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A The proof of Theorem 1
Theorem 1 Let pθ(x | z) = N (Gi(z), σ

2Id) be the Gaussian decoder where σ =
1/
√
2. We can derive ELBO based on the optimal transport :

inf
qω(z)=p(z)

EPx [LELBO(x; θ, ω)] ≤ −W?
L(Px,PGi

)− 1

2
log π , (1)

Proof. When pθ(x | z) is the Gaussian decoder, the computation of log pθ(x | z) in-
volves the noise value σ :

log pθ (x | z) = −
1

2σ2
‖x− µθ (z)‖22 −

1

2
log 2πσ2 , (2)

where µθ(z) is the mean of distribution pθ(x | z). In order to simplify Eq. (2), the noise
σ is set to 1/

√
2, resulting in :

log pθ (x | z) = −‖x− µθ (z)‖22 −
1

2
log π . (3)

We substract the KL divergence term in Eq. (3), resulting in :

log pθ (x | z)−DKL(qω(x | z) | p(z)) = −‖x− µθ (z)‖22 −DKL(qω(x | z) | p(z))−
1

2
log π .

(4)
Then we consider the expectation in both sides of Eq. (4), resulting in :

inf
qω(z)=p(z)

EPxEqω(z |x)
[
log pθ (x | z)−DKL(qω(x | z) | p(z))

]
=

inf
qω(z)=p(z)

EPxEqω(z |x)
[
− ‖x− µθ (z)‖22

−DKL(qω(x | z) | p(z))−
1

2
log π

]
.

(5)

where the first term in the right-hand side of Eq. (5) can be rewritten as L(x,Gi(z)),
then Eq. (5) can be rewritten as :

inf
qω(z)=p(z)

EPxEqω(z |x)
[
log pθ (x | z)−DKL(qω(x | z) | p(z))

]
=

inf
qω(z)=p(z)

EPxEqω(z |x)
[
− L(x,Gi(z))

−DKL(qω(x | z) | p(z))−
1

2
log π

]
.

(6)

where the first term in the left-hand side (LHS) of Eq. (6) is the ELBO, defined in
Eq. (1) of the paper. Since the KL divergence DKL(·) is equal or larger than 0, we
have the following inequality :

inf
qω(z)=p(z)

EPx [LELBO(x; θ, ω)] = inf
qω(z)=p(z)

EPxEqω(z |x)[−L(x,Gi(z))

−DKL(qω(z |x) || p(z))−
1

2
log π]

≤ inf
qω(z)=p(z)

EPxEqω(z |x)[−L(x,Gi(z))]−
1

2
log π ,

(7)
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Eq. (7) holds because we have the inequality (Eq.(6) in the paper) :

−W?
L(Px,PGi

) ≥ inf
qω(z)=p(z)

EPxEqω(z |x)[−L(x,Gi(z))] , (8)

We can rewrite Eq. (7) by considering Eq. (8), resulting in :

inf
qω(z)=p(z)

EPx [LELBO(x; θ, ω)] ≤ −W?
L(Px,PGi)−

1

2
log π , (9)

Eq. (9) proves Theorem 1 �

B The proof of Theorem 2
Theorem 2 Let Pmi

and Px be the source and target domain, respectively. Based on
the results from Theorem 1, we derive the bound on ELBO between Pmi

and Px at the
training step (ti) :

inf
qω(z)=p(z)

EPxEqω(z |x)[L(x,Gi(z))] ≤ inf
qω(z)=p(z)

EPmi
[LELBO(x; θ, ω)]

+ 2W?
L(Pmi

,PGi
)

−W?
L(Px,Pmi) + F̃(PGi ,Pmi) ,

(10)

Proof. We first consider Eq. (9), expressed as :

inf
qω(z)=p(z)

EPx [LELBO(x; θ, ω)] ≤ −W?
L(Px,PGi)−

1

2
log π , (11)

We then add −W?
L(Pmi

,PGi
) in both sides of Eq. (11), resulting in :

inf
qω(z)=p(z)

EPx [LELBO(x; θ, ω)]−W?
L(Pmi ,PGi) ≤ −W?

L(Pmi ,PGi)−W?
L(Px,PGi)

− 1

2
log π ,

(12)
The first term in the right-hand side (RHS) of Eq. (12) is bounded by, (see Eq.(6) in the
paper) :

inf
qω(z)=p(z)

EPmi
Eqω(z |x)[−L(x,Gi(z))] ≤ −W?

L(Pmi ,PGi), (13)

From Eq. (13), we have :

inf
qω(z)=p(z)

EPmi
Eqω(z |x)[−L(x,Gi(z))]

+
∣∣∣ inf
qω(z)=p(z)

EPmi
Eqω(z |x)[−L(x,Gi(z))]−W?

L(Pmi ,PGi)
∣∣∣ ≥ −W?

L(Pmi ,PGi),

(14)
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We then replace the first term in the RHS of Eq. (12) by the above equation, result-
ing in :

inf
qω(z)=p(z)

EPx [LELBO(x; θ, ω)]−W?
L(Pmi

,PGi
)

≤ inf
qω(z)=p(z)

EPmi
Eqω(z |x)[−L(x,Gi(z))]−W?

L(Px,PGi
)

+
∣∣∣ inf
qω(z)=p(z)

EPmi
Eqω(z |x)[−L(x,Gi(z))]−W?

L(Pmi
,PGi

)
∣∣∣

− 1

2
log π ,

(15)

We then add the negative KL divergence term in both sides of Eq. (15) :

inf
qω(z)=p(z)

EPx [LELBO(x; θ, ω)]−W?
L(Pmi

,PGi
)− inf

qω(z)=p(z)
EPmi

[DKL(qω(z |x) || p(z))] ≤

inf
qω(z)=p(z)

EPmi
Eqω(z |x)[−L(x,Gi(z))]− inf

qω(z)=p(z)
EPmi

[DKL(qω(z |x) || p(z))]−
1

2
log π︸ ︷︷ ︸

ELBO

−W?
L(Px,PGi

) +
∣∣∣ inf
qω(z)=p(z)

EPmi
Eqω(z |x)[−L(x,Gi(z))]−W?

L(Pmi
,PGi

)
∣∣∣ ,

(16)
According to the definition of ELBO, Eq. (16) can be rewritten as :

inf
qω(z)=p(z)

EPx [LELBO(x; θ, ω)]−W?
L(Pmi

,PGi
)− inf

qω(z)=p(z)
EPmi

[DKL(qω(z |x) || p(z))] ≤

inf
qω(z)=p(z)

EPmi
[LELBO(x; θ, ω)]−W?

L(Px,PGi
)

+
∣∣∣ inf
qω(z)=p(z)

EPmi
Eqω(z |x)[−L(x,Gi(z))]−W?

L(Pmi
,PGi

)
∣∣∣ ,

(17)
Then we rewrite Eq. (17), resulting in :

inf
qω(z)=p(z)

EPx [LELBO(x; θ, ω)] ≤ inf
qω(z)=p(z)

EPmi
[LELBO(x; θ, ω)] +W?

L(Pmi ,PGi)

−W?
L(Px,PGi

)

+ inf
qω(z)=p(z)

EPmi
[DKL(qω(z |x) || p(z))]

+
∣∣∣ inf
qω(z)=p(z)

EPmi
Eqω(z |x)[−L(x,Gi(z))]−W?

L(Pmi ,PGi)
∣∣∣ ,

(18)
We consider that L(·) satisfies triangle inequality, we have :

W?
L(Pmi

,PGi
) +W?

L(Px,PGi
) ≥W?

L(Px,Pmi
) (19)

We move the second term in the left-hand side of Eq. (19) in the right-hand side :

W?
L(Px,PGi

) ≥W?
L(Px,Pmi

)−W?
L(Pmi

,PGi
) (20)
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Then we replace W?
L(Px,PGi) from Eq. (18) by the expression of Eq. (20), result-

ing in :

inf
qω(z)=p(z)

EPx [LELBO(x; θ, ω)] ≤ inf
qω(z)=p(z)

EPmi
[LELBO(x; θ, ω)]

+ 2W?
L(Pmi ,PGi)

−W?
L(Px,Pmi

) + F̃(PGi
,Pmi

) ,

(21)

where F̃(PGi
,Pmi

) is expressed as :

F̃(PGi ,Pmi) = inf
qω(z)=p(z)

EPmi
[DKL(qω(z |x) || p(z))]

+
∣∣∣ inf
qω(z)=p(z)

EPmi
Eqω(z |x)[−L(x,Gi(z))]−W?

