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Abstract. The graph matching optimization problem is an essential
component for many tasks in computer vision, such as bringing two de-
formable objects in correspondence. Naturally, a wide range of applicable
algorithms have been proposed in the last decades. Since a common stan-
dard benchmark has not been developed, their performance claims are
often hard to verify as evaluation on differing problem instances and
criteria make the results incomparable. To address these shortcomings,
we present a comparative study of graph matching algorithms. We cre-
ate a uniform benchmark where we collect and categorize a large set of
existing and publicly available computer vision graph matching prob-
lems in a common format. At the same time we collect and categorize
the most popular open-source implementations of graph matching algo-
rithms. Their performance is evaluated in a way that is in line with the
best practices for comparing optimization algorithms. The study is de-
signed to be reproducible and extensible to serve as a valuable resource
in the future.

Our study provides three notable insights: (i) popular problem in-
stances are exactly solvable in substantially less than 1 second, and,
therefore, are insufficient for future empirical evaluations; (ii) the most
popular baseline methods are highly inferior to the best available meth-
ods; (iii) despite the NP-hardness of the problem, instances coming from
vision applications are often solvable in a few seconds even for graphs
with more than 500 vertices.
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1 Introduction

Finding correspondences between elements of two discrete sets, such as keypoints
in images or vertices of 3D meshes, is a fundamental problem in computer vi-
sion and as such highly relevant for numerous vision tasks, including 3D recon-
struction [49], tracking [64], shape model learning [29], and image alignment [7],
among others. Graph matching [24, 55, 63] is a standard way to address such
problems. In graph matching, vertices of the matched graphs correspond to the
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elements of the discrete sets to be matched. Graph edges define the cost struc-
ture of the problem: pairs of matched vertices are penalized in addition to the
vertex-to-vertex matchings. This allows to take, e.g., the underlying geometri-
cal relationship between vertices into account, but also makes the optimization
problem NP-hard.

Deep graph matching [51] is a modern learning-based approach, that com-
bines neural networks for computing matching costs with combinatorial graph
matching algorithms to find a matching. The graph matching algorithm plays a
crucial role in this context, as it has to provide high-quality solutions within
a limited time budget. The high demand on run-time is also due to back-
propagation learning and graph matching minimization being interleaved and
executed together many times during training.

Hense, our work focuses on the optimization part of the graph matching
pipeline. The modeling and learning aspects are beyond its scope. We evaluate a
range of existing open-source algorithms. Our study compares their performance
on a diverse set of computer vision problems. The focus of the evaluation lies on
both, speed and objective value of the solution.

Why do we require a benchmark? Dozens of algorithms addressing the
graph matching problem have been proposed in the computer vision literature,
see, e.g., the surveys [24, 55, 63], and references therein. Most works promise
state-of-the-art performance, which is persuasively demonstrated by experimen-
tal evaluation. However, (i) results from one article are often incomparable to
results from another, since different problem instances with different costs are
used, even if these instances are based on the same image data; (ii) not every
existing method is evaluated on all available problem instances, even if open-
source code is available. Some methods, especially those with poor performance
on many instances, are very popular as baselines, whereas better performing
techniques are hardly considered in comparisons; (iii) new algorithms are often
only evaluated on easy, small-scale problems. This does not provide any informa-
tion on how these algorithms perform on larger, more difficult problem instances.
For these reasons, the field of graph matching has, in our view, not developed
as well as it could have done. By providing a reproducible and extensible bench-
mark we hope to change this in the future. Such a benchmark is of particular
importance for the fast-moving field of deep graph matching, as it helps to select
an appropriate, fast solver for the combinatorial part of the learning pipeline.

Graph matching problem. Let V and £ be the two finite sets, whose elements
we want to match to each other. For each pair i,5 € V and each pair s,l € £
a cost c;s51 € R is given. Each pair can be interpreted as an edge between a
pair of vertices of an underlying graph. This is where the term graph matching
comes from. Note that direct vertez-i-to-verter-s matching costs are defined by
the diagonal elements ¢;s ;5 of the resulting cost (or affinity) matriz C = (c;s 1)
with is = (i,s) € V x L, jl = (j,1) € V x L. The diagonal elements are referred
to as unary costs, in contrast to the pairwise costs defined by non-diagonal
entries. The goal of graph matching is to find a matching, or mutual assignment,
between elements of the sets V and £ that minimizes the total cost for all pairs



Comparative Study of Graph Matching Algorithms 3

of assignments. It can be formulated as the following integer quadratic problem®:

VieV: s <1, d
min Z Z Cis,jl Tis Tji St { ! Zseﬁm = an )
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The vector x defines the matching as x;s = 1 corresponds to assigning i to

s. The inequalities in (1) allow for this assignment to be incomplete, i.e., some
elements of both sets may remain unassigned. This is in contrast to complete
assignments, where each element of V' is matched to exactly one element of £
and vice versa. Note that complete assignments require |V| = |£|.
Relation to the quadratic assignment problem. The graph matching
problem (1) is closely related to the NP-hard [50] quadratic assignment prob-
lem (QAP) [12], which is well-studied in operations research [12,15,48]. The
QAP only considers complete assignments, i.e., |V| = |£| and equality is required
in the constraints in (1). In contrast, in the field of computer vision incomplete
assignments are often required in the model to allow for, e.g., outliers or match-
ing of images with different numbers of features. Still, graph matching and the
QAP are polynomially reducible to each other, see supplement for a proof.

