# Supplementary Material 

Dongsheng $\mathrm{An}^{1}$, $\mathrm{Na} \mathrm{Lei}^{2}$, and Xianfeng $\mathrm{Gu}^{1}$<br>${ }^{1}$ Stony Brook University<br>${ }^{2}$ Dalian University of Technology<br>\{doan, gu\}@cs.stonybrook.edu, nalei@dlut.edu.cn

## 1 Proof of Thm. 6

Theorem 6 Given $\nu_{1}, \nu_{2} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$, the auxiliary measure is $\mu, T_{k}: \mu \rightarrow \nu_{k}$ are the OT maps with $\mathrm{k}=1,2$. Suppose the distance from $\mu$ to the geodesic connecting $\nu_{1}$ and $\nu_{2}$ is $d$, then $T_{2} \circ T_{1}^{-1}: \nu_{1} \rightarrow \nu_{2}$ is measure preserving and its transport $\operatorname{cost} \mathcal{C}$ is bounded by

$$
\begin{equation*}
\mathcal{W}_{c}\left(\nu_{1}, \nu_{2}\right) \leq \mathcal{C}^{\frac{1}{2}}\left(T_{2} \circ T_{1}^{-1}\right) \leq \mathcal{W}_{c}\left(\nu_{1}, \nu_{2}\right)+2 d \tag{1}
\end{equation*}
$$

Proof. Suppose the geodesic connecting $\nu_{1}$ and $\nu_{2}$ is $\gamma, \mu^{*}$ is the closest point to $\mu$ on $\gamma$. By definition, $\left(T_{k}\right)_{\#} \mu=\nu_{k}$, then we have

$$
\begin{equation*}
\left(T_{2} \circ T_{1}^{-1}\right)_{\# \nu_{1}}=\left(T_{2}\right)_{\#}\left(T_{1}^{-1}\right)_{\# \nu_{1}}=\left(T_{2}\right)_{\#} \mu=\nu_{2} \tag{2}
\end{equation*}
$$

Thus, $T_{2} \circ T_{1}^{-1}$ is measure preserving, but it may not be optimal. Since here we assume that the cost function is given by the $L^{2}$ distance, we have $\mathcal{C}\left(T_{k}\right)=$ $W_{c}^{2}\left(\mu, T_{k}\right)$. Then

$$
\begin{equation*}
\mathcal{C}\left(T_{2} \circ T_{1}^{-1}\right) \geq \mathcal{W}_{c}^{2}\left(\nu_{1}, \nu_{2}\right) \tag{3}
\end{equation*}
$$

$T_{k}$ 's are the optimal transport maps, according to the triangle inequality, we have

$$
\begin{equation*}
\mathcal{C}^{\frac{1}{2}}\left(T_{1}\right)+\mathcal{C}^{\frac{1}{2}}\left(T_{2}\right) \leq \mathcal{W}_{c}\left(\nu_{1}, \nu_{2}\right)+2 d \tag{4}
\end{equation*}
$$

Assume the cell decomposition of $T_{1}$ and $T_{2}$ is given by $\left\{W_{i}^{1}\right\}$ and $\left\{W_{j}^{2}\right\}$, and the refined cell decomposition of $\left\{W_{i}^{1}\right\}$ and $\left\{W_{j}^{2}\right\}$ is $\left\{W_{i j}\right\}$ with $W_{i j}:=W_{i}^{1} \cap W_{j}^{2}$. If we set $d(x, y)=\|x-y\|_{2}$ and by Minkowski inequality,

$$
\begin{align*}
& \mathcal{C}^{\frac{1}{2}}\left(T_{2} \circ T_{1}^{-1}\right) \\
= & {\left[\sum_{i, j=1}^{m, n} \int_{W_{i j}} d\left(y_{i}^{1}, y_{j}^{2}\right)^{2} d \mu(x)\right]^{\frac{1}{2}} } \\
\leq & {\left[\sum_{i, j=1}^{m, n} \int_{W_{i j}}\left(d\left(x, y_{i}^{1}\right)+d\left(x, y_{j}^{2}\right)\right)^{2} d \mu(x)\right]^{\frac{1}{2}} } \\
\leq & {\left[\sum_{i, j=1}^{m, n} \int_{W_{i j}} d\left(x, y_{i}^{1}\right)^{2} d \mu(x)\right]^{\frac{1}{2}}+\left[\sum_{i, j=1}^{m, n} \int_{W_{i j}} d\left(x, y_{j}^{2}\right)^{2} d \mu(x)\right]^{\frac{1}{2}} }  \tag{5}\\
= & {\left[\sum_{i=1}^{m} \int_{W_{i}^{1}}\left\|x-y_{i}^{1}\right\|^{2} d \mu(x)\right]^{\frac{1}{2}}+\left[\sum_{j=1}^{n} \int_{W_{j}^{2}}\left\|x-y_{j}^{2}\right\|^{2} d \mu(x)\right]^{\frac{1}{2}} } \\
= & \mathcal{C}^{\frac{1}{2}}\left(T_{1}\right)+\mathcal{C}^{\frac{1}{2}}\left(T_{2}\right)
\end{align*}
$$