L(Pmi ,PGi)
∣∣∣ (22)

�

C The proof of Lemma 2
Lemma 2. Let {Px1 , · · · ,Pxn} be a set of n target domains. Based on Definition 4 of
the paper, the bound on ELBO for the mixture model is derived as :

n∑
j=1

EPxj [LELBO(x; θ, ω)] ≤
n∑
i=1

{F?(Pxi)} . (23)

where F?(Pxj ) is the selection function, defined as :

F?(Pxi) = max
j=1,··· ,k

{
EPmqj

[LELBO(x; θ, ω)]

+ 2W?
L(Pmqj

,PGi
)−W?

L(Pxi ,Pmqj
)

+ F̃(PGqj
,Pmqj

)
}
.

(24)

The advantage of the dynamic expansion model than a single model. Lemma 1 of the
paper have demonstrated that the diversity in the memory can relieve the negative
transfer in the past target sets. However, when the memory size is restricted, the stored
samples for a certain past target set would be few and thus can not represent the exact
underlying distribution of the target set. Eq. (23) shows that the dynamic expansion
model can relieve this issue by learning a diversity of mixing components where each
component would capture different underlying data distributions. For instance, we
assume that we have trained n components where each component (i-th component)
only captures a certain target domain Pxi . We can have the maximum upper bound
to Eq. (23) when we make the component selection (Eq. (24)). This inspires us to
combine the proposed Online Cooperative Memorization (OCM) with the expansion
mechanism to further improve the performance.
Proof. Since each component hi had converged at the training step tqi , with the memory
Mqi , we then can perform the component selection for the evaluation of ELBO. In
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Lemma 2, we assume that we have trained k components at the training step tqk . For
a given target domain Pxi , from Theorem 2 of the paper, the bound for the mixture
model with the component selection can be defined as :

EPxj [LELBO(x; θ, ω)] ≤ max
j=1,··· ,k

{
EPmqj

[LELBO(x; θ, ω)] + 2W?
L(Pmqj

,PGi
)

−W?
L(Pxi ,Pmqj

)

+ F̃(PGqj
,Pmqj

)
}
.

(25)
Then we extend Eq. (25) into multiple target domains, expressed as :

n∑
j=1

EPxj [LELBO(x; θ, ω)] ≤
n∑
i=1

{
max

j=1,··· ,k

{
EPmqj

[LELBO(x; θ, ω)]

+ 2W?
L(Pmqj

,PGi
)−W?

L(Pxi ,Pmqj
)

+ F̃(PGqj
,Pmqj

)
}}

.

(26)

Eq. (26) proves Lemma 2
�

D The proof of Theorem 3
Theorem 3 Let A = {a1, · · · , an} be a set where each ai represents the index of the
component that has trained only once. Let Ã = {ã1, · · · , ãn} be a set of task labels
where each ãi represents the index of the task learned by the ai-th component. Let
B = {b1, · · · , bk−n} be a set where each bi represents the index of the component that
is trained more than once. Let b̃i = {b̃1i , · · · , b̃mi } be a set of task labels for the bi-th
component. Let cji represent the time of the generative replay processes for the b̃(i,j)-th
task, achieved by the bi-th component.

|A|∑
i=1

{
EP

x̂ãi
[LELBO(x; θ, ω)]

}
+

|B|∑
i=1

{ |b̃i|∑
q=1

{
EP

x̂
b̃
q
i

[LELBO(x; θ, ω)]
}}
≤ RS +RM

(27)
whereRS andRM are defined as follows.

RS =

|A|∑
i=1

{
EP

xãi
[LELBO(x; θ, ω)] + 2W?

L(Pxãi ,PGai )−W?
L(Px̂ãi ,Pxãi )

+ F̃(PGai ,Pxãi )
} (28)

RM =

|B|∑
i=1

{ |b̃i|∑
q=1

{
EP

x̃
(b̃

q
i
,c

q
i
)
[LELBO(x; θ, ω)] +

cqi∑
s=0

{
2W?
L(Px̃(b̃

q
i
,s) ,PGbi )

−W?
L(Px̂(b̃

q
i
,s−1) ,Px̃(b̃

q
i
,s)) + F̃(PGbi ,Px̃(b̃

q
i
,s))
}}} (29)
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When the mixture has only a single component. Let us assume that we train a mixture
model having a single VAE component (k = 1) for learning a sequence of N tasks. By
using Theorem 2 the bound on ELBO for this mixture model is defined as :

N∑
q=1

{
EP

x̂
b̃
q
1

[LELBO(x; θ, ω)]
}
≤

N∑
q=1

{
EP

x̃
(b̃

q
1,c

q
1)
[LELBO(x; θ, ω)]

+

cq1∑
s=0

{
2W?
L(Px̃(b̃

q
1,s) ,PGb1 )

−W?
L(Px̂(b̃

q
1,s−1) ,Px̃(b̃

q
1,s)) + F̃(PGb1 ,Px̃(b̃

q
1,s))

}}
(30)

where each cq1 is equal to N − q and each b̃q1 corresponds the q-th task label. We then
rewrite Eq. (30) as :

N∑
q=1

{
EPx̂q [LELBO(x; θ, ω)]

}
≤

N∑
q=1

{
EP

x̃(q,N−q)
[LELBO(x; θ, ω)]

+

N−q∑
s=0

{
2W?
L(Px̃(q,s) ,PG1)

−W?
L(Px̂(q,s−1) ,Px̃(q,s)) + F̃(PG1 ,Px̃(q,s))

}}
(31)

From Eq. (31), we observe that task trained earlier in the continuously learning pro-
cess (q is small) tends to be forgotten easier than the recently trained tasks (q is large),
because the knowledge (remembering) of the earlier learned task accumulates more er-

ror terms
N−q∑
s=0

{
2W?
L(Px̃(q,s) ,PG1)−W?

L(Px̂(q,s−1) ,Px̃(q,s)) + F̃(PG1 ,Px̃(q,s))
}

. This

result supports the statements made in the Remark to Theorem 3 of the paper.
Proof. Let us firstly consider a certain component (ai-th component) that has been
trained only once. From Theorem 2 we derive the bound as follows :

EP
x̂ãi

[LELBO(x; θ, ω)] ≤ EP
xãi

[LELBO(x; θ, ω)] + 2W?
L(Pxãi ,PGai )

−W?
L(Px̂ãi ,Pxãi )

+ F̃(PGai ,Pxãi ) ,

(32)

Eq. (32) holds because we treat Px̂ãi and Pxãi as the target and source domain
respectively. In the following, we consider a component (bi-th component) that has
been trained more than once. Since the bi-th component would learn more than one
task, we particularly focus on a certain task (b̃qi -th task). We firstly consider to treat
P
x̂b̃

q
i

and P
xb̃

q
i

as the target and source domain respectively. Then we derive the bound
as :

EP
x̂
b̃
q
i

[LELBO(x; θ, ω)] ≤ EP
x
b̃
q
i

[LELBO(x; θ, ω)] + 2W?
L(Pxb̃

q
i
,PGbi )

−W?
L(Px̂b̃

q
i
,P

xb̃
q
i
)

+ F̃(PGbi ,Pxb̃
q
i
) ,

(33)
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We do not specify the state (the number of retraining processes) of each genera-
tor distribution PGi in order to simplify the notation. If cji > 0, then we can have the
empirical distribution P

x̂(b̃
q
i
,1) for one time of the generative replay processes (See Def-

inition 6 in the paper). We treat P
x̂(b̃

q
i
,0) = P

x̂b̃
q
i

and P
x̂(b̃

q
i
,1) as the target and source

domain, respectively. We then derive the bound between P
x̂
(b̃(i,q),0)

and P
x̂
(b̃(i,q),1)

as
follows :

EP
x̃
(b̃

q
i
,0)
[LELBO(x; θ, ω)] ≤ EP

x̃
(b̃

q
i
,1)
[LELBO(x; θ, ω)] + 2W?

L(Px̃
(b̃(i,q),1)

,PGbi )

−W?
L(Px̃(b̃

q
i
,1) ,Px̃(b̃

q
i
,0))

+ F̃(PGbi ,Px̃(b̃
q
i
,1)) ,

(34)
Through mathematical induction, we have the bounds :

EP
x̃
(b̃

q
i
,1)
[LELBO(x; θ, ω)] ≤ EP

x̃
(b̃

q
i
,2)
[LELBO(x; θ, ω)] + 2W?