The most famous QAP benchmark is the QAPLIB [11] containing 136 prob-
lem instances. However, the benchmark problems in computer vision (CV) sub-
stantially differ from those in QAPLIB both by the feasible set that includes
incomplete assignments, as well as by the structure of the cost matrix C: (i) CV
problems are usually of a general, more expressive Lawler form [42], whereas
QAPLIB considers factorizable costs ¢;s j; = fijds; known as Koopmans-Beckmann
form. The latter allows for more efficient specialized algorithms. (ii) the cost ma-
trix C' in QAPLIB is often dense, whereas in CV problems it is typically sparse,
i.e., a large number of entries in C are 0; (iii) for CV problem instances the
cost matrix C' may contain infinite costs on the diagonal to prohibit certain
vertex-to-vertex mappings; (iv) QAPLIB problems are different from an opti-
mization point of view. For instance, while the classical LP relaxation [1] is often
quite loose for QAPLIB problem instances, it is tight or nearly tight for typical
instances considered in CV.

Consequently, comparison results on QAPLIB and CV instances differ sig-
nificantly. It is also typical for NP-hard problems that instances coming from
different applied areas require different optimization techniques. Therefore, a
dedicated benchmarking on the CV datasets is required.

Contributions. Our contribution is three-fold: (i) Based on open source data,
we collected, categorized and generated 451 existing graph matching instances
grouped into 11 datasets in a common format. Most graph matching papers use
only a small subset of these datasets for evaluation. Our format provides a ready-
to-use cost matrix C' and does not require any image analysis to extract the costs.

! For sets A and B the notation z € AP denotes a vector  whose coordinates take
on values from the set A and are indexed by elements of B, i.e., each element of B
corresponds to a value from A.
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(ii) We collected and categorized 20 open-source graph matching algorithms and
evaluated them on the above datasets. During that we adapted the cost matrix to
requirements of particular algorithms where needed. For each method we provide
a brief technical description. We did not consider algorithms with no publicly
available open source code. (iii) To allow our benchmark to grow further, we set
up a web site? with all results. Our benchmark is reproducible, extensible and
follows the best practices of [6]. We will maintain its web-page in the future and
welcome scientists to add problem instances as well as algorithms.

Our work significantly excels evaluations in all the papers introducing the
algorithms we study. This implies also to the largest existing comparison [31] so
far. The latter considers only 8 out of the 11 datasets and evaluates 6 algorithms
out of our 20.

2 Background to algorithms

In this section we briefly review the main theoretical concepts and building
blocks of the considered approaches.

Linearization. In case all pairwise costs are zero, the objective in (1) linearizes
to Ziev,seﬁ Cis,isTis, turning (1) into the incomplete linear assignment prob-
lem (iLAP). A typical way of how the iLAP is obtained in existing algorithms
is by considering the Taylor expansion of the objective (1) in the vicinity of a
given point x. The linear term of this expansion forms the iLAP objective. The
iLAP can be reduced to a complete linear assignment problem (LAP) [10], see
supplement, and addressed by, e.g., Hungarian [41] or auction [8] algorithms.
Below, when we refer to LAP this includes both LAP and iLAP problems.
Birkhoff polytope and permutation matrices. For |V| = |£] and z €
[0,1]Y*£, where [0,1] denotes the closed interval from 0 to 1, the constraints
YoserTis=1, Vi€ V,and ), ), x4s=1, Vs € L, define the set of doubly-stochastic
matrices also known as Birkhoff polytope. Its restriction to binary vectors = €
{0,1}V*£ is called the set of permutations or permutation matrices.
Inequality to equality transformation. By adding slack or dummy vari-
ables, indexed by #, with zero cost in the objective in (1), the uniqueness con-
straints in (1) can be rewritten as equalities for V# := VU {#}, L# = LU {#},
and z € [0, 1]V *£”

B:= {x|WEV: Yoscr#Tis=1 and Vse L: Ziev#xiszl}- (2)

, where U is the disjoint union:

Here, 2,4 = 1 (or z4s = 1) means that the node i (or label s) is unassigned.
Following [65], we refer to the elements of B as doubly-semi-stochastic matrices.
Doubly-stochastic relaxation. Replacing the integrality constraints x €
{0,1}V>*£ in (1) with the respective box constraints x € [0,1]V** leads to a
doubly-stochastic relazation of the graph matching problem.? Despite the con-

2 The web site for the benchmark is available at https://vislearn.github.io/gmbench/.

3 Strictly speaking, the term doubly-stochastic corresponds to the case when equality
constraints are considered in (1). In [65] the inequality variant is called doubly semi-
stochastic but we use doubly-stochastic in both cases.
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vexity of its feasible set, the doubly-stochastic relaxation is NP-hard because of
the non-convexity of its quadratic objective in general [53].

Probabilistic interpretation. Doubly-stochastic relaxations are often moti-
vated from a probabilistic perspective, where the individual matrix entries rep-
resent matching probabilities. An alternative probabilistic interpretation is to
consider the product graph between V and L, in which the edge weights directly
depend on the cost matrix C. This way, graph matching can be understood as
selecting reliable nodes in the product graph, e.g., by random walks [17].