Thus,

$$
\begin{equation*}
\mathcal{C}^{\frac{1}{2}}\left(T_{2} \circ T_{1}^{-1}\right) \leq \mathcal{W}_{c}\left(\nu_{1}, \nu_{2}\right)+2 d \tag{6}
\end{equation*}
$$

Combining the above estimates, we obtain the bounds

$$
\begin{equation*}
\mathcal{W}_{c}\left(\nu_{1}, \nu_{2}\right) \leq \mathcal{C}^{\frac{1}{2}}\left(T_{2} \circ T_{1}^{-1}\right) \leq \mathcal{W}_{c}\left(\nu_{1}, \nu_{2}\right)+2 d \tag{7}
\end{equation*}
$$

## 2 Proof of Proposition 7

Proposition 7 Given $\mu=\sum_{i=1}^{m} \nu_{i}^{1} N\left(x_{i}, \sigma^{2} I_{d}\right)$ and $\nu_{1}=\sum_{i=1}^{m} \nu_{i}^{1} \delta\left(x-x_{i}\right)$, then we have $\mathcal{W}_{c}\left(\mu, \nu_{1}\right) \leq \sigma$ under the quadratic Euclidean cost. Moreover, if $\sigma$ is small enough, then the cell $W_{i}$ of the cell decomposition induced by the semi-discrete OT map from $\mu$ to $\nu_{1}$ should cover $x_{i}$ itself.

Proof. If we transport all the mass corresponding to $N\left(x_{i}, \sigma I_{d}\right)$ to $x_{i}$ of $\nu_{1}$, then we get a transport plan from $\mu$ to $\nu_{1}$. By defining $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{\frac{\|x\| 2}{2 \sigma^{2}}\right\}$, the transport cost of such a transport plan is given by

$$
\begin{equation*}
\mathcal{C}=\sum_{i=1}^{m} \nu_{i}^{1} \int\|x\|^{2} f(d) d x=\sigma^{2} \tag{8}
\end{equation*}
$$

Thus, the optimal transport cost from $\mu$ to $\nu_{1}$, namely $\mathcal{W}_{c}^{2}\left(\mu, \nu_{1}\right)$, should be no more than $\sigma^{2}$. This gives

$$
\begin{equation*}
\mathcal{W}_{c}\left(\mu, \nu_{1}\right) \leq \sigma \tag{9}
\end{equation*}
$$

When $\sigma \ll \min _{i \neq j}\left\|x_{i}-x_{j}\right\|_{2}$, the cell $W_{i}$ s of the cell decomposition induced by the semi-discrete OT map from $\mu$ to $\nu_{1}$ should cover the corresponding $x_{i} \mathrm{~s}$, namely nearly all mass of $\nu_{i}^{1} \mathcal{N}\left(x_{i}, \sigma^{2} I_{d}\right)$ should be transported to $x_{i}$. If $W_{i}$ does not cover $x_{i}$, some mass of $\mathcal{N}\left(x_{j}, \sigma^{2} I_{d}\right)$ with $x_{j} \neq x_{i}$ will be transported to $x_{i}$, as a result $\mathcal{W}_{c}\left(\mu, \nu_{1}\right)$ will be larger than $\sigma$. This corresponds to the cyclical monotonicity of the optimal transport (Chapter 5 of [4]).

```
Algorithm 1 Semi-discrete OT Map
    Input: the absolutely continuous source measure \(\mu\) and the discrete target measure
        \(\nu=\sum_{i=1}^{n} \nu_{i} \delta\left(x-x_{i}\right)\), number of Monte Carlo samples \(N\), positive integer \(s\) and
        the measure accuracy \(\theta\).
        Output: Optimal transport map \(T(\cdot)\).
        Initialize \(h=\left(h_{1}, h_{2}, \ldots, h_{|\mathcal{I}|}\right) \leftarrow(0,0, \ldots, 0)\).
        repeat
            Sample \(N\) samples \(\left\{z_{j}\right\}_{j=1}^{N} \sim \mu\).
            Calculate \(\nabla h=\left(\hat{w}_{i}(h)-\nu_{i}\right)^{T}\).
            \(\nabla h=\nabla h-\operatorname{mean}(\nabla h)\).
            Update \(h\) by Adam algorithm with \(\beta_{1}=0.9, \beta_{2}=0.5\).
            if \(E(h)\) has not decreased for \(s\) steps then
                \(N \leftarrow N \times 2\).
            end if
    until \(\sum_{i=1}^{n} a b s\left(\hat{w}_{i}(h)-\nu_{i}\right)<\theta\)
    OT map \(T(\cdot) \leftarrow \nabla\left(\max _{i}\left\langle\cdot, x_{i}\right\rangle+h_{i}\right)\).
```

```
Algorithm 2 Construct the sparse matrix
    Input: the absolutely continuous source measure \(\mu\), the computed \(h_{1}\) for \(\nu_{1}\), and
    the computed \(h_{2}\) for \(\nu_{2}\).
    Output: Sparse matrix \(S\) of the transport plan.
    Initialize \(S=0_{m \times n}\).
    repeat
        Sample \(z \sim \mu\).
        Find the cell \(W_{i}^{1}\) in \(\left\{W_{i}^{1}\right\}\) that contains \(z\).
        Find the cell \(W_{j}^{2}\) in \(\left\{W_{j}^{2}\right\}\) that contains \(z\).
        Set \(S(i, j)=1\)
    until converge
```