L(Px̃(b̃
q
i
,2) ,PGbi )

−W?
L(Px̃(b̃

q
i
,2) ,Px̃(b̃

q
i
,1))

+ F̃(PGbi ,Px̃(b̃
q
i
,2))

· · ·
EP

x̃
(b̃

q
i
,c

q
i
−1)

[LELBO(x; θ, ω)] ≤ EP
x̃
(b̃

q
i
,c

q
i
)
[LELBO(x; θ, ω)] + 2W?

L(Px̃(b̃
q
i
,c

q
i
) ,PGbi )

−W?
L(Px̃(b̃

q
i
,c

q
i
) ,Px̃(b̃

q
i
,c

q
i
−1)) + F̃(PGbi ,Px̃(b̃

q
i
,c

q
i
))

(35)
We then sum up all above inequalities, resulting in :

EP
x̂
b̃
q
i

[LELBO(x; θ, ω)] ≤ EP
x̃
(b̃

q
i
,c

q
i
)
[LELBO(x; θ, ω)] +

c̃(i,q)∑
s=0

{
2W?
L(Px̃(b̃

q
i
,s) ,PGbi )

−W?
L(Px̂(b̃iq,s−1) ,Px̃(b̃

q
i
,s))

+ F̃(PGbi ,Px̃(b̃
q
i
,s))
}
,

(36)
Eq. (36) describes the bound for a single task. We then extend this bound to com-

ponents learning more than one task :

|B|∑
i=1

{ |b̃i|∑
q=1

{
EP

x̂
b̃
q
i

[LELBO(x; θ, ω)]
}}
≤
|B|∑
i=1

{ |b̃i|∑
q=1

{
EP

x̃
(b̃

q
i
,c

q
i
)
[LELBO(x; θ, ω)]

+

cqi∑
s=0

{
2W?
L(Px̃(b̃

q
i
,s) ,PGbi )

−W?
L(Px̂(b̃

q
i
,s−1) ,Px̃(b̃

q
i
,s)) + F̃(PGbi ,Px̃(b̃

q
i
,s))
}}}

,

(37)
We also extend the bound from Eq. (32) to components that would only learn one
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task each :
|A|∑
i=1

{
EP

x̂ãi
[LELBO(x; θ, ω)]

}
≤
|A|∑
i=1

{
EP

xãi
[LELBO(x; θ, ω)] + 2W?

L(Pxãi ,PGai )

−W?
L(Px̂ãi ,Pxãi )

+ F̃(PGai ,Pxãi )
}
,

(38)
Eventually, the bound for all components is defined by the combination between Eq. (37)
and Eq. (38), resulting in :

|A|∑
i=1

{
EP

x̂ãi
[LELBO(x; θ, ω)]

}
+

|B|∑
i=1

{ |b̃i|∑
q=1

{
EP

x̂
b̃
q
i

[LELBO(x; θ, ω)]
}}
≤

|A|∑
i=1

{
EP

xãi
[LELBO(x; θ, ω)] + 2W?

L(Pxãi ,PGai )−W?
L(Px̂ãi ,Pxãi ) + F̃(PGai ,Pxãi )

}

+

|B|∑
i=1

{ |b̃i|∑
q=1

{
EP

x̃
(b̃

q
i
,c

q
i
)
[LELBO(x; θ, ω)] +

cqi∑
s=0

{
2W?
L(Px̃(b̃

q
i
,s) ,PGbi )

−W?
L(Px̂(b̃

q
i
,s−1) ,Px̃(b̃

q
i
,s)) + F̃(PGbi ,Px̃(b̃

q
i
,s))
}}}

(39)
�

E Unsupervised forward/backward transfer
The concept of forward/backward transfer was firstly used in [15] for continual learn-
ing. Under this concept, three metrics are defined for the forward/backward transfer
of the classification task. We firstly define the average accuracy (ACC) on all testing
sets :

ACC =
1

N

N∑
i=1

A(N,i) . (40)

where A(N,i) represents the accuracy on the i-th testing set, predicted by the model
A(·), which was trained on the N -th task. Then we define the backward and forward
transfer criterion, denoted as BWT and FWT :

BWT =
1

N − 1

N−1∑
i=1

(A(N,i) −A(i,i)) . (41)

FWT =
1

N − 1

N∑
i=2

(A(i−1,i) −A′i) . (42)

where A′i is the test accuracy for the i-th task, predicted by a model randomly initial-
ized. However, the criteria defined by Eq. (40), (41) and (42) require to know the task
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labels as well as the class labels, which is not applicable under the Online Continuous
Learning (OCL) framework, which is considered in this paper.

In this section, we introduce new metrics for evaluating the forward and backward
transfer abilities when the the class labels are not available. Firstly, we define the
average performance as :

ELBOavg =
1

N ′

N ′∑
i=1

E(N ′,i) (43)

where ELBOavg is the average ELBO on all testing sets, and E(N ′, i) is the ELBO on
the i-th testing set, evaluated by the model trained at the training step N ′, and N ′ is the
total number of training steps. We then define the metric for the backward transfer as :

BWT =
1

N′ − 1

N′−1∑
i=1

|E(N′,i) − E
′
ti | , (44)

where we calculate E(N ′,i) as the ELBO on the data batch Xi
b, achieved by a model

trained with the memory learnt atN ′, and E′ti is the ELBO calculated on the data batch
Xi
b, achieved by an auxiliary VAE model trained on data batchs {X1

b , · · · ,Xi
b}. It

notes that OCL does not require to access the task label and therefore the task is not
identified during the training.

We define the forward transfer as :

FWT =
1

N ′ − 1

N ′∑
i=2

|E′ti − E(ti−1,i)| (45)

where E(t(i−1),i) is the ELBO on Xi
b, evaluated by a single VAE model trained with the

memory learnt at t(i−1). The main motivation of the proposed criteria (Eq. (44) and
Eq. 45) is that we use an auxiliary VAE model to give the exact approximation of the
true data likelihood in each training step because there are no labels or the exact data
likelihood under the unsupervised learning setting. Therefore, a small value in Eq. (44)
and Eq. 45 means the small gap between the ELBO estimated by the proposed model
and the approximation of the data likelihood, estimated by the auxiliary VAE model.

F Theoretical analysis for existing approaches
In this section, we apply the proposed theoretical framework for analyzing the forget-
ting behaviour of existing approaches. Different from prior theoretical analysis works
[23, 21], the proposed theoretical analysis can be used in both the OCL and in a general
continual learning setting where the task information is provided.

F.1 Online continual learning approaches
Online continual learning approaches can be divided into two branches. The former
usually uses a small memory buffer to store a few past samples to avoid forgetting.

11



The latter combines the memory buffer and the dynamic expansion mechanism to fur-
ther improve the performance. Theorem 2 and Lemma 1 of the paper can explain the
forgetting behaviour of most of the existing memory-based approaches under OCL. In
this section, we apply the proposed theoretical analysis for CURL [18] and CN-DPM
[14].
CURL [18]. is a hybrid approach that combines the generative replay and dynamic
expansion mechanism into a unified learning framework. Let H′ = {h′1, · · · , h′k}
be a CURL model trained at ti, which has built k components during the learning,
where each h′i is a single component. Let q = {q1, · · · , qk} represent the training
steps that each component converged on. For instance, hi converged onM′qi at tqi , is
not updated in the following training steps. Since CURL uses the generative replay to
avoid forgetting, M′qi is defined as the memory buffer to store the replayed samples.
Then PGqi

and Pmqi
represent the generator distribution and the distribution of samples

drawn from M′qi . For a given set of target domains {Px1 , · · · ,Pxn}, the bound on
ELBO for CURL is defined according to Lemma 2 of the paper.

n∑
j=1

EPxj [LELBO(x; θ, ω)] ≤
n∑
i=1

{F?(Pxi)} . (46)

where F?(Pxj ) is the selection function, defined as :

F?(Pxi) = max
j=1,··· ,k

{
EPmqj

[LELBO(x; θ, ω)]

+ 2W?
L(Pmqj

,PGi
)−W?

L(Pxi ,Pmqj
)

+ F̃(PGqj
,Pmqj

)
}
.