Injective and bijective formulations. Assume |V| < |£|. A number of
existing approaches consider an asymmetric formulation of the graph matching
problem (1), where the uppermost constraint in (1) is exchanged for equality, i.e.,
VieV: Y o, = 1. We call this formulation injective. The strict inequality
case |V| < |L] is also referred to as an unbalanced QAP in the literature. Note
that to address problems of the general form (1) by such algorithms, it is neces-
sary to extend the set £ with [V| dummy elements. This is similar to the reduc-
tion from graph matching to QAP described in the supplement. Since availiable
implementations of multiple considered algorithms are additionally restricted to
the case |V| = |L], i.e. to the classical QAP as introduced in Section 1, we adopt
the term bijective to describe the corresponding algorithms and datasets.

Spectral relaxation. The graph matching objective in (1) can be compactly
written as 2T Cz. Instead of the uniqueness constraints in (1) the spectral relaz-
ation considers the non-convex constraint = 'z = n. This constraint includes all
matchings with exactly n assignments, which is of interest when the total number
of assignments n is known, e.g., for the injective formulation where n = |V|. The
minimization of " Cx subject to 'z = n reduces to an eigenvector problem,
i.e., finding a vector x corresponding to the smallest eigenvalue of the matrix C'.
The latter amounts to minimizing a Rayleigh quotient [30].

Path following. Another way to deal with the non-convexity of the graph
matching problem is path-following, represented by [69] in our study. The idea
is to solve a sequence of optimization problems with objective fu:(z) = (1 —
) foux () + Al fean(z) for af, t € 1,..., N, gradually growing from 0 to 1. The
(approximate) solution of each problem in the sequence is used as a starting point
for the next. The hope is that this iterative process, referred to as following the
convez-to-concave path, leads to a solution with low objective value for the whole
problem. The objective for a! = 0 is equal to f..x(7) and is convex, therefore it
can be solved to global optimality. The objective for ¥ = 1 is equal to feay ()
and is concave. Its local optima over the set of doubly-stochastic matrices are
guaranteed to be binary, and, therefore, feasible assignments, i.e., they satisfy
all constraints of (1).

Graphical model representation. The graph matching problem can be
represented in the form of a mazimum a posteriori (MAP) inference problem for
discrete graphical models [54], known also as Markov random field (MRF') energy
minimization and closely related to valued and weighted constraint satisfaction
problems. As several graph matching works in computer vision [31,57,67], use
this representation, we provide it below in more detail.
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Let (V,€) be an undirected graph, with the finite set V' introduced above
being the set of nodes and £ C (g) being the set of edges. For convenience we
denote edges {i,j} € & simply by ij. Let the finite set £ introduced above be the
set of labels. We associate with each node i € V a set £# = £;U{#} with £; C L.
Like above, # stands for the dummy label distinct from all labels in £ to encode
that no label is selected. With each label s € Lfk in each node i € V the unary
cost ;s = ¢isis (0 for s = #) is associated. The case |£;| < |L| corresponds
to infinite unary costs ¢;5,5 = 00, s € L\L;, as the respective assignments can
be excluded from the very beginning. Likewise, with each edge ij € £ and each
label pair sl € E? X £f, the pairwise cost 05 i = ¢isji + cji,is (0 for s or
I = #) is associated. The graph (V,€) being undirected implies ij = ji and
0is.ji = 0j15s. An edge ij belongs to £ only if there is a label pair sl € £; x L;
such that 6;, ;; # 0. In this way a sparse cost matrix C' may translate into a
sparse graph (V,€).

The problem of finding an optimal assignment of labels to nodes, equivalent
to the graph matching problem (1), can thus be stated as

min |:E(y) = Zaﬂh + ZHWM%} s.t.Vi,jeV,i#j:y # Yj Or Y, = +# (3)
vey i€V ijeE

where ) stands for the Cartesian product X, v EZ#, and y; = s, s € L;, is
equivalent to z;; = 1 in terms of (1). Essentially, (3) corresponds to a MAP
inference problem for discrete graphical models [54] with additional uniqueness
constraints for the labels.

ILP representation and LP relaxations. Based on (3) the graph matching
problem can be expressed by a linear objective subject to linear and integrality
constraints by introducing variables x;, ;i = xj1,;s for each pair of labels sl €
E;# X Lfﬁ in neighboring nodes ij € £, and enforcing the equality x;s ;1 = Tis7 5
with suitable linear constraints. An integer linear program (ILP) formulation of
the graph matching problem (1) can then be written as:

min Z CisTis + Z (Cisji + Cjlis)Tis j1 (4)

€{0,1}7
relo ieV,seL? ije€,sleL¥ xL#
VieV: Y w=1, VseLl: ) z, <1, (5)
sG.Cf i€V
Vije &, 1€ Ll Y wieji=mj. (6)
seﬂf&

Here J = {(i,s): i €V, s € L} U {(is,jl): ij € & sl € L x Lfﬁ} denotes the
set of coordinates of the vector x. The formulation (4)-(6) differs from the stan-
dard ILP representation for discrete graphical models by the label uniqueness
constraints (5, rightmost). Substitution of the integrality constraints z € {0, 1}
in (4) with the box constraints x € [0, 1]7 results in the respective LP relazation.
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Table 1. Method properties. Purely primal heuristics are separated from the dual
methods by a horizontal line.

