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1 Denoising network structure

In this section, we provide the detailed network structure of the proposed fully
convolutional network backbone. The first prior network structure is shown in

Fig. S1 and the non-first in Fig. S2. Here, u0 = x0− λ0
2

γ1
2
and ui−1 = xi−1− λi−1

2

γi
2
.

2 Scalable comparison

In this section, we test four different size datasets: 256×256×24, 512×512 ×10,
1024 ×1024×18 and 1536×1536×12. These four datasets have different sizes not
only in spatial dimension but also in temporal dimension. Here, we use GAP
as the PnP framework [2]. Thus, we can denote the GAP-FFDNet (GAP-
FastDVDnet) as PnP-FFDNet (PnP-FastDVDnet). To help compare, the de-
tailed results are presented, including tables, images and videos. For videos,
please refer to the folder ’video/ scalable’(https://github.com/integritynoble/
ELP-Unfolding/tree/master/video).

2.1 Data size 256 × 256 × 24, (B=24).

In this case, the dataset is the same with the benchmark but the compression
ratio B is now set to 24. Because of high compressed ratio, which is three times
of the benchmark, the reconstruction accuracy is reduced but our proposed ELP-
Unfolding but we can still obtain the acceptable results (31.53 dB for PSNR),
as show in Table S1 and Fig. S3. In this case, one measurement is used to
test. As shown in Fig. S3, FFDNet just gets the deformed shapes because of
high compressed ratio. But our proposed ELP-Unfolding achieves clearer images
than other three algorithms.

2.2 Data size 512 × 512 × 10, (B=10).

In this case, the spatial size is 512× 512 and temporal size is 10. Here, three
measurements are used to test. The dataset is cropped from the Ultra Video

https://github.com/integritynoble/ELP-Unfolding/tree/master/video
https://github.com/integritynoble/ELP-Unfolding/tree/master/video
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Group (UVG) dataset [1]. The results are shown in Table S2 and Fig. S4. Because
of low compressed ratio and large spatial size, high reconstruction can easily be
achieved. But our proposed ELP-unfolding still get the best result at the shortest
testing time.

2.3 Data size 1024 × 1024 × 18, (B=18).

In this case, the spatial size is 1024× 1024 and temporal size is 18. Here, four
measurements are used to test. The dataset is also cropped from the Ultra Video
Group (UVG) dataset [1]. The results are shown in Table S3 and Fig. S5. Because
of high compressed ratio, the reconstruction accuracy of other algorithms gets
degraded, especially GAP-TV. By contrast, our proposed ELP-unfolding still
keeps high reconstruction accuracy (36.00 dB for PSNR).

2.4 Data size is 1536 × 1536 × 12, (B=12).

In this case, the spatial size is 1536× 1536 and temporal size is 12. Here, one
measurement is used to test. The dataset is also cropped from the Ultra Video
Group (UVG) dataset [1]. The results are shown in Table S4 and Fig. S6. Because
of large spatial size, it is not difficult to get good reconstruction results for all
algorithms. However, as shown in the zoomed area, our proposed ELP-unfolding
gets more details.

Therefore, these four datasets indicate that our proposed ELP-unfolding
method has achieved excellent performance for SCI reconstruction not only in
model’s scalability but also in accuracy and speed.

3 Real data

What’s more, all the real dynamic scenes are made into videos. Please refer to the
folder ’video/ real’(https://github.com/integritynoble/ELP-Unfolding/tree/
master/video).

Table S1: Scalability: Data size is 256× 256× 24, (B=24). PSNR (left in dB)
and SSIM (right) are shown

Algorithm Kobe Runner Drop Crash Aerial Average Run time (s)

GAP-TV [2] 23.27, 0.680 25.06, 0.796 29.41, 0.907 22.60, 0.729 22.87, 0.728 24.64, 0.768 2.78(CPU)

PnP-FFDNet [3] 20.31, 0.606 22.60, 0.747 25.76, 0.846 19.91, 0.679 19.97, 0.646 21.71, 0.705 5.96(GPU)

PnP-FastDVDnet [4] 23.34, 0.695 27.83, 0.867 31.75, 0.952 24.60, 0.801 23.82, 0.756 26.27, 0.814 17.84(GPU)