(47)

Since M′qi stores the replayed samples from the generator, Pmqj
does not represent

the real training samples. The term W?
L(Pxi ,Pmqj

) would be enlarged if M′qi does
not capture the information for the i-th target set. Additionally, CURL continually
updates the generator’s parameters in the whole training process, which would lead
to forgetting prior information. The proposed dynamic expansion approach does not
require generative replay and only updates the part of the whole network architecture
when learning novel samples.
CN-DPM [14] is a dynamic expansion framework which introduces the Dirichlet pro-
cess for the expansion of the network architecture. Different from CURL, CN-DPM
does not use the generative replay and preserves the knowledge into the frozen compo-
nents when building a new component. The forgetting behaviour of CN-DPM can be
explained in Eq. (46). M′qi is implemented as a memory buffer which is used to train
the i-th component for CN-DPM. To compare with CN-DPM, the proposed OCM em-
ploy a criterion which makes each {M′qi ; , i = 1, · · · , k} more diverse, which would
lead to a better performance, empirically demonstrated in the results from the main
paper.
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F.2 Task labels are available
In this section, we apply the proposed theoretical framework for analyzing the forget-
ting behaviour of the model in a more general continual learning scenario where the
task identity is provided during the training.
LGM [17] is a generative replay approach that trains a Teacher-Student framework
where both the Teacher and Student are implemented by the VAE model. We first
define the generative replay process of LGM.
Definition (Generative replay for LGM.) Let Ptx̃ represent the distribution of samples
drawn from the generator, which can be either the Teacher or Student, of LGM trained
at the t-th task. Let ft : X → T be the true labelling function that returns the task label
for the data sample. Let Px̃(i,m) be the distribution of samples drawn from the process
x ∼ Ptx̃ if ft(x) = i where m represents that Px̃(i,0) evolves to Px̃(i,m) through m gen-
erative replay processes. Let Px̃(i,0) and Px̃(i,−1) represent Pxi and Px̂i for simplicity.
Let PGi

represent the generator distribution of LGM trained at the i-th task.
Lemma 3. For a certain task (i), the bound on ELBO for LGM at theN -th task learning
is defined as :

EPx̂i [LELBO(x; θ, ω)] ≤ EP
x̃(i,i−1)

[LELBO(x; θ, ω)]

+

N−i∑
s=0

{
2W?
L(Px̃(i,s) ,PGi

) + F̃(PGi
,Px̃(i,s))

−W?
L(Px̂(i,s−1) ,Px̃(i,s))

}
.

(48)

The proof is similar to that for Theorem 3. Then we extend Lemma 3 to multiple
tasks, as defined in the following Lemma 4.
Lemma 4. For a given set of disjoint tasks {T1, · · · , TN}, the bound on ELBO for LGM
is defined as :

N∑
i=1

{
EPx̂i [LELBO(x; θ, ω)]

}
≤

N∑
i=1

{
EP

x̃(i,i−1)
[LELBO(x; θ, ω)]

+

N−i+1∑
s=0

{
2W?
L(Px̃(i,s) ,PGi) + F̃(PGi ,Px̃(i,s))

−W?
L(Px̂(i,s−1) ,Px̃(i,s))

}}
.

(49)

From Eq. (49), it can be observed that as progressing with learning more tasks,
LGM’s training would be affected from increasing forgetting because of the accumu-
lated errors (the last term in the RHS of Eq. (49)) increase. Lemma 3 and Lemma 4
can describe the forgetting behaviour of most existing generative replay approaches
including Lifelong VAEGAN [21]. In the following, we apply Theorem 3 of the paper
to analyze the forgetting behaviour of dynamic expansion approaches.
LIMix [23] aims to learn an infinite mixture model by automatically expanding its
network architecture when seeing a novel task while reusing a selected component to
model a related work. The generative replay mechanism is used when LIMix chooses
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an existing component for learning a new task. The bound on ELBO for LIMix is
defined according to Theorem 3 of the paper.

|A|∑
i=1

{
EP

x̂ãi
[LELBO(x; θ, ω)]

}
+

|B|∑
i=1

{ |b̃i|∑
q=1

{
EP

x̂
b̃
q
i

[LELBO(x; θ, ω)]
}}
≤ RS +RM

(50)
From Eq. (50), it can be observed that the number of components plays an impor-

tant role in improving the performance of LIMix. For instance, the optimal perfor-
mance can be achieved when the number of components in LIMix matches the number
of tasks, meaning that there is no degenerated performance caused by the generative
replay process.
Regularisation based approaches with episodic memory. Gradient Episodic Memory (GEM)
[15] is a popular regularization approach that introduces using a small memory buffer
to store a few past samples. In order to apply the proposed theoretical analysis for
GEM, we assume we use GEM for training a VAE model instead of a classifier. Let
PG represent the generator distribution of GEM and Mi represents a subset of the
memory buffer, which stores the training samples from the i-th task. Since these stored
samples represent the statistical information for each task,Mi can form an empirical
distribution, denoted as Px̃i . The bound on ELBO for GEM can be defined as :

N∑
i=1

{
EPx̂i [LELBO(x; θ, ω)]

}
≤

N∑
i=1

{
EPx̃i [LELBO(x; θ, ω)]

+ 2W?
L(Px̃i ,PG)−W?

L(Pxi ,Px̃i)

+ F̃(PG,Px̃i)
}
,

(51)

From Eq. (51), it can be observed that the generalization performance of GEM
is relying on the quality of stored samples. For instance, if each Mi captures the
full information of the associated data distribution (the probabilistic representation)
of the i-th task, then the term −W?

L(Pxi ,Px̃i) is small and thus the ELBO on Px̃i is
close to the ELBO on the target domain Pxi . Additionally, existing methods using
episodic memory [5, 9] can also be explained by using Eq. (51) through which the
algorithm finds the optimal updated direction in the parameter space by taking into
account all subsets Mi, i = 1, . . . , t. The other method [16], considers identifying
the influential samples that are used to form the influential memoryMi corresponding
to each task. Such influential memory data can reduce the computational complexity
while improving the generalization performance on the target domains.
Mixture/Ensemble models. The other type of continual learning approaches are fo-
cused on deploying a multi-head framework in which a shared feature extractor is
connected with several components and each component models a unique task only
[24]. The advantage of such an approach is that it can achieve the optimal performance
for each task since it does not lose the performance on previously learnt tasks when
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learning novel tasks.

N∑
i=1

{
EPx̂i [LELBO(x; θ, ω)]

}
≤

N∑
i=1

{
EPxi [LELBO(x; θ, ω)]

+ 2W?
L(Pxi ,PG)−W?

L(Pxi ,Pxi)

+ F(PG,Pxi)
}
,

(52)

Since the shared feature extractor is only updated at the first task learning, learning a
new task does not degenerate the performance on prior tasks. From Eq. (52), it can be
observed that the generalization performance of the model is relying on the distance
between the source domain and the target domain in each task.

F.3 Theoretical analysis when changing the order of tasks
The performance of a model on all testing sets would be affected by order in which the
tasks are learned. This is usually caused by changing the number of generative replay
processes for each task. Since each task has a different associated data complexity,
the accumulated errors corresponding to each task are not equal. In this section, we
apply the proposed theoretical framework for analyzing the model’s performance when
changing the order in which the tasks are learned.

Assumption 1 We assume that each task has a different data complexity, in our case
defined by the image representations over the entire database. The accumulated er-
rors for each task are not equal even if using the same number of generative replay
processes. The formulation for this assumption is defined as :

c∑
s=0

{
2W?
L(Px̃(q,s) ,PG1)−W?

L(Px̂(q,s−1) ,Px̃(q,s)) + F̃(PG1 ,Px̃(q,s))
}
6=

c∑
s=0

{
2W?
L(Px̃(d,s) ,PG1)−W?

L(Px̂(d,s−1) ,Px̃(d,s)) + F̃(PG1 ,Px̃(d,s))
}

for d 6= s.

(53)

Lemma 5. For a given single VAE model, let T = {T1, · · · , TN} be a task order where
each Ti is associated with the dataset DSi . When changing the order of T , the perfor-
mance of the model on all testing datasets is also changed.