L8 >N > 8 5B o 2 Meaning of properties (‘+' indi-
S o @ ‘= = 5 © c £ @

a0 8:tS5S8ES8 552538 = + cates pre_sence): IQP: addresses IQP
method OJFg s 283 fcs 323w = O formulation; ILP: addresses ILP for-
fgmd [69] + + + [68] mulation; bijective: addresses bijec-
fm [31] + n 32] tive formulation; non-pos.: requires
fw [62] + + + [56] non-positive costs, see Remark 1;
ga [27] + + + + + [20] O-unary: requires zero unary costs;
ipfps [46] + + + + + + [44] lineariz.: linearization-based method;
ipfpu [46] + 4 + + + [44] norm: imposes norm-constraints;
1sm [33] 4e 4 o+ + + [66] doubly: addresses doubly-stochastic
mpm [18] + 4+ + 4 + [19] relaxation; spectral: solves spectral
pm [65] + 4o+ o+ 4 + [68] relaxation; discret.: discretization as
rrwm [17] + + + 4 + [16] in Remark 2; path fol.: path follow-
smac [21] 4t + + + + o+ [20] ing method; fusion: utilizes fusion;
sm [43] + + o+ + + o+ [44] duality: Lagrange duality-based;
dd-1s(0/3/4) [59] x T + 138] SGA: uses dual sub-gradient ascent;
fm-bea [31] + + 4+ o+ [32] BCA: uses dual block-coordinate as-
hbp [67] o+ + + [66] cent; Matlab/C+: implemented in
mp(-mcf/-fw) [57] + + + [56] Matlab/C++ [reference to code]

3 Graph matching algorithms

Below we summarize the graph matching methods that we consider in our com-
parison, see Table 1 for an overview of their characteristics and references.

3.1 Primal heuristics

Linearization based. These methods are based on iterative linearizations of
the quadratic objective (1) derived from its Taylor expansion.

Tterated projected fixed point (ipfp) [46] solves on each iteration the LAP ob-
tained through linearization in the vicinity of a current, in general non-integer,
assignment. Between iterations the quadratic objective is optimized along the di-
rection to the obtained LAP solution, which yields a new, in general non-integer
assignment. We evaluate two versions of ipfp which differ by their initialization:
ipfpu is initialized with 2% € [0,1]Y*¥, where z¥, = 1/V/N if Cis,is < 00, and
z¥, = 0 otherwise. Here, N := |{is € V x L | ¢iss < 0o}|. ipfps starts from the
result of the spectral matching sm [43] described below.

Graduated assignment (ga) [27] optimizes the doubly-stochastic relaxation.
On each iteration it approximately solves the LAP obtained through lineariza-
tion in the vicinity of a current, in general non-integer, assignment utilizing the
Sinkhorn algorithm [40] for a given fixed temperature. The obtained approx-
imate solution is used afterwards as the new assignment. The temperature is
decreased over iterations to gradually make the solutions closer to integral.

Fast approximate quadratic programming (fw) [62] considers the Frank-Wolfe
method [25] for optimizing over the set B, c.f. (2). Each iteration first solves a
LAP to find the optimum of the linearization at the current solution, followed by
a line search in order to find the best convex combination of the current and the
new solution. To obtain an integer solution, the objective of the LAP solution
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is evaluated in each iteration, and the lowest one among all solutions is kept.
The initial LAP is based on the unary costs only. The implementation [56] we
evaluate is applicable to the general Lawler form of the problem (1), in contrast
to the Koopmans-Beckmann form addressed in [62].

Norm constraints based. Spectral matching (sm) [43] uses a spectral relax-
ation that amounts to a Rayleigh quotient problem [30] which can be optimized
by the power iteration method. Here, each update comprises of a simple matrix
multiplication and a subsequent normalization, so that x? is iteratively updated
via 2ttt = —Czt/||Cat||2.

Spectral matching with affine constraints (smac) [21] is similar to sm, but ad-
ditionally takes into account affine equality constraints that enforce one-to-one
matchings. The resulting formulation amounts to a Rayleigh quotient problem
under affine constraints, that can efficiently be computed in terms of the eigen-
value decomposition.

Maz-pooling matching (mpm) [18] resembles sm, but it replaces the sum-
pooling implemented in terms of the matrix multiplication —Czx in the power
iteration update of SM by a max-pooling operation. With that, only candidate
matches with the smallest costs are taken into account.

Local sparse model (1sm) [33] solves the relaxation max, ' Cz, s.t. [|z|] , =

ZLZH( Lﬂl |xik\)2 =1, z > 0. The Iy 2-norm ||z||;,2 should encourage the
solution of the above relaxation to be sparse in each row when treating = as
a matrix. This resembles the sparsity property of permutation matrices, which
satisfy ||z]|12 = |V|.

Remark 1. All of the norm constraints based algorithms described above require
non-positive? costs in order to guarantee convergence of the underlying iterative
techniques. This condition can be w.l.0.g. assumed for any graph matching prob-
lem. The corresponding cost transformation is described in the supplement.

