Supplementary Material

Dongsheng An¹, Na Lei², and Xianfeng Gu¹

 ¹ Stony Brook University
 ² Dalian University of Technology {doan, gu}@cs.stonybrook.edu, nalei@dlut.edu.cn

1 Proof of Thm. 6

Theorem 6 Given $\nu_1, \nu_2 \in \mathcal{P}(\mathbb{R}^d)$, the auxiliary measure is $\mu, T_k : \mu \to \nu_k$ are the OT maps with k=1,2. Suppose the distance from μ to the geodesic connecting ν_1 and ν_2 is d, then $T_2 \circ T_1^{-1} : \nu_1 \to \nu_2$ is measure preserving and its transport cost \mathcal{C} is bounded by

$$\mathcal{W}_{c}(\nu_{1},\nu_{2}) \leq \mathcal{C}^{\frac{1}{2}}(T_{2} \circ T_{1}^{-1}) \leq \mathcal{W}_{c}(\nu_{1},\nu_{2}) + 2d \tag{1}$$

Proof. Suppose the geodesic connecting ν_1 and ν_2 is γ , μ^* is the closest point to μ on γ . By definition, $(T_k)_{\#}\mu = \nu_k$, then we have

$$(T_2 \circ T_1^{-1})_{\#} \nu_1 = (T_2)_{\#} (T_1^{-1})_{\#} \nu_1 = (T_2)_{\#} \mu = \nu_2.$$
(2)

Thus, $T_2 \circ T_1^{-1}$ is measure preserving, but it may not be optimal. Since here we assume that the cost function is given by the L^2 distance, we have $C(T_k) = W_c^2(\mu, T_k)$. Then

$$\mathcal{C}(T_2 \circ T_1^{-1}) \ge \mathcal{W}_c^2(\nu_1, \nu_2).$$
(3)

 T_k 's are the optimal transport maps, according to the triangle inequality, we have

$$\mathcal{C}^{\frac{1}{2}}(T_1) + \mathcal{C}^{\frac{1}{2}}(T_2) \le \mathcal{W}_c(\nu_1, \nu_2) + 2d.$$
(4)

Assume the cell decomposition of T_1 and T_2 is given by $\{W_i^1\}$ and $\{W_j^2\}$, and the refined cell decomposition of $\{W_i^1\}$ and $\{W_j^2\}$ is $\{W_{ij}\}$ with $W_{ij} := W_i^1 \cap W_j^2$. If we set $d(x, y) = ||x - y||_2$ and by Minkowski inequality,

2 D. An et al.

$$\mathcal{C}^{\frac{1}{2}}(T_{2} \circ T_{1}^{-1}) = \left[\sum_{i,j=1}^{m,n} \int_{W_{ij}} d(y_{i}^{1}, y_{j}^{2})^{2} d\mu(x)\right]^{\frac{1}{2}} \\
\leq \left[\sum_{i,j=1}^{m,n} \int_{W_{ij}} (d(x, y_{i}^{1}) + d(x, y_{j}^{2}))^{2} d\mu(x)\right]^{\frac{1}{2}} \\
\leq \left[\sum_{i,j=1}^{m,n} \int_{W_{ij}} d(x, y_{i}^{1})^{2} d\mu(x)\right]^{\frac{1}{2}} + \left[\sum_{i,j=1}^{m,n} \int_{W_{ij}} d(x, y_{j}^{2})^{2} d\mu(x)\right]^{\frac{1}{2}} \\
= \left[\sum_{i=1}^{m} \int_{W_{i}^{1}} ||x - y_{i}^{1}||^{2} d\mu(x)\right]^{\frac{1}{2}} + \left[\sum_{j=1}^{n} \int_{W_{j}^{2}} ||x - y_{j}^{2}||^{2} d\mu(x)\right]^{\frac{1}{2}} \\
= \mathcal{C}^{\frac{1}{2}}(T_{1}) + \mathcal{C}^{\frac{1}{2}}(T_{2})$$
(5)