Proof. Firstly, we derive the bound on ELBO for a single VAE model according to
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Theorem 3 from the paper :

N∑
q=1

{
EPx̂q [LELBO(x; θ, ω)]

}
≤

N∑
q=1

{
EP

x̃(q,N−q)
[LELBO(x; θ, ω)]

+

N−q∑
s=0

{
2W?
L(Px̃(q,s) ,PG1)

−W?
L(Px̂(q,s−1) ,Px̃(q,s))

+ F̃(PG1 ,Px̃(q,s))
}}

(54)

We name the right hand side of Eq. (54) as Rrisk1. Let Forder(Ti, j) be a function that
changes the dataset corresponding to the task Ti with DSj , but this function still returns
the same task labels Ti. Then we derive the risk bound for the case that the dataset Di
associated with Ti is changed by Forder(Ti, j) :

N∑
q=1

{
EPx̂q [LELBO(x; θ, ω)]

}
≤

N∑
q=1

{
EP

x̃(Forder(q,N−q+1),N−q)
[LELBO(x; θ, ω)]

+

N−q∑
s=0

{
2W?
L(Px̃(Forder(q,N−q),s) ,PG1)

−W?
L(Px̂(Forder(q,N−q),s−1) ,Px̃(Forder(q,N−q),s))

+ F̃(PG1 ,Px̃(Forder(q,N−q),s))
}}

(55)
We name the RHS of Eq. (55) as Rrisk2. Since we use the function Forder(·, ·) to
change the associated dataset, which is the same with changing the learning order of
the given tasks. We have Rrisk1 6= Rrisk2 because the the accumulated error terms
satisfy Assumption 1.

F.4 Theoretical analysis for the importance weighted autoencoder
In this section, we extend the proposed theoretical framework for the importance weighted
autoencoder (IWVAE) [4]. Firstly, we derive the bound on ELBO for IWVAE in a gen-
eral continual learning setting where the task information is given.

Lemma 6. We assume that the task information is provided. For a given IWVAE model,
the bound on ELBO for IWVAE is defined as :

N∑
q=1

{
EPx̂q [LELBO(x; θ, ω)]

}
≤

N∑
q=1

{
EP

x̃(q,N−q)
[LmIW (x; θ, ω)]

+

N−q∑
s=0

{
2W?
L(Px̃(q,s) ,PG)

−W?
L(Px̂(q,s−1) ,Px̃(q,s)) + F̃(PG,Px̃(q,s))

}}
,

(56)

16



where PG represents the generator distribution of a IWVAE model. To compare with
Eq. (31), Eq. (56) would improve the performance when the source distributions in
Eq. (56) and Eq. (31) are equal. However, in practice, the source distributions would
differ in each run and IWVAE bound can not guarantee better performance than ELBO.
Proof. Firstly, we have the IWVAE bound (See Eq.(2) of the paper) :

LmIW (x; θ, ω) := Ez1,··· ,zm∼qω(z |x)

[
log

1

m

m∑
i=1

wi

]
. (57)

Since LmIW (x; θ, ω) > LmELBO(x; θ, ω) for m > 1, we replace the first term in
RHS of Eq, (31) by IWVAE bound, resulting in

N∑
q=1

{
EPx̂q [LELBO(x; θ, ω)]

}
≤

N∑
q=1

{
EP

x̃(q,N−q)
[LmIW (x; θ, ω)] +

N−q∑
s=0

{
2W?
L(Px̃(q,s) ,PG)

−W?
L(Px̂(q,s−1) ,Px̃(q,s)) + F̃(PG,Px̃(q,s))

}}
,

(58)
In the following, we analyze the forgetting behaviour of a IWVAE model under

OCL.
Lemma 7. Let Pmi

and Px be the source and target domains. From Eq.(7) of the paper,
we derive the bound on ELBO for a IWVAE model at the training step ti :

EPx [LELBO(x; θ, ω)] ≤ EPmi
[LIW (x; θ, ω)]

+ 2W?
L(Pmi ,PGi)−W?

L(Px,Pmi)

+ F̃(PGi
,Pmi

) .

(59)

To compare with Eq.(8) of the paper, Eq. (59) can lead to better performance (RHS of
Eq. (59) is larger than the RHS of Eq.(8) of the paper) when the source distribution for
the VAE and IWVAE are equal to each other.
Proof. Because IWVAE bound is larger than ELBO for m > 1, we replace the first
term in the RHS of Eq.(8) of the paper, which proves Lemma 7.

F.5 Theoretical analysis for lifelong VAEGAN
Lifelong VAEGAN [21] is one of the GRM based models, which combines GANs and
VAEs into a unified framework. GAN in the Lifelong VAEGAN is used as the genera-
tive replay network, while additional inference models in lifelong VAEGAN are intro-
duced to capture latent representations across domains over time. In this section, we
can employ the proposed theoretical framework for analyzing the forgetting behaviour
of Lifelong VAEGAN.

Lemma 8. Let PG represent the generator distribution of Lifelong VAEGAN. Then the
bound on ELBO for lifelong VAEGAN when learning a sequence ofN tasks is defined
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as :

N∑
q=1

{
EPx̂q [LELBO(x; θ, ω)]

}
≤

N∑
q=1

{
EP

x̃(q,N−q)
[LELBO(x; θ, ω)]

+

N−q∑
s=0

{
2W?
L(Px̃(q,s) ,PG)

−W?
L(Px̂(q,s−1) ,Px̃(q,s)) + F̃(PG,Px̃(q,s))

}}
(60)

As shown from Eq. (60), Lifelong VAEGAN still suffers from degenerated perfor-
mance when learning a growing number of tasks. Additionally, the performance of
lifelong VAEGAN is unstable when changing the order of tasks (See details in Lemma
5). To compare with approaches that employ the VAE as the generative replay net-
work, Lifelong VAEGAN would lead to better generalization performance because the
GAN used as the generative replay network can produce high-quality generative replay
samples.

G The algorithm for a single VAE and the dynamic ex-
pansion model

G.1 Additional details for a single VAE with OCM
The training process for a single VAE model with OCM, consists of three main stages
and is illustrated in Fig. 1. We also provide the pseudo-code of a single VAE with OCM
in Algorithm 1.

G.2 Additional details for the Dynamic Expansion Model (DEM)
with OCM

In the following we consider the dynamic expansion model with OCM. We provide the
detailed learning process for the dynamic expansion model with OCM in Fig. 3 where
we evaluate the sample similarity by utilizing all learned encoders from the DEM. We
also provide the pseudo-code of the dynamic expansion model with OCM in Algorithm
2.
Exploring the mixture of kernels used in the sample selection. In the proposed dynamic
expansion mechanism, the sample selection combines the feature vector extracted by
each trained inference model into an augmented feature vector which is used to cal-
culate the sample similarity. However, as the number of components is growing, the
dimension of the augmented feature vector will also increase infinitely. In order to ad-
dress this issue We explore a new way to utilize the entire previously learned knowledge
when making the sample selection. The procedure for evaluating the sample similarity
between xe(i,j) and xl(i,j) by using a mixture of kernels is presented in Fig.2 where each
learned inference model extracts the feature vectors from a pair of samples and then
the kernel function is used to evaluate the sample similarity. Finally, we average all
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Figure 1: The detailed learning process of the proposed OCM when training a single
VAE model. (Learning.) At a training step, STM stores a new batch of images while
the model is trained to adapt both LTM and STM; If STM is full, we perform the
evaluation and selection steps, otherwise, we continually perform the learning process
at the next training step. (Evaluation.) We obtain feature vectors {ze(i,1), · · · , z

l
(i,N l

i )
}

from inputs {xe(i,1), · · · ,x
l
(i,N l

i )
} by using the encoder of a VAE model, which is used

for the evaluation of the sample similarity using the given kernel (Eq.(16) from the
paper). This similarity information is preserved in the graph relationship matrix Si.
(Selection.) We transfer the samples from STM to LTM using the proposed criterion
(Eq.(19) from the paper) using Si.
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Algorithm 1 Training a single model with OCM
Input:DS (Training dataset);

1: for ti < tN do
2: Step 1 (Learning:)
3: Xi

b ∼ DS ;
4: Xi

b ∈Me
i ;

5: Train the model using samples fromMe
i andMl

i;
6: if Count(Me

i ) ≥MMax
c then

7: Step 2 (Evaluation:)
8: Si = Fexp

(
−(Zei (−1Zli)

T
)� (Zei (−1Zli)

T
)/2α2

)
. Calculate the graph re-

lationship matrix;
9: Step 3 (Selection:)

10: for j < Ne
i do

11: RS(xei,j) = 1
N l

i

∑N l
i

k=1 Si(j, k) .; Calculate the average similarity score
from xei,j to LTM based on Si;

12: if RS(xei,j) > λ then
13: Ml

i =Ml
i ∪ xei,j ; Add xei,j into LTM memory;

14: end if
15: end for
16: Me

i = ∅; Clear the STM memory;
17: end if
18: end for

similarity scores calculated by each inference model as the sample similarity between
xe(i,j) and xl(i,j).