Probabilistic interpretation based. Reweighted Random Walks Match-
ing (rrwm) [17] interprets graph matching as the problem of selecting reliable
nodes in an association graph, whose weighted adjacency matrix is given by —C'.
Nodes are selected through a random walk that starts from one node and ran-
domly visits nodes according to a Markov transition matrix derived from the
edge weights of the association graph. In order to take into account matching
constraints, the authors of [17] consider a reweighted random walk strategy.

Probabilistic matching (pm) [65] considers a probabilistic formulation of
graph matching in which the quadratic objective is replaced by a relative entropy
objective. It is shown that by doing so one can obtain a convex problem formu-
lation via marginalization, which is optimized in terms of an iterative successive
projection algorithm.

Remark 2. Most of the primal heuristics considered above aim to optimize the
quadratic objective (1) over a continuous set such as, e.g., the Birkhoff polytope.
The resulting assignment z € RY*£ is, therefore, not guaranteed to be integer.

4 Non-negative in original maximization formulations
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As suggested in [17], to obtain an integer assignment we solve a LAP with (—x)
treated as the cost matrix. We apply this procedure as a postprocessing step for
ipfp, ga, sm, smac, mpm, lsm, rrwm, and pm. Note that this postprocessing
does not change an integer assignment.

Path following based. Fuctorized graph matching (fgmd) [69] proposes an
efficient factorization of the cost matrix to speed-up computations, and is based
on the convex-concave path following strategy, see Section 2. Individual problems
from the path are solved with the Frank-Wolfe method [25].

Randomized generation and fusion based. Fusion moves with a greedy
heuristic (fm) [31] is based on the graphical model representation and consists
of two parts: A randomized greedy assignment generation, and fusion of the
assignments. The randomized generator greedily fixes labels in the nodes in a
way that minimizes the objective value restricted to the already fixed labels. The
fusion procedure merges the current assignment with the next generated one
by approximately solving an auxiliary binary MAP inference problem utilizing
QPBO-I [52]. The merged solution is guaranteed to be at least as good as the
two input assignments. This property guarantees monotonic improvement of the
objective value.

3.2 Lagrange duality-based techniques

The methods below consider the Lagrange decompositions [28] of the graph
matching problem (1) [59], or its graphical model representation (3) [31,57,67],
and optimize the corresponding dual. The methods differ in the dual optimiza-
tion and chosen primal solution reconstruction algorithms.
Block-coordinate methods (hbp, mp-*, fm-bca). The works [31, 57, 67]
employ a block-coordinate ascent (BCA) technique to optimize the dual prob-
lem obtained by relaxing the coupling (6) and label uniqueness constraints (5,
rightmost). Since the dual is piece-wise linear, BCA algorithms may not attain
the dual optimum, but may get stuck in a sub-optimal fixed point [9,54].
Although the elementary operations performed by these algorithms are very
similar, their convergence speed and attained fixed points differ drastically. In
a nutshell, these methods decompose the problem (3) into the graphical model
without uniqueness constraints, and the LAP problem, as described, e.g., in [31].
Dual algorithms reparametrize the problem making it more amenable to primal
techniques [54]. Table 2 gives an overview of the evaluated combinations for
(i) optimizing the dual of the graphical model, (ii) optimizing the LAP, and
(iii) obtaining the primal solution from the reparametrized costs®, which influ-
ence the practical performance of BCA solvers. Additionally, mp-mcf and mp-fw
tighten the relaxation by considering triples of graph nodes as subproblems.
Subgradient method (dd-1sx). The algorithms denoted as dd-ls* with *
being 0, 3 or 4 represent different variants of a dual subgradient optimization
method [59]. The variant dd-1s0 addresses the relaxation equivalent to a sym-
metrized graphical model formulation, see supplement for a description. This is

5 Reparametrized costs are also known as reduced costs, e.g., in the simplex tableau.
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Table 2. Characterization of dual BCA algorithms.

(i) graphical model (il) LAP (iii) primal Algorithms used for optimizing the _graphical

model and LAP part, as well as technique used

hbp MPLP [26] Hungarian [41] branch & bound  to obtain a primal solution. For LAP in the pri-
mp(-mef) anisotropic network LAP mal _column the SO|l:|tIOn of the LAP subprob-
mp-fw diffusion [54] simplex [2] fur Iem_ls reused as feasible assignment. Instead of
solving the LAP subproblem, fm-bca performs a

fm-bca MPLP++ [60] BCA fm series of BCA steps wrt. the LAP dual variables.

achieved by considering the Lagrange decomposition of the problem into two
graphical models, with V and £ being the set of nodes, respectively, and a LAP
subproblem. The graphical models are further decomposed into acyclic ones,
i.e. trees, solvable by dynamic programming, see, e.g., [54, Ch.9]. The tree de-
composition is not described in [59], and we reconstructed it based on the source
code [38] and communication with the authors. As we observed it to be more
efficient than the maz-flow subproblems suggested in the paper [59] the latter
were not used in our evaluation.

Variants dd-1s3 and dd-1s4 tighten the relaxation of dd-1sO by considering
local subproblems of both graphical models in the decomposition. These are
obtained by reducing the node sets V and £ to 3 or respectively 4 elements
inducing a connected subgraph of the graphical model, see [59] for details.