Thus,

$$\mathcal{C}^{\frac{1}{2}}(T_2 \circ T_1^{-1}) \le \mathcal{W}_c(\nu_1, \nu_2) + 2d.$$
(6)

Combining the above estimates, we obtain the bounds

$$\mathcal{W}_c(\nu_1, \nu_2) \le \mathcal{C}^{\frac{1}{2}}(T_2 \circ T_1^{-1}) \le \mathcal{W}_c(\nu_1, \nu_2) + 2d \tag{7}$$

2 Proof of Proposition 7

Proposition 7 Given $\mu = \sum_{i=1}^{m} \nu_i^1 N(x_i, \sigma^2 I_d)$ and $\nu_1 = \sum_{i=1}^{m} \nu_i^1 \delta(x - x_i)$, then we have $\mathcal{W}_c(\mu, \nu_1) \leq \sigma$ under the quadratic Euclidean cost. Moreover, if σ is small enough, then the cell W_i of the cell decomposition induced by the semi-discrete OT map from μ to ν_1 should cover x_i itself.

Proof. If we transport all the mass corresponding to $N(x_i, \sigma I_d)$ to x_i of ν_1 , then we get a transport plan from μ to ν_1 . By defining $f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\{\frac{\|x\|^2}{2\sigma^2}\}$, the transport cost of such a transport plan is given by

$$\mathcal{C} = \sum_{i=1}^{m} \nu_i^1 \int \|x\|^2 f(d) dx = \sigma^2$$
(8)

Thus, the optimal transport cost from μ to ν_1 , namely $\mathcal{W}_c^2(\mu, \nu_1)$, should be no more than σ^2 . This gives

$$\mathcal{W}_c(\mu,\nu_1) \le \sigma \tag{9}$$

When $\sigma \ll \min_{i \neq j} ||x_i - x_j||_2$, the cell W_i s of the cell decomposition induced by the semi-discrete OT map from μ to ν_1 should cover the corresponding x_i s, namely nearly all mass of $\nu_i^1 \mathcal{N}(x_i, \sigma^2 I_d)$ should be transported to x_i . If W_i does not cover x_i , some mass of $\mathcal{N}(x_j, \sigma^2 I_d)$ with $x_j \neq x_i$ will be transported to x_i , as a result $\mathcal{W}_c(\mu, \nu_1)$ will be larger than σ . This corresponds to the cyclical monotonicity of the optimal transport (Chapter 5 of [4]).

Algorithm 1 Semi-discrete OT Map

- 1: **Input:** the absolutely continuous source measure μ and the discrete target measure $\nu = \sum_{i=1}^{n} \nu_i \delta(x - x_i)$, number of Monte Carlo samples N, positive integer s and the measure accuracy θ .
- 2: **Output:** Optimal transport map $T(\cdot)$.
- 3: Initialize $h = (h_1, h_2, \dots, h_{|\mathcal{I}|}) \leftarrow (0, 0, \dots, 0).$
- 4: repeat
- Sample N samples $\{z_j\}_{j=1}^N \sim \mu$. 5:
- Calculate $\nabla h = (\hat{w}_i(h) \nu_i)^T$. 6:
- $\nabla h = \nabla h mean(\nabla h).$ 7:
- Update h by Adam algorithm with $\beta_1 = 0.9, \beta_2 = 0.5$. 8:
- if E(h) has not decreased for s steps then 9:
- 10: $N \leftarrow N \times 2.$
- end if 11:

12: **until** $\sum_{i=1}^{n} abs(\hat{w}_{i}(h) - \nu_{i}) < \theta$

13: OT map $T(\cdot) \leftarrow \nabla(\max_i \langle \cdot, x_i \rangle + h_i)$.

