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Appendix

A Background

In this section, we briefly review the details of Sharpness-Aware Minimization
(SAM) [7], its adaptive version (ASAM) [16] and Stochastic Weight Averaging
(SWA) [15].

A.1 SAM and ASAM: Overview

SAM aims at finding the solution θ surrounded by a neighborhood having
uniform low training loss LD(θ), i.e. located in a flat minimum. The sharpness
of a training loss function is defined as:

max
||ϵ||p≤ρ

LD(θ + ϵ)− LD(θ) (1)

where ρ is an hyper-parameter defining the neighborhood size and p ∈ [1,∞).
SAM aims at minimizing the sharpness of the loss solving the following minmax
objective:

min
θ∈Rd

max
||ϵ||p≤ρ

LD(θ + ϵ) + λ||θ||22 (2)

where λ is a hyper-parameter weighing the importance of the regularization term.
In [7], it is shown that p = 2 is typically the optimal choice, hence, without
loss of generality, we use the ℓ2-norm in the maximization over ϵ and omit the
regularization term for simplicity. In order to obtain the exact solution of the
inner maximization problem ϵ∗ ≜ argmax||ϵ||2≤ρ L(θ + ϵ), the authors propose
to employ a first-order approximation of L(θ + ϵ) around 0:

ϵ∗ ≈ arg max
||ϵ||2≤ρ

LD(θ) + ϵT∇θLD(θ) = ρ
∇θLD(θ)

||∇θLD(θ)||2
=: ϵ̂(θ) (3)

Under this computationally efficient approximation, ϵ̂(θ) is nothing more than
a scaled gradient of the current parameters θ. The sharpness-aware gradient is
then defined as ∇θLD(θ)|θ+ϵ̂(θ) and used to update the model as

θt+1 ← θt − γ∇θtLD(θt)|θt+ϵ̂t , (4)

⋆ Equal contribution



2 D. Caldarola et al.

where γ is an appropriate learning rate and ϵ̂t = ϵ̂(θt). This two-steps procedure
is iteratively applied to solve Eq. 2. Intuitively, SAM performs a first step of
gradient ascent to estimate the point (θt + ϵ̂t) at which the loss is approximately
maximized and then applies gradient descent at θt using the just computed
gradient.

ASAM In [16], the authors point out that sharpness defined in a rigid region with
a fixed radius ρ (Eq. 1) is sensitive to parameter re-scaling, negatively affecting the
connection between sharpness and generalization gap. If A is a scaling operator
acting on the parameters space without changing the loss function, two neural
networks with weights θ and Aθ can have different values of sharpness while
maintaining the same generalization gap, i.e. the sharpness is scale-dependent.
As a solution, they introduce the concept of adaptive sharpness, defined as

max
||T−1

θ ϵ||p≤ρ
LD(θ + ϵ)− LD(θ) (5)

where T−1
θ is the normalization operator of θ such that T−1

Aθ A = T−1
θ . Eq. 2

can be rewritten to define the Adaptive Sharpness-Aware Minimization (ASAM)
problem as follows:

min
θ∈Rd

max
||T−1

θ ϵ||p≤ρ
LD(θ + ϵ) + λ||θ||22 (6)

For improving stability, Tθ is substituted by Tθ + ηIw, where η > 0 is a hyper-
parameter controlling the trade-off between stability and adaptivity, while w is
the number of weight parameters of the model.

A.2 Stochastic Weight Averaging: Overview

SWA averages weights proposed by SGD, while using a learning rate schedule to
explore regions of the weight space corresponding to high performing networks.
At each step i of a cycle of length c, the learning rate is decreased from γ1 to γ2:

γ(i) =
(
1− t(i)

)
γ1 + t(i)γ2, t(i) =

1

c

(
mod(i− 1, c) + 1

)
(7)

If c = 1 the learning rate is constant (γ1), otherwise for c > 1 the learning
schedule is cyclical. Starting from a pre-trained model fθ̂, SWA captures all the
updates θ at the end of each cycle and averages them as:

θSWA ←
θSWA · nmodels + θ

nmodels + 1
(8)

obtaining the final model fθSWA
, where nmodels keeps track of the number of

completed cycles.
In our method, SWA is applied on the server-side to make the learning

process more robust. Adapting the scenario of [15] to FL, from 75% of the
training onwards, the server keeps two models, fθ and fθSWA (f and fSWA to simplify
the notation). f follows the standard FedAvg paradigm, while fSWA is updated
every c rounds (Eq. 8). At each round, the cycling learning rate is computed (Eq.
7) and used for the clients’ local training.
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Fig. 1: Cifar100. L2-norm of global classifier output features as rounds pass,
after receiving as input each client’s local data. (a) with α = 0, the model tends
to focus on a different client’s distribution, i.e. on a single class, at each round.
(b) when α = 1000, the model gives the same attention to each distribution.