4 Benchmark

Datasets. The 11 datasets we collected for evaluation of the graph match-
ing algorithms stem from applications in computer vision and bio-imaging. All
existing graph matching papers use only a subset of these datasets for evalua-
tion purposes. Together these datasets contain 451 problem instances. Table 3
gives an overview of their characteristics. We modified costs in several datasets
to make them amenable to some algorithms, see supplement. Our modification
results in a constant shift of the objective value for each feasible assignment,
and, therefore, does not influence the quality of the solution.

Below we give a brief description of each dataset. Along with the standard
computer vision datasets with small-sized problems, hotel, house-dense/sparse,
car, motor and opengm with |V| up to 52, our collection contains the middle-
sized problems flow, with |V| up to 126, and the large-scale worms and pairs
problems with |V| up to 565.

Wide baseline matching (hotel, house-dense/sparse) is based on a series of
images of the same synthetic object with manually selected landmarks from
different viewing angles based on the work by [14]. For hotel and house-dense
we use the same models as in [57] published in [58]. house-sparse consists of the
same image pairs as house-dense, but the cost structure is derived following the
approach of [67] that results in significantly sparser problem instances. Graphs
with the landmarks as nodes are obtained by Delaunay triangulation. The costs
are set to ¢;s ;1 = —exp(—(d;; — dsl)2/2500)A}jA21 where d;j,dg are Euclidean

S
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Table 3. Dataset properties. A ‘4+’ indicates that all problem instances of the
dataset have the respective property.

Meaning of properties:

) — z2_ 28 #inst.: number of problem instances;
g ¢8 > a 5o O - .
5 4 5 %E S 5 = 5 @ u #opt.: number of known optima; bi-
£ & 8 g £ 5 = I ° - g & jective/injective: bi-/injective assign-
dataset g5 * [5]-< |slo IS — ~ ment is assumed; non-pos.: all costs
caltech-large [17] 9 1 + + + 36-219 0.4-2.3 055 18.1 [16] are non-positive; O-unary: datasets
caltech-small [17] 21 12 + + + 9117 043 099 268 [16] with zero unary costs; |V|: number
car [23,47] 30 30 + + 19-49 1 29 100 [45] of elements in V; |L]|/|V]: ratio
flow [3,57] 6 6 48126 ~1 039 158 [4,5] of the number of elements in £
hotel [14,59] 105 105 + 30 1 128 100 [13,58 to the number of elements in V;
house-dense [14,59] 105 105 + 30 1 126 100 [13,58] de”s’t)l’ (%): p_erceh”tage of non- o
house-sparse [14,67] 105 105 + + + 30 1 15 100  [13] zero e ementsom the cost matrix C;
diag. dens. (%): percentage of non-
motor [23,47] 20 20 b By B ! 30 el (8 infinite elements on the diagonal of
opengm [36,39] i ¢ b Cel ! 748 100 371 gata: [references] to problem in-
pairs [31, 34] 16 0 511-565 ~ 1 0.0019 3.7 [32] stances, images, feature coordinates
worms [34] 30 28 558 =~ 2.4 0.00038 1.6 [35] or ground truth.

distances between two landmarks and A' € {0,1}V*Y, A2 € {0,1}£*% are
adjacency matrices of the corresponding graphs. The unary costs are zero.

Keypoint matching (car, motor) contains car and motorbike images from
the PASCAL VOC 2007 Challenge [23] with the features and costs from [47].
We use the instances available from [32].

Large displacement flow (flow) was introduced by [3] for key point matching
on scenes with large motion. We use the instances from [32] which use keypoints
and costs as in [57].

OpenGM matching (opengm) is a set of non-rigid point matching problems
by [39], now part of the OpenGM Benchmark [36]. We use the instances from [32].

The caltech dataset was proposed in [17]. The data available at the project
page [16] contains the mutual projection error matrix D = (d;s ;1), lists of pos-
sible assignments, and partial ground truth. We reconstructed the dataset from
this data. Unary costs are set to zero. Pairwise costs for pairs of possible as-
signments are set to ¢;s ;1 = —max(50 — djs j1,0). We divided the dataset into
caltech-small and caltech-large, where all instances with more than 40000 non-
zero pairwise costs are considered as large.

Worm atlas matching (worms) has the goal to annotate nuclei of C. elegans,
a famous model organism used in developmental biology, by assigning nuclei
names from a known atlas of the organism. A detailed description can be found
in [34]. We use the instances obtained from [32] which are originally from [35].

Worm-to-worm matching (pairs) directly matches the cell nuclei of individual

C. elegans worms to each other. The resulting models are much coarser than
those of the worms dataset. We consider the same 16 problem instances as [31]
using the models from [32].
Evaluation metrics. For fized-time performance evaluation [6] we restrict
run-time (1, 10, 100s) and evaluate attained objective values E, lower bound D
and, for datasets with ground truth available, accuracy acc. We also report the
number of optimally solved instances per dataset.
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100 - - .

Methods solving the largest number of
instances, see p(7 = 10%), are highlighted
in color. Other methods are shown as

“ghosts”, i.e., unlabeled in gray. fm
is the best solver in 65% of all cases,
see p(r = 1). fm-bca outperforms fm

when the allowed performance ratio is
increased to 7 > 3.7. Overall, fm-bca
solves =~ 97% and fm solves = 95% of
all instances. Following are duality-based
methods like mp-fw and dd-1s0.

solving probability p(7) in %

10 10 10 103

ratio to best performance T

Fig. 1. Run-time performance profile [22] across all 451 instances.