We perform the experiment for the mixture of kernels used in the dynamic ex-
pansion model (DEM) under Split MNIST and the results are reported in Table 1,
where “Dynamic-ELBO-OCM-MixKernel” represents the DEM using the mixture of
kernels and the results show that the Dynamic-ELBO-OCM-MixKernel outperforms
the Dynamic-ELBO-OCM while using more components. The performance of the
Dynamic-ELBO-OCM-MixKernel on more tasks will be investigated in future work.

Methods Log Memory N

Dynamic-ELBO-OCM -115.89 1.1K 5
Dynamic-ELBO-OCM-MixKernel -113.24 0.8K 10

Table 1: The results of the dynamic expansion model under Split MNIST.

G.3 Additional information for the motivation of using the kernel
The main motivation behind using the kernel as the criterion for the sample selection
is summarized in two aspects. Firstly, the Gaussian kernel is a non-parametric way to
measure the sample similarity while enjoying rich theoretical properties [8]. We apply
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Figure 3: The learning process of the dynamic expansion model with OCM. We
only update the current component (blue colour) at the learning step while fixing other
modules to avoid forgetting. At the evaluation step, we use each learned encoder to
extract the feature vector and then incorporate these feature vectors, resulting in a more
expressive feature vector. Finally, we use the kernel function to calculate the sample
similarity by using these expressive feature vectors at the sample selection step. We
are also required to check the expansion at the sample selection stage.
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Algorithm 2 Training a dynamic expansion model with OCM
Input:DS (Training dataset);

1: for ti < tN do
2: Step 1 (Learning:)
3: Xi

b ∼ DS ;
4: Xi

b ∈Me
i ;

5: Train the model using samples fromMe
i andMl

i;
6: if Count(Me

i ) ≥MMax
c then

7: Step 2 (Evaluation:)
8: Si = Fexp

(
−(Zei (−1Zli)

T
)� (Zei (−1Zli)

T
)/2α2

)
. Calculate the graph re-

lationship matrix;
9: Step 3 (Selection:)

10: for j < Ne
i do

11: RS(xei,j) = 1
N l

i

∑N l
i

k=1 Si(j, k) .; Calculate the average similarity score
from xei,j to LTM based on Si;

12: if RS(xei,j) > λ then
13: Ml

i =Ml
i ∪ xei,j ; Add xei,j into LTM memory;

14: end if
15: end for
16: Check the expansion:
17: Ri Calculated by Eq.(22) from the paper;
18: if |Ri − Rlast| > λ2 then
19: Build a new component;
20: Ml

i = ∅; Clear the LTM memory;
21: Rlast = Ri;
22: end if
23: Me

i = ∅; Clear the STM memory;
24: end if
25: end for

the kernel from Eq. (16) from the paper on the low dimensional feature space avoiding
substantial computational costs. Secondly, to our best knowledge, this paper is the first
to explore sample selection by the kernel-based criterion for the temporary memory
under OCL. In a general continual learning [7] the kernel was shown to be effective
for regression. However, the approach from [7] still requires both the task and class
labels during the training. The proposed OCM does not require any supervised signals
nor the task information during the training, and can be used in both supervised and
unsupervised learning frameworks. Additionally, the kernel defines the operation on an
inner product space, allowing us to evaluate the sample similarity more efficiently using
the matrix operation as in Eq. (17) from the paper. Furthermore, we also explore other
criteria for the sample selection and report the results in Section H.4. These results
show that the kernel-based criterion performs well when compared to other measures.
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G.4 Additional information for the motivation of considering OCM.
We provide the summary for the main motivation of the proposed OCM in two aspects.
Firstly, existing approaches for OCL would usually use a single memory to store the
most important data samples. However, such approached ignore the information about
the future data streams given for training when making the sample selection. Addition-
ally, they tend to have more computational costs than OCM because they perform the
sample selection during each training step. The proposed OCM can overcome these
two drawbacks by involving an STM memory that stores more recent samples. This
STM can provide future information about the data stream, which benefits the sample
selection, empirically demonstrated in Fig. 4a. Additionally, OCM only performs the
sample selection when STM is full, which can significantly reduce the computational
costs compared with existing approaches. Secondly, different from existing methods,
the proposed OCM evaluates the sample similarity in the feature space using the kernel-
based criterion. There are two advantages over existing approaches : 1) The sample
selection in the proposed OCM does neither require the task information nor class la-
bels, and consequently it can be used in unsupervised learning. 2) The sample selection
in the proposed OCM does not rely on the loss function. This means that the proposed
OCM does not require changing the selection criterion when it is used in a wide range
of applications. Additionally, the proposed OCM can be used in any VAE variant with
minimal modifications.

G.5 Additional information for the connection between the pro-
posed OCM and the theoretical analysis

This section provides additional information for the connection between the proposed
OCM and the theoretical analysis from the paper. Previous approaches have proposed
to learn a diverse memory according to the category information. However, these ap-
proaches do not provide a theoretical guarantee for the accumulated memory’s diver-
sity. To our best knowledge, this paper is the first to provide theoretical guarantees
and forgetting analysis for existing OCL models (See details in Section F). Addition-
ally, the proposed theoretical framework demonstrates that the diversity of memory
content can be achieved without knowing the category information (Lemma 1 of the
paper). This motivates us to develop a new memory buffering approach that does not
rely on the task information and class labels, which can be used in both supervised and
unsupervised learning.

Furthermore, Lemma 2 of the paper shows that by considering the dynamic expan-
sion mechanism, we improve the performance of the model over when considering a
single VAE. The dynamic expansion mechanism reduces the negative transfer when
each component learns different underlying data distributions (See detailed analysis in
Appendix C). This theoretical analysis guides our dynamic expansion mechanism from
two aspects. Firstly, we introduce a criterion to detect the data distribution shift by
comparing the loss value between the previously learnt samples and the novel samples
(Eq. (21) and (22) of the paper). Secondly, in order to encourage each component to
learn different underlying data distributions, we would clear both STM and LTM when
dynamically adding a new component to the mixture model. This can also avoid the
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negative transfer by preserving the previously learnt knowledge into the frozen network
structure, satisfying the conclusion of Lemma 2 of the paper (See detailed analysis in
Appendix C).

H Additional information for the experimental config-
uration

The release of the code. We have provided the detailed implementation of the pro-
posed Online Cooperative Memory (OCM) model. We will organize the source code
of the OCM model for the sake of easy understanding and for facilitating the re-
implementation and we will release it publicly on https://github.com/ if the paper is
accepted.

H.1 Experiment setting
The hyperparameter configuration and GPU hardware. To perform the density esti-
mation task, we use Adam [12] with a learning rate of 0.0001 and its default hyperpa-
rameters. To perform the generative modelling task, we use the Adam with a learning
rate of 0.00005. We set the batch size and the number of epochs for each training step
as 64 and 100, respectively. The GPU used for the experiments was GeForce GTX
1080. The operating system considered for experiments was Ubuntu 18.04.5.
The configuration of the network architecture for log-likelihood estimation task. We adapt
the network architecture from [4] where two fully connected layers implement the in-
ference and generator models. Each layer has 200 hidden units. The shared modules
use the expansion mechanism as a single fully-connected neural network with a layer
(200 hidden units). A single layer also implements each individual component with
200 hidden units for both the generator and inference models.
The configuration of the network architecture for the generative modelling task. The shared
encoder is implemented using a fully connected network with three layers of processing
with [2000, 1500, 1000] units, and the component encoder uses a fully connected net-
work with three layers of [600, 300, 200] units. The shared decoder is implemented by
a fully connected network with three layers [200, 300, 600] and the component encoder
is implemented by a fully connected network with three layers [1000, 1500, 2000]. The
dimension of the latent variable is 200.
Hyperparameter setting. The batch size is of 64 images, and we consider 100 epochs
for each training stage. The maximum memory size of STM is 0.5K and the optimal
λ = 0.6 and λ2 = 10 in Eq. (19) and (21) of the paper, respectively.
Additional information for the evaluation. All results reported in the paper are evalu-
ated on the testing datasets after Online Continual Learning (OCL).
Additional information for Tiny-ImageNet under the generative modelling task. We di-
vide Tiny-ImageNet into ten parts, Each part in Split Tiny-ImageNet has samples from
20 segregated categories.
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H.2 The configuration for the classification task.
First, we introduce the details about the datasets used in our classification task as fol-
lows.
Split MNIST. We divide MNIST which contains 60k training samples into five tasks,
each consisting of images from two classes, in consecutive order of their displayed
digits, while increasing the numbers represented in the images [6].
Split CIFAR10. We split CIFAR10 into five tasks where each task consists of samples
from two different classes [6].
Split CIFAR100. We split CIFAR100 into 20 tasks where each task has 2500 examples
from five different classes [15].