ELP-Unfolding (Ours) 28.68, 0.879 34.71, 0.950 40.01, 0.986 27.50, 0.910 26.75, 0.864 31.53, 0.918 0.257(GPU)

https://github.com/integritynoble/ELP-Unfolding/tree/master/video
https://github.com/integritynoble/ELP-Unfolding/tree/master/video
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Fig. S1: The first denoising prior network structure
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Fig. S2: The non-fisrt denoising prior network structure

Table S2: Scalability: Data size is 512× 512× 10, (B=10). PSNR (left in dB)
and SSIM (right) are shown

Algorithm Beauty512 Bosphorus512 HoneyBee512 Jockey512 ShakeNDry512 Average Run time (s)

GAP-TV [2] 36.37, 0.910 33.63, 0.893 37.62, 0.947 32.68, 0.899 32.66, 0.836 34.59, 0.897 4.99(CPU)

PnP-FFDNet [3] 38.78, 0.922 37.23, 0.932 37.68, 0.945 37.60, 0.937 32.59, 0.832 36.78, 0.914 8.23(GPU)

PnP-FastDVDnet [4] 37.98, 0.915 35.49, 0.899 40.44, 0.957 36.74, 0.921 31.84, 0.808 36.50, 0.900 27.36(GPU)

ELP-Unfolding (Ours) 40.58, 0.940 40.85, 0.960 43.05, 0.970 40.26, 0.956 34.52, 0.876 39.85, 0.940 0.896(GPU)



4 Yang C., Zhang S. and Yuan X.

Aerial 
#20

Crash 
#08

Drop 
#07

Kobe 
#07

Runn
er 
#03

Ground Truth GAP-TV PnP-FFDNet PnP-FasTDVDnet ELP-Unfolding

Fig. S3: Scalability: Data size is 256× 256× 24.

Table S3: Scalability: Data size is 1024× 1024× 18, (B=18). PSNR (left in dB)
and SSIM (right) are shown

Algorithm Beauty1024 Jockey1024 ReadySteadyGo1024 ShakeNDry1024 YachtRide1024 Average Run time (s)

GAP-TV [2] 34.50, 0.873 28.13, 0.815 25.78, 0.755 32.19, 0.861 26.32, 0.761 29.38, 0.813 71.83(CPU)

PnP-FFDNet [3] 37.15, 0.898 31.42, 0.896 28.78, 0.858 29.81, 0.793 25.99, 0.787 30.63, 0.846 90.49(GPU)

PnP-FastDVDnet [4] 35.54, 0.889 33.52, 0.927 32.28, 0.911 32.65, 0.849 30.51, 0.864 32.90, 0.888 249.41(GPU)

ELP-Unfolding (Ours) 38.95, 0.916 38.44, 0.948 34.07, 0.924 35.42, 0.902 33.10, 0.909 36.00, 0.920 3.575(GPU)

Table S4: Scalability: Data size is 1536× 1536× 12, B=12. PSNR (left in dB)
and SSIM (right) are shown

Algorithm CityAlley1536 FlowerKids1536 Lips1536 RaceNight1536 RiverBank1536 Average Run time (s)

GAP-TV [2] 31.88, 0.860 32.89, 0.873 33.23, 0.754 30.63, 0.799 28.43, 0.754 31.41, 0.808 100.82(CPU)

PnP-FFDNet [3] 34.67, 0.894 37.62, 0.934 33.43, 0.738 34.24, 0.827 31.15, 0.826 34.22, 0.844 114.26(GPU)

PnP-FastDVDnet [4] 35.40, 0.883 35.58, 0.912 33.23, 0.728 33.57, 0.818 31.74, 0.837 33.90, 0.836 368.54(GPU)

ELP-Unfolding (Ours) 37.79, 0.924 38.57, 0.940 34.82, 0.780 34.99, 0.846 34.32, 0.891 36.10, 0.876 8.206(GPU)
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Fig. S4: Scalability: Data size is 512× 512× 10.
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Fig. S5: Scalability: Data size is 1024× 1024× 18.



Ensemble Learning for Video SCI 7

CityAlley 
#01

FlowerKids 
#01

Lips #05

RaceNight 
#01

RiverBank 
#01

Ground Truth GAP-TV PnP-FFDNet PnP-FasTDVDnet ELP-Unfolding

Fig. S6: Scalability: Data size is 1536× 1536× 12.
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