## 3 Algorithm Pipeline for the SDOT algorithm

Based on [1], we summarize the whole pipeline of the SDOT (semi-discrete optimal transport) algorithm in Alg. 1.

## 4 Algorithm Pipeline for constructing the spare matrix

We also summarize the whole pipeline of constructing and extending the sparse matrix $S$ in Alg. 2 .

## 5 Algorithm for Discrete OT plan with continuous $\mu$ where the source measure is sampled from

In the section, we give the algorithm pipeline for computing the discrete OT plan with the continuous $\mu$ where the source measure $\nu_{1}$ is sampled from, as shown in Alg. 3

```
Algorithm 3 Discrete Optimal Transport Plan
    Input: The absolutely continuous source measure \(\mu, \nu_{1}=\sum_{i=1}^{m} \nu_{i}^{1} \delta\left(x-x_{i}\right)\) and
    \(\nu_{2}=\sum_{j=1}^{n} \nu_{j}^{2} \delta\left(y-y_{j}\right)\), the \(\mu\)-volume distortion \(\theta\) and the number \(k\) of the nearest
    neighbours.
2: Output: The approximate OT plan.
3: Compute the semi-discrete OT map \(T_{1}\) and \(T_{2}\) from \(\mu\) to \(\nu_{1}\) and \(\nu_{2}\) with the
    parameter \(\theta\).
    4: Initialize the sparse matrix \(S\) according to Alg. 2.
    5: Extend \(S\) according to its \(k\) nearest neighbours.
    6: Solve the sparse LP problem Eqn. (7).
```

```
Algorithm 4 Discrete Optimal Transport Plan by GM model
    Input: \(\nu_{1}=\sum_{i=1}^{m} \nu_{i}^{1} \delta\left(x-x_{i}\right)\) and \(\nu_{2}=\sum_{j=1}^{n} \nu_{j}^{2} \delta\left(y-y_{j}\right)\), the measure accuracy
    \(\theta\) and the nearest number of \(k\).
    Output: The transport plan.
    Construct \(\mu=\sum_{i=1}^{m} \nu_{i}^{1} \mathbb{N}\left(x_{i}, \sigma I_{d}\right)\), with \(\sigma=0.1 \min _{i \neq k} d\left(x_{i}, x_{k}\right)\).
    Compute the semi-discrete OT map \(T_{2}\) from \(\mu\) to \(\nu_{2}\) with the parameter \(\theta\) based
    on Alg. 1
    5: Initialize the sparse matrix \(S\) : for each sample \(x_{i}\), find the cell \(W_{j}^{2}\) covering it. Then
        set \(S(i, j)=1\).
    6: Extend \(S\) according to the \(k\) nearest neighbours.
    Solve the sparse LP problem of Eqn. (7).
```


## 6 Algorithm for Discrete OT plan with Gaussian Mixture $\mu$ defined by the source measure

In this section, we introduce the algorithm to compute the discrete OT plan with $\mu$ being Gaussian mixture model defined by the source measure $\nu_{1}$, as shown in Alg. 4.

## 7 More results of Color Transfer

In Fig. 1. we show the additional color transfer results of (i) autumn to comunion; (ii) autumn to graffiti; (iii) autumn to rainbow-bridge; (iv) comunion to graffiti; and (v) comunion to rainbow-bridge. It is obvious that the results of the proposed method are sharper than those of Sinkhorn 3. And though the color transferred images of SOT [2 are sharp, the color spaces of them are problematic, as shown in the first three images of the 4th column.


Fig. 1. Additional comparison of the results on color transfer tasks.

## References

1. An, D., Guo, Y., Lei, N., Luo, Z., Yau, S.T., Gu, X.: Ae-ot: A new generative model based on extended semi-discrete optimal transport. In: International Conference on Learning Representations (2020)
2. Blondel, M., Seguy, V., Rolet, A.: Smooth and sparse optimal transport. In: Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. pp. 880-889 (2018)
3. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transportation distances. In: International Conference on Neural Information Processing Systems. vol. 26, pp. 2292-2300 (2013)
4. Villani, C.: Optimal transport: old and new, vol. 338. Springer Science \& Business Media (2008)
