses, which we consider in future work.

Ablation on search ranges. Table 3 shows an ablation on the effect of different
search ranges for the local neighborhood search. We achieve best results using a
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frame 1.0 5.0 10.0 15.0 20.0 24.0
method

Gray 25.30 25.40 25.49 25.46 25.59 25.60
Coarse:±2, Fine: ±6 44.07 40.08 37.82 36.18 35.61 34.96
Coarse:±4, Fine: ±4 44.20 40.17 37.94 36.40 35.86 35.16
Coarse:±6, Fine: ±2 44.20 40.19 37.97 36.41 35.90 35.22
Coarse:±8, Fine: ±2 44.18 40.19 37.97 36.41 35.90 35.23

Table 3. Ablation on search ranges using a model with CUDA sampling operator.

search window of ±8 pixels on the coarse low resolution, and refining with ±2.
This results used a fast C++ CUDA sampling operator, but similar results can
be achieved with the default pytorch operator.

CIDE2000 Fig. 21, 22 compare the performance on the CIDE2000 metric [9],
which measures realistic appearance of color shifts. DEB and DeepRemaster
already start with a significant hue shift, which is also clearly visible in the
background of the qualitative results in the main paper (Fig.12, Fig.13). DVCP
improves this on the data provided by the authors. Our method shows further
improvements and reaches the lowest color shifts over all frames on both datasets.

method \ frame: 1.0 5.0 15.0 25.0 35.0 45.0

←
C
IE

D
E
2
0
0
0 Gray 9.25 9.25 9.18 9.22 9.14 9.06

DeepRemaster [6] 4.12 4.18 4.39 4.60 4.76 4.97
DEB [15] 3.12 3.19 3.46 3.70 3.92 4.19
DVCP [11] 1.16 1.64 2.14 2.53 2.81 3.09
LVVCP (Ours fast) 0.85 1.33 1.82 2.20 2.52 2.82
LVVCP (Ours mm fast) 0.85 1.31 1.81 2.19 2.51 2.81 0 10 20 30 40

2

4

6 DeepRemaster DEB

DVCP

LVVCP (Ours fast)

LVVCP (Ours mm fast)

Frame

←
D

el
ta

E
(C

IE
D

E2
00

0)

Fig. 21. CIDE2000 (↓ lower is better ) on NDVCP Dataset; Our method has less initial
color drifts and keeps it lowest.

method \ frame: 1.0 5.0 15.0 25.0 35.0 45.0

←
C
IE

D
E
2
0
0
0 Gray 10.62 10.61 10.59 10.60 10.66 10.59

DeepRemaster [6] 4.83 5.09 5.61 5.94 6.16 6.32
DEB [15] 3.31 3.76 4.28 4.53 4.81 5.11
LVVCP (Ours, fast) 1.35 2.08 2.92 3.24 3.64 4.07
LVVCP (Ours, mm, fast) 1.35 2.07 2.93 3.22 3.58 4.00

0 10 20 30 40 50

2

4

6

8
DeepRemaster

DEB

LVVCP (Ours, fast) LVVCP (Ours, mm, fast)

Frame

Fig. 22. CIDE2000 (↓ lower is better ) on DAVIS-2017-test Dataset; Also here our
method achieves lowest color drifts.

More Qualitative Results. Finally, Fig. 23, and 24 show a few qualitative results
of our method on untrained sequences from DAVIS 2017 and DAVIS 2019. Even
though some artifacts may occur – e.g. the racket of the tennis player in frame
030 – the resulting color propagations look plausible and promising.
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Fig. 23. Qualitative Results of our Method on DAVIS-2017-test sequences
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Fig. 24. Qualitative Results of our Method on DAVIS-2017-test sequences
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