A.3 Mixup and Cutout: Overview

Mixup and Cutout are recent methods for data augmentation, aiming to improve
the learned models’ generalization. We apply one of the two in the client-side
training.

mixup [32] trains the neural network on convex combinations of images and
their labels, exploiting the prior knowledge that linear interpolation of features
leads to linear interpolations of their corresponding targets. Given two input
images (xi, xj) and their corresponding one-hot label encodings (yi, yj) drawn
from the k-th client’s training data Dk, virtual training examples are constructed
as follows:

x̄ = λxi + (1− λ)xj

ȳ = λyi + (1− λ)yj
(9)

with λ ∼ Beta(α, α) for α ∈ (0,∞).

Cutout [5] regularizes learning by randomly masking out square regions of the
input during training. At the implementation level, this corresponds to applying
a fixed-size zero-mask to a random location of the image.

B Training in Heterogeneous Scenarios - Additional
Material

In this section, we provide further analysis of the model’s behavior in heteroge-
neous and homogeneous federated scenarios. As explained in Sec. 3.2, the model
trained under a condition of statistical heterogeneity is subject to oscillations
and loss in performance and generalization. Fluctuations in model predictions
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Table 1: Datasets statistics
Dataset Task Train clients Size imbalance Train samples Test samples

Cifar10 Classification 100 ✗ 50,000 10,000
Cifar100 Classification 100 ✗ 50,000 10,000
Cifar100-Pam Classification 500 ✗ 50,000 10,000
Cifar10-C DG - - - 10,000
Cifar100-C DG - - - 10,000
Landmarks-User-160k Classification 1,262 ✓ 164,172 19,526
Cityscapes (uniform) SS 146 ✓

2,975 500
Cityscapes (heterogeneous) SS 144 ✓
Idda (country) SS+DG 90 ✗ 4,320 1,920
Idda (rainy) SS+DG 69 ✗ 3,312 2,928

can also be noted by looking at its output features, defined as fθ(x) ∀x ∈ X . Fig.
1 shows the L2-norm of the output features computed using the current global
model f t

θ ∀t ∈ [T ], given as input the local clients’ data Dk ∀k ∈ [K], where a
higher norm value corresponds to greater attention paid to that class by the
network. The uniformity of the features obtained in the homogeneous setting
contrasts with the chaotic distribution of the ones resulting when α = 0, which
significantly vary over time without following a constant trend.

C Experiments Details

Here we provide a detailed description of the datasets and models used in the
paper, together with information regarding the chosen hyper-parameters and their
fine-tuning intervals. All results presented in both the main text and the Appendix
are averaged over the last 100 rounds for increased robustness and reliability.
Unless otherwise specified, the framework is PyTorch [22] and experiments were
run on one NVIDIA GeForce GTX 1070.

C.1 Datasets and Models

Table 1 summarizes the tasks and the statistics of the number of clients and
examples for each dataset.

CIFAR10 and CIFAR100 We replicate the federated version of the Cifar
datasets proposed by [12]. Each dataset is split among 100 clients, receiving 500
images each according to the latent Dirichlet distribution (LDA) applied to the
labels. The client’s examples are selected following a multinomial distribution
drawn from a symmetric Dirichlet distribution with parameter α. The higher the
value of α the larger the number of classes locally seen , i.e. the more similar
and homogeneous the clients’ distributions are. We test α ∈ {0, 0.05, 100} on
Cifar10 and α ∈ {0, 0.5, 1000} on Cifar100. The task is image classification on
10 (Cifar10) and 100 (Cifar100) classes.
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Model: We train a Convolutional Neural Network (CNN) similar to LeNet5 [17]
on both datasets, following the setting of [13]. The network has two 64-channels
convolutional layers with kernel of size 5×5, each followed by a 2×2 max-pooling
layer, ended by two fully connected layers with 384 and 192 channels respectively
and a linear classifier.

Data pre-processing: The 32× 32 input images are pre-processed following the
standard pipeline: the training images are randomly cropped applying padding 4
with final size 32× 32, randomly horizontally flipped with probability 0.5 and
finally the pixel values are normalized with the dataset’s mean and standard
deviation; normalization is applied to test images as well.

CIFAR100-PAM We further extend our experiments to a more complex version
of Cifar100, i.e. Cifar100-Pam proposed by [23], reflecting the “coarse” and
“fine” label structure of the dataset for a more realistic partition. The dataset is
split among 500 clients - with 100 images each - following the Pachinko Allocation
Method (PAM) [19], on the result of which LDA is applied.

Model: We train a modified ResNet18, replacing Batch Normalization [14] layers
with group normalization (GN) ones [29], as suggested by [11]. We use two groups
for each GN layer. Experiments have been run using FedJAX [24] on a cluster
with NVIDIA V100 GPUs.