We adapt ResNet 18 [10] for Split CIFAR10 and Split CIFAR100. We use an MLP
network with 2 hidden layers of 400 units each [6] for Split MNIST. The maximimum
memory size (LTM + STM) for Split MNIST, Split CIFAR10, Split CIFAR100 are
2000, 1000 and 5000, respectively. For Dynamic-OCM, we build a new classifier
when the proposed mixture model creates a new component where the classifier is
trained on the labelled samples drawn from LTM and STM. For the inference process,
the classifier with the associated selected component is used to make predictions for
the given samples.

After the convergence following the training, the final number of components in
Dynamic-OCM is 7, 8, 13 for Split MNIST, Split CIFAR10 and Split CIFAR100, re-
spectively.

We introduce the baselines used for the classification task but which are not men-
tioned in the paper.
Finetune trains a single model directly on a new batch of images during the online
continual learning.
Gradient Episodic Memory (GEM) [15] is a memory-based approach that would use
the memory to store past samples. GEM is also required to access both the task label
and class label during the training.
Incremental Classifier and Representation Learning (iCARL) [19] is a standard memory-
based method used in a class incremental setup.
reservoir* [20] is a memory-based approach that stores the observed sample into a
memory bufferM with probability |M|/n where n is the number of stored samples,
and | · | represents the cardinality of a set.
MIR [1] introduces a retrieval strategy for the sample selection in the memory during
the Online Continual Learning (OCL). However, the retrieval strategy in MIR requires
evaluating the loss in each training session. This means that MIR requires modifying
the retrieval strategy for different tasks such as classification or generation tasks. The
proposed OCM does not change the sample selection strategy for different tasks since
we evaluate the sample similarity in the given feature space using the kernel function
from Eq. (16) from the paper.
GSS [2] formulates the sample selection process as a constraint reduction problem.
GSS stores samples in a buffer based on the gradient information which requires to
access the class labels and can not be applied in the unsupervised learning setting.
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H.3 Additional information for the reconstruction task
In this section, we investigate the performance of the reconstruction task when learning
multiple domains. We create a data stream consisting of samples from Split CIFAR10,
Split Tiny-ImageNet and CelebA, where the samples from CelebA are not ordered and
we name this setting as CTC. The batch size is set to 64 for this setting and other hyper-
parameters are the same as for Split CIFAR10. The maximum number of components
are restricted to not more than 20. We present the results in Table 2, where Inception
Score (IS) and Fréchet Inception Distance (FID) are calculated on testing samples from
Split CIFAR10 and Split Tiny-ImageNet in order to evaluate the reconstruction quality
on the previously learnt datasets.

Methods IS FID Memory N

VAE-ELBO-Random 4.12 103.55 3K 1
CNDPM [14] 4.15 97.49 2K 20
LIMix [23] 3.84 129.32 2K 20

VAE-ELBO-OCM 4.25 89.40 2K 1
Dynamic-ELBO-OCM 4.36 80.25 1.3K 5

Table 2: IS and FID scores under CTC.

Configuration for ImageNet under OCL. We train a single VAE model with OCM on
the ImageNet training set wherein each training step, we only access a batch of sam-
ples. We use β-VAE [11] loss for training and β = 0.01 relieves the over-regularization
problem. In order to avoid growing LTM fast at the initial learning stage, the sample
selection approach in this setting only chooses a single sample that has the largest dis-
tance from LTM and adds this sample into LTM. The number of training epochs for
each training step ti is 5. We adapt the network architecture from [22], the generator
(decoder) consists of 6 convolution layers with {256, 256, 256, 256, 128, 3} units. The
inference model of the VAE consists of four convolution layers with {64, 128, 256, 512}
units, one hidden layer with {1024} units and two separate layers with {256} units
each, which are used to output the hyperparameters of the Gaussian distribution. The
dimension of the latent variable is 256.

H.4 Additional results for the ablation study
Ablation study for the hyperparameters. We firstly investigate the performance change
when varying the size of STM and the threshold λ from Eq. (19) of the paper for a
single VAE model under Split MNIST. The results are provided in Fig. 4 where the
model faces degenerated performance when the size of STM is very small (300). This
demonstrates that by condidering additional future samples can improve the perfor-
mance. The results when changing the threshold λ are reported in Fig. 4b. These
indicate that a large λ leads to smaller memory sizes and consequently a drop in the
performance.
Ablation study for the dynamic expansion. Firstly, we investigate the performance of
Dynamic-ELBO-OCM when changing the threshold λ2 = {5, 10, 15, 20, 25, 30} from
eq. (21) from the paper, while λ = 0.6 from eq. (19) and the maximum memory
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(a) Changing STM size. (b) Changing λ.

Figure 4: Assessment of the STM size and when changing the threshold λ for a single
VAE model.

size for STM is of 500. From the results reported in Fig. 5 we can observe that by
increasing λ2 we can reduce the number of components. If λ2 is very small, such
as λ2 = 5, the model has more components and consequently its performance would
improve significantly.

Figure 5: The performance when changing the threshold λ2 for Dynamic-ELBO-OCM
under Split MNIST.

Changing the batch size. We investigate the performance and memory change when
varying the batch size. We consider batch sizes of 10, 30, 64, 80, 100, 120 for training
a single VAE model with OCM under Split MNIST, and the results are reported in
Fig. 7a. From this plot we can observe that the change of batch size has only a minor
change in the LTM size and in the performance.

In the following, we evaluate the performance change of a dynamic expansion
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model with OCM under Split MNIST with different batch sizes and the results are
reported in Fig. 7b. It can be observed that the change of batch size does not have a
significant influence, neither on the performance nor on the number of components.
We present some memorized samples, from MNIST database and stored in the LTM
in Fig. 6. The result shows that the proposed approach can encourage LTM to store
diverse data samples during OCL.

Figure 6: Memorized samples draw from LTM.

(a) Single VAE with OCM. (b) Dynamic expansion model with OCM.

Figure 7: The change of LTM size and performance when training a single VAE model
with OCM under Split MNIST with different batch sizes.

Unsupervised forward/backward transfer. To investigate the results for the proposed
forward/backward transfer criteria, we train a VAE model that randomly selects sam-
ples, as a baseline. We calculate the backward transfer score for each training step by :

si = |E(ti,i) − E
′
ti | (61)

where si represents the score calculated by the model at the training step ti and other
notations are defined in Section E. We also define the forward transfer score for each
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training step by :
s′i = |E′ti+1

− E(ti,i+1)| (62)

We provide the curve of the proposed forward/backward transfer criteria for both
the baseline and a single VAE with the proposed OCM in Fig. 8 where ”OCM-Metric”
and ”Random-Metric” represent the scores achieved by the baseline and the proposed
approach, respectively. We can observe from these results that the proposed approach
achieves better results than the random selection approach in each training step. We
also report the results for the criteria (See BWT from Eq. (44)) and FWT from Eq. (45))
in Fig. 9. These results show that the proposed OCM outperforms the baseline by a
large margin in both the forward and backward transfer criteria.

(a) Forward transfer results. (b) Backward transfer results.

Figure 8: Training curves for the proposed forward/backward transfer criteria, calcu-
lated for each training step under Split MNIST.

(a) Forward transfer results. (b) Backward transfer results.

Figure 9: The results for the proposed forward/backward transfer criteria from Eq. (44))
and Eq. (45), under Split MNIST.

The scale hyperparameter of the RBF kernel used in the proposed OCM. We investigate
the performance of the proposed OCM framework when changing the hyperparam-
eters of RBF kernel in Eq. (16) from the paper. We vary the hyperparameter α =
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{5, 10, 20, 30, 50, 70, 100} for training a VAE model with OCM under Split MNIST,
We present the results in Fig. 10. These results show that OCM with α = 10 achieves
the best results.

Figure 10: The results when varying the hyperparameter α for the RBF kernel from
Eq. (16) from the paper, under Split MNIST.