Algorithm 2 Construct the sparse matrix

- 1: Input: the absolutely continuous source measure μ , the computed h_1 for ν_1 , and the computed h_2 for ν_2 .
- 2: **Output:** Sparse matrix S of the transport plan.
- 3: Initialize $S = 0_{m \times n}$.
- 4: repeat
- Sample $z \sim \mu$. 5:

Find the cell W_i^1 in $\{W_i^1\}$ that contains z. Find the cell W_j^2 in $\{W_j^2\}$ that contains z. 6:

- 7:
- Set S(i,j) = 18:

```
9: until converge
```

3 Algorithm Pipeline for the SDOT algorithm

Based on [1], we summarize the whole pipeline of the SDOT (semi-discrete optimal transport) algorithm in Alg. 1.

4 Algorithm Pipeline for constructing the spare matrix

We also summarize the whole pipeline of constructing and extending the sparse matrix S in Alg. 2.

Algorithm for Discrete OT plan with continuous μ 5 where the source measure is sampled from

In the section, we give the algorithm pipeline for computing the discrete OT plan with the continuous μ where the source measure ν_1 is sampled from, as shown in Alg. 3.

4 D. An et al.

Algorithm 3 Discrete Optimal Transport Plan

- 1: **Input:** The absolutely continuous source measure μ , $\nu_1 = \sum_{i=1}^m \nu_i^1 \delta(x x_i)$ and $\nu_2 = \sum_{j=1}^n \nu_j^2 \delta(y y_j)$, the μ -volume distortion θ and the number k of the nearest neighbours.
- 2: Output: The approximate OT plan.
- 3: Compute the semi-discrete OT map T_1 and T_2 from μ to ν_1 and ν_2 with the parameter θ .
- 4: Initialize the sparse matrix S according to Alg. 2.
- 5: Extend S according to its k nearest neighbours.
- 6: Solve the sparse LP problem Eqn. (7).

Algorithm 4 Discrete Optimal Transport Plan by GM model

- 1: **Input:** $\nu_1 = \sum_{i=1}^m \nu_i^1 \delta(x x_i)$ and $\nu_2 = \sum_{j=1}^n \nu_j^2 \delta(y y_j)$, the measure accuracy θ and the nearest number of k.
- 2: **Output:** The transport plan.
- 3: Construct $\mu = \sum_{i=1}^{m} \nu_i^1 \mathbb{N}(x_i, \sigma I_d)$, with $\sigma = 0.1 \min_{i \neq k} d(x_i, x_k)$.
- 4: Compute the semi-discrete OT map T_2 from μ to ν_2 with the parameter θ based on Alg. 1.
- 5: Initialize the sparse matrix S: for each sample x_i , find the cell W_j^2 covering it. Then set S(i, j) = 1.
- 6: Extend S according to the k nearest neighbours.
- 7: Solve the sparse LP problem of Eqn. (7).

6 Algorithm for Discrete OT plan with Gaussian Mixture μ defined by the source measure

In this section, we introduce the algorithm to compute the discrete OT plan with μ being Gaussian mixture model defined by the source measure ν_1 , as shown in Alg. 4.

7 More results of Color Transfer

In Fig. 1, we show the additional color transfer results of (i) autumn to comunion; (ii) autumn to graffiti; (iii) autumn to rainbow-bridge; (iv) comunion to graffiti; and (v) comunion to rainbow-bridge. It is obvious that the results of the proposed method are sharper than those of Sinkhorn [3]. And though the color transferred images of SOT [2] are sharp, the color spaces of them are problematic, as shown in the first three images of the 4th column.

(a) Source (b) Target (c) Sinkhorn (d) SOT (e) Ours. **Fig. 1.** Additional comparison of the results on color transfer tasks.

6 D. An et al.

References

- 1. An, D., Guo, Y., Lei, N., Luo, Z., Yau, S.T., Gu, X.: Ae-ot: A new generative model based on extended semi-discrete optimal transport. In: International Conference on Learning Representations (2020)
- Blondel, M., Seguy, V., Rolet, A.: Smooth and sparse optimal transport. In: Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. pp. 880–889 (2018)
- Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transportation distances. In: International Conference on Neural Information Processing Systems. vol. 26, pp. 2292–2300 (2013)
- 4. Villani, C.: Optimal transport: old and new, vol. 338. Springer Science & Business Media (2008)