For fized-target performance evaluation [6] we measure the time ¢,(p) until
each solver s solves the problem p within an optimality tolerance of 0.1%. For
instances with unknown optimum, we consider the best achieved objective value
across all methods as optimum as suggested in [6]. The performance ratio to

the best solver is computed by r(p) = m. We create a performance

profile [6,22] by computing ps(7) = ﬁ - H{rs(p) < 7 : Vp}| for each solver s

where |P| denotes the total number of problem instances. Intuitively, ps(7) is
the probability of solver s being at most 7 times slower than the fastest solver.

5 Empirical Results

Fixed-time evaluation presented in Table 4 addresses small problem instances,
whereas Table 5 addresses mid-size and large problem instances. The perfor-
mance profile for fixed-target evaluation is presented in Figure 1. More detailed
results are available in the supplement. Results have been obtained by taking
the minimum run-time across five trials on an AMD EPYC 7702 2.0 GHz pro-
cessor. Randomized alogrithms were made deterministic by fixing their random
seed (fm and fm-bca). We equally treat Matlab and C++ implementations, in
spite of the apparent efficiency considerations, because the solution quality of all
Matlab algorithms is inferior to the C++ techniques, even if run-time is ignored.

For small problems we show results for 1 second in Table 4, as the best
methods already solve almost all instances to optimality within this time. The
best methods on these datasets are fm, fm-bca and dd-1s0. dd-1s3/4 have higher
costs per iteration, and require more than 1 second to arrive at the solution
quality of dd-1s0. The other dual BCA-based methods perform almost as good
on all but the opengm dataset, which seems to be the most difficult dataset
amongs the one in Table 4. Apart from fm pure primal heuristics are unable to
compete with duality-based techniques. The comparison of the results for house-
dense and house-sparse shows that most of the primal heuristics perform much
better on sparse problems.

For larger problems the most representative times shown in Table 5 are 1,
10 and 100 seconds, depending on the dataset. Again, the duality-based methods
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Table 4. Fixed-time evaluation of small problem instances. Maximal run-time
per problem instance is 1 second. Boldface marks best values, except for accuracy
since algorithms do not optimize it explicitly and do not have access to a ground truth.
Horizontal line separates purely primal from duality-based methods. Accuracy omitted
for opengm as no ground truth available. Dual bounds omitted as most problems are
solved optimally.

hotel (1s) house-dense (1s) house-sparse (1s) car (1s) motor (1s) opengm (1s) caltech-small (1s)
opt E  acc opt E acc opt E acc opt E acc opt E acc opt E opt E acc
fgmd 0 —* 0 —* 0 —* 0 —* 0 —* 0 —* 0 —*
fm 97 -4292 100 100 -3778 100 100 -67 100 77 -69 83 90 -63 93 100 -171 52 -8906 58
fw 97 -4288 99 100 -3778 100 O 0 0 7 -63 63 20 -58 70 O -152 0 0 0

mp-fw 99 -4292 100 100 -3778 100 100 -67 100 90 -69 91 95 -63 98
mp-mcf 90 -4245 98 31 -3542 89 100 -67 100 87 -69 91 90 -63 98

-150 33 -8886 60
-57 5 -7882 60

ga 0 947 15 0 3491 8 100 -67 100 57 -68 84 55 -62 90 50 -167 O =
ipfps 0O 1051 14 O 3654 8 100 -67 100 10 -65 80 25 -61 85 O -95 19 -8983 67
ipfpu 0 1062 15 O 3659 8 100 -67 100 7 -60 69 15 -58 77 O -86 10 -8829 62
Ism 0 — 0 —* 46 -65 96 0 -51 52 10 -52 64 O -67 0 =
mpm 43 -2585 78 O 1260 53 O -60 90 7 il 5 —* 0 -94 0 —*
pm 0 775 33 0 3262 18 0 -54 83 0 -35 23 0 -35 32 O -83 0 -6510 51
rrwm 0O 744 15 0 2895 10 100 -67 100 37 -68 87 50 -62 89 O -154 5 —*
sm 0 1086 13 0 3789 9 96 -67 100 7 -63 76 40 -60 87 O -101 0 -3932 36
smac 1 -1571 61 0 2817 31 37 -44 63 0 -52 52 10 -52 66 O -84 0 -6196 42
dd-1s0 100 -4293 100 100 -3778 100 100 -67 100 97 -69 91 100 -63 97 50 -160 43 -7414 58
dd-1s3 100 -4293 100 100 -3778 100 96 -66 100 47 -57 74 65 -57 87 O -118 33 -6842 57
dd-ls4 98 -4291 100 92 -3763 99 18 -56 86 3 -49 59 30 -52 78 O -105 24 -6332 54
fm-bca 100 -4293 100 100 -3778 100 100 -67 100 93 -69 92 100 -63 97 75 -170 38 -8927 62
hbp 97 —* 98 —* 100 -67 100 77 —* 95 —* 0 —* 0 —*
mp 93 -4280 99 99 -3777 100 100 -67 100 80 -69 92 90 -63 96 O -57 14 -7967 59

0

0

opt: optimally solved instances (%); E: average best objective value; acc: average accuracy corresponding to best objective (%)
—%*: method yields no solution for at least one problem instance within the given time interval.

and the fm heuristic lead the table. The fm-bca method consistently attains the
best or close to best objective and accuracy values on all datasets, whereas its
lower bound is often worse than the lower bounds obtained by the mp-* and
dd-1s* methods. In contrast, most of the primal heuristics as well as hbp fail,
and, for brevity, are omitted in Table 5.