The cosine distance used in the sample selection. We employ the cosine distance used
for the proposed sample selection approach, defined as :

SC(x
e
i,j ,x

l
i,u) :=

zei,j · zli,u∥∥zei,j∥∥∥∥zli,u∥∥ =

dz∑
i=1

zei,j(i)z
l
i,u(i)√

dz∑
i=1

(
zei,j(i)

)2√ dz∑
i=1

(
zli,u(i)

)2 (63)

We use ”VAE-ELBO-OCM-COS” to represent a VAE model with OCM, where the
cosine distance is used as the criterion for the sample selection. Since a small measure
in Eq. (63) means that xei,j is far away from xli,u, we modify Eq. (19) of the paper by :

R
S(xei,j) < λ⇒Ml

i =Ml
i ∪ xei,j . (64)

where λ is set to 0 in our experiment.
We report the results of various models under Split MNIST in Table 3. These

results show that the kernel used as the criterion for the sample selection outperforms
the cosine distance.
Imbalanced Benchmark Results. We follow the imbalanced data stream setting from
[6], where several selected tasks have more samples while the remaining tasks have
fewer data samples (See the detailed setting in [6]). The network architecture for the
imbalanced benchmark is the same as for the balanced setting except for the Split
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Methods Log Memory N

VAE-ELBO-OCM-COS -137.92 1.6K 1

VAE-ELBO-OCM -132.07 1.6K 1
VAE-IWVAE50-OCM -127.11 1.6K 1
Dynamic-ELBO-OCM -115.89 1.1K 5

Table 3: The estimation of log-likelihood on all testing samples by using the IWVAE
bound with 1000 importance samples.
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(a) Split MNIST.
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(b) Split CIFAR10.
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(c) Split CIFAR100.

Figure 11: The results for the imbalanced benchmark where the results of baselines are
cited from [6].
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MNIST where we use an MLP with two hidden layers of [100 100] units, with the
memory size of 3K.

We report the imbalanced benchmark results in Fig. 11 where the number of com-
ponents for Split MNIST, Split CIFAR10 and Split CIFAR100 is 7,6 and 10, respec-
tively. These results show that the proposed OCM with the dynamic expansion mecha-
nism outperforms the state of the art approaches on the imbalanced data stream setting.
Why combine the OCM and dynamic expansion mechanism? The primary motivation
of the combination between the OCM and the dynamic expansion mechanism is pro-
vided in Section G.5. Additionally, the empirical results (Table 1 and Table 2 of the
paper) indicate that the proposed OCM with the dynamic expansion mechanism outper-
forms a single VAE model with OCM for all datasets. Furthermore, we also provide
the empirical results of theoretical analysis to show the importance of the proposed
dynamic expansion mechanism, according to the explanations from the following Sec-
tion H.5.

H.5 Analysis of the theoretical results
Theoretical results for a single VAE model. We train VAE-ELBO-OCM under Split MNIST
and evaluate ELBO on Px (Training set) and Pmi

(Memory). We plot the results in
Fig. 12 where “Target” and “Source” represent the ELBO evaluated on Px and Pmi ,
respectively. It can be observed that ELBO on Px is very small as the model is trained
with few training steps and the model continually learns novel samples, as it is ex-
plained by Theorem 2 of the paper. We also investigate how the diversity can relieve
forgetting, explained in Lemma 1. We train a baseline that only stores the more recent
samples during the learning and we plot the result in Fig. 12b where ”Source (Di-
versity)” represent ELBO on Pmi evaluated by VAE-ELBO-OCM and ”Target (Non-
Diversity)” represent ELBO on Px evaluated by the baseline. We can observe that
VAE-ELBO-OCM has rather stable performance according to its ELBO on Pmi

, while
the performance of the baseline on the target domain tends to degenerate as the training
step increases, because of forgetting.

(a) ELBO on Pmi and Px. (b) Diversity analysis.

Figure 12: Empirical results for theoretical analysis.
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The theoretical results of the dynamic expansion model. We also investigate the theo-
retical results of the dynamic expansion model. First, we train Dynamic-ELBO-OCM
under Split MNIST where we evaluate ELBO on Px (Training set) and Pmi

(Memory),
We also train a baseline that randomly selects samples during OCL. We then plot the
results for each training step in Fig. 13a where ”Target (Dynamic-OCM)” represents
the ELBO evaluated on the target domain Px, achieved by Dynamic-ELBO-OCM.
The results show that although the baseline has a similar ELBO on the source domain
(memory) with Dynamic-ELBO-OCM, the ELBO on the target domain, achieved by
Dynamic-ELBO-OCM, is an upper bound for the ELBO on the target domain, per-
formed by the baseline. This shows that a higher ELBO on the source domain can
not guarantee good performance on the target domain, as demonstrated in Remark
of Theorem 2 of the paper. Additionally, we also compare the ELBO provided by
Dynamic-ELBO-OCM and VAE-ELBO-OCM and plot the results in Fig. 13b where
”Source (OCM)” represents the ELBO on the source domain, estimated by VAE-
ELBO-OCM. It shows that ELBO on the target domain, obtained following the dy-
namic expansion mechanism, is still an upper bound to ELBO on the target domain,
performed by a single model. This demonstrates that the dynamic expansion model
can achieve a maximum upper bound to ELBO on the target domain when compared
with a single model, as described in Lemma 2 of the paper. Furthermore, as shown in
Fig. 13b, Dynamic-ELBO-OCM achieves a similar ELBO on the target domain with
VAE-ELBO-OCM at the initial training phase. However, Dynamic-ELBO-OCM grad-
ually outperforms VAE-ELBO-OCM in the following training steps. This demonstrates
that the proposed dynamic expansion mechanism can further relieve the negative trans-
fer when compared with a single model, as discussed in Section C and Section G.5. The
theoretical results for a general continual learning setting where the task information is
given, will be investigated in our future studies.

(a) Diversity analysis (b) The comparison between Dynamic expansion
model and a single model.

Figure 13: Empirical results of theoretical analysis for the dynamic expansion model.
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H.6 The model’s complexity analysis
Since only CN-DPM [14] reports the number of parameters for the classification task
under OCL, we provide the comparison on the number of parameters in Table 4. We
can observe from this Table that the proposed approach outperforms CN-DPM while
requiring fewer parameters.

Methods Split MNIST Split CIFAR10 Split CIFAR100

CN-DPM [14] 524K 4.60M 19.2M
Dynamic-OCM 519K 2.80M 17.87M

Table 4: The number of parameters for the classification task. The number of parame-
ters for CN-DPM is reported in [14].

Time complexity analysis. To compare with the random selection approach, the pro-
posed OCM would require a bit more computational cost in the evaluation step (See de-
tails in Eq.(16) of the paper). However, we can accelerate the computations of Eq.(16)
of the paper by the matrix operation (Eq.(17) of the paper). Additionally, compared
with existing sample selection approaches [2, 6, 3], the proposed OCM requires fewer
computations since OCM has an STM to store the more recent samples to avoid fre-
quently performing the sample selection (See Section 5.1 of the paper).

H.7 Visual results
In this section we provide further visual results. In Fig. 14 we provide the generated
results by the proposed method and for other methods for comparison. Testing samples
and the reconstruction given by various models after the Cross-Domain setting for
MNIST, Fashion and Omniglot are provided in Fig. 15. The reconstruction results
for various models for CIFAR10 database are provided in Fig. 16 and on ImageNet
[13] on Fig. 17.

34



(a) Real testing samples. (b) VAE-ELBO-OCM.

(c) Dynamic-ELBO-OCM. (d) VAE-ELBO-Random.

(e) LIMix. (f) CN-DPM.

Figure 14: Testing samples and the reconstruction given by various models after CTC.
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(a) Real testing samples. (b) VAE-ELBO-OCM.

(c) Dynamic-ELBO-OCM. (d) VAE-ELBO-Random.

Figure 15: Testing samples and the reconstruction given by various models after the
Cross-Domain setting.
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(a) Real testing samples. (b) VAE-ELBO-OCM.

(c) Dynamic-ELBO-OCM. (d) VAE-ELBO-Random.

Figure 16: Testing samples and the reconstruction given by various models after Split
CIFAR10 setting.
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(a) Real testing samples. (b) Reconstruction of VAE-ELBO-OCM

Figure 17: The real testing samples and their reconstruction on ImageNet after OCL.
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I Limitations of the proposed OCM
In this section, we discuss the limitation of our work, which will be addressed in our
future studies. Since we use the kernel-based diversity criterion for the sample selec-
tion in OCL, the choice of the kernels and hyperparameters is vital to decide the upper
bound of the model’s performance. Additionally, using other criteria for the sample se-
lection for the proposed OCM framework would also be important in order to explore
the full advantage of the proposed OCM framework. Therefore, we have investigated
several kernel settings and other criteria in Appendix-H.4. More results will be inves-
tigated in our future studies.
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