Algorithms dd-1s3/4 consider tighter relaxations than dd-1s0, but are slower,
therefore lose in the competition on short time intervals. However, they have the
ability to attain the best lower bounds given longer runs (> 100s).

There is a significant performance gap between the closely related hbp, mp-*
and fm-bca methods. Foremost, this is explained by the method for reconstruct-
ing the primal solution: The fm algorithm used in the fm-bca solver is solid also
as a stand-alone technique, and significantly outperforms the fw and LAP heuris-
tics used in the mp-* algorithms. The branch-and-bound solver used in hbp is
quite slow and does not scale well. The second reason for different performance
of these methods is the specific BCA algorithm used for the underlying discrete
graphical model, c.f. Table 2. According to the recent study [61], which provides a
unified treatment of the dual BCA methods for dense® graphical models, MPLP
++ performs best, followed by anisotropic diffusion and MPLP as the slowest
method. Table 5 shows that there is no solution suitable for every purpose: The
speed of fm-bca comes at the price of a looser lower bound. Nonetheless, com-
bining a primal heuristic with a dual optimizer consistently improves upon the

 Most of the considered graphical models are dense in terms of [61].
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Table 5. Fixed-time evaluation of mid-size and large problem instances. Only
the best performing algorithms are shown. Notation is the same as in Table 4. For each
dataset the maximum allowed run-time per instance is given in parentheses. For flow
no ground truth is available, so the column acc is omitted. For caltech-large and pairs
no global optima are known, and the column opt is omitted.

flow (1s) worms (1s) caltech-large (10s) caltech-large (100s) pairs (10s) pairs (100s)
opt E D opt E D acc E D acc E D acc E D acc E D acc
fm 83 -2838 -3436 93 -48457 -55757 89 -34117 -142829 52 -34125 -142829 52 -65625 -76418 54 -65825 -76418 55
fw 67 -2828 - 0 46974 - 81 0 = 0 0 - 0 -65797 - 54 -65802 - 54

dd-1s0 33 -2345 -2968 0 60443 -163870 26 -32973 -35007 51 -33539 -34959 52 -61482 -73521 41 -62974 -67306 57
dd-1s3 17 -2059 -3030 0 64017 -160520 24 -28653 -42079 49 -33552 -34914 49 -61638 -73528 41 -62426 -67599 50
dd-1s4 0 -2062 -3090 0 65731 -160409 24 -25599 -62120 46 -30148 -38880 51 -61634 -74053 41 -61634 -70214 41
fm-bca 83 -2838 -2898 93 -48460 -48514 89 -34040 -48223 51 -34073 -48217 51 -65567 -70163 55 -65913 -69003 58

mp 33 -2628 -2887 0 —* -32017 -46070 48 -32069 -46066 48 -64150 -68255 57 -64380 -68136 57
mp-fw 83 —* 0 —* -34237 -48882 51 -34277 -45923 51 —* —*

mp-mcf 33 -2521 -2892 0 —* -30362 -46630 47 -30737 -43833 47 -63990 -68318 56 -64174 -68053 57
opt, E, acc, —*: same as in Table 4; D: best attained lower bound if applicable, i.e., for dual methods, otherwise —

results obtained by the heuristic alone. This holds for fm, but the effect is even
more pronounced for the fw and LAP heuristics.

The fixed-target evaluation in Figure 1 confirms that the fm and fm-bca
method are amongst the best performing solvers. While fm-bca uses fm as primal
heuristics with additional dual BCA updates, the overhead of the latter is visible.
After increasing the allowed performance ratio for fm-bca to a factor of 3.7, we
can expect better solutions than fm alone. Other top performers are duality-
based algorithms with mp-fw and dd-1sO being the closest followers.

6 Conclusions

Our evaluation shows that: (i) Most instances from the popular datasets ho-
tel, house, car and motor can be solved to optimality in well below a second
by several optimization techniques. opengm can also be solved to optimality
in under a second, although it turns out to be hard for many methods. There-
fore, we argue that these datasets alone are not sufficient anymore to empirically
show efficiency of new algorithms. The most difficult in our collection are the
datasets caltech-* and pairs. For a comprehensive evaluation of new methods
more datasets are required. (ii) The most popular comparison baselines like
ipfp, ga, rrwm, pm, sm, smac, lsm, mpm and fgmd are not competitive, and,
therefore, comparison to these alone should not anymore be considered as suf-
ficient. (iiil) The most efficient methods are duality-based techniques equipped
with efficient primal heuristics. In particular, the fm/fm-bca method currently
attains the best or nearly best objective values for most problem instances in
the shortest time. (iv) Although being NP-hard in general, the graph matching
problem can be often efficiently solved in computer vision practice. For many
of the considered datasets, including those with |[£]| > 1000 and [V| > 500, a
reasonable approximate solution can be attained in less than a second.
Acknowledgements. This work was supported by the DFG grant SA 2640/2-1
and the Helmholtz Information & Data Science School for Health. We thank the
ZIH at TU Dresden for providing high performance computing resources.
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