Data pre-processing: Cifar100-Pam images are pre-processed as the Cifar LDA
versions described above.

CIFAR10-C and CIFAR100-C are the corrupted versions of the Cifar
datasets. They are part of the benchmark proposed by [10], used for testing the
image classifiers’ robustness. The 10k images-test set is modified according to a
given corruption and a corresponding level of severity. There are 19 possible cor-
ruptions (brightness, contrast, elastic blur, elastic transform, fog, frost, Gaussian
blur, Gaussian noise, glass blur, impulse noise, JPEG compression, motion blur,
pixelate, saturate, short noise, snow, spatter, speckle noise, zoom blur), while
the severity ranges from 1 (low) to 5 (high).

Model: The same model described for Cifar10 and Cifar100 is used here. To
test the generalization ability of our method, we test the model trained with
Cifar10/100 on the corresponding corrupted dataset.

Landmarks-User-160k Introduced by [13], the Landmarks-User-160k dataset
comprises 164,172 training images belonging to 2,028 landmarks. The dataset
is created according to the authorship information from the large-scale dataset
Google Landmarks v2 (GLv2) [28]. Each author owns at least 30 pictures depicting
5 or more landmarks, while each location is depicted by at least 30 images and
was visited by no less than 10 users. The authors in the test set do not overlap
with the ones appearing in the training split.
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Model: We follow a setting similar to the one proposed by [13] and use a
MobileNetV2 [25] network pre-trained on ImageNet [4] with with GroupNorm
layers in place of BatchNorm. Since no details on the model are available, we set
the network feature multiplier α = 1 and use 8 groups for the GN layers. We did
not apply a bottleneck layer before the classifier as specified in [13]. To reduce
training time, we use Flax [9] for both pre-training and centralized baselines, and
FedJAX [24] for the implementation of the federated algorithms. Both libraries
are based on JAX [2] and allow for efficient data parallelization. Implementation
of the MobileNetV2 backbone used for all the experiments is available here1.
All large-scale classification experiments have been performed using an NVIDIA
DGX A100 40GB.

The model trained on ImageNet reaches ≈ 68% top-1 accuracy on the vali-
dation set. In our experience, GroupNorm tends to perform slightly worse than
BatchNorm when trained on ImageNet. However, since we did not extensively
tune the hyper-parameters, getting better final performance is possible. For the
ImageNet training, we used 8 GPUs with a total batch size of 2048 images.

Data pre-processing: We applied the same data augmentation for training the
model on ImageNet and fine-tuning on GLv2: we crop and resize the input images
to 224× 224 with random scale and aspect ratio as described in [27]. The data
augmentation pipeline used for the experiments can be found here2. We also
adapted the GLv2 TensorFlow Federated data pipeline3 to be compatible with
FedJAX.

Cityscapes [3] is a popular dataset for Semantic Segmentation and contains
2,975 real photos taken in the streets of 50 different cities under good weather
conditions. Annotations are provided for 19 semantic classes. We refer to the
federated splits proposed in the FedDrive benchmark [6]. The uniform version
of the dataset randomly assigns each image to one of the 146 users. In order
to account for the distribution heterogeneity appearing in real-world scenarios,
an ulterior version is proposed, referred to as heterogeneous: every client only
accesses images from one of the 18 training cities. In both cases, the test set
contains pictures of unseen cities.

Model: As proposed by the authors of FedDrive, we employ the lightweight
network BiSeNetv2 [31] for training, accounting for possible lower computational
capabilities of the edge devices.

Data pre-processing: The images are randomly scaled in the range (0.5, 1.5) and
cropped to a 512× 1024 shape.

1 https://github.com/rwightman/efficientnet-jax/tree/

a65811fbf63cb90b9ad0724792040ce93b749303
2 https://github.com/google/flax/blob/571018d16b42ce0a0387515e96ba07130cbf79b9/

examples/imagenet/input_pipeline.py#L90-L108
3 https://www.tensorflow.org/federated/api_docs/python/tff/simulation/

datasets/gldv2/load_data

https://github.com/rwightman/efficientnet-jax/tree/a65811fbf63cb90b9ad0724792040ce93b749303
https://github.com/rwightman/efficientnet-jax/tree/a65811fbf63cb90b9ad0724792040ce93b749303
https://github.com/google/flax/blob/571018d16b42ce0a0387515e96ba07130cbf79b9/examples/imagenet/input_pipeline.py##L90-L108
https://github.com/google/flax/blob/571018d16b42ce0a0387515e96ba07130cbf79b9/examples/imagenet/input_pipeline.py##L90-L108
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/gldv2/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/gldv2/load_data
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Table 2: Best performing training parameters

Dataset
Client

Batch size Weight decay Epochs
Client

Rounds
Clients

learning rate momentum per round

Cifar10 0.01 64 4 · 10−4 1 0 10k {5, 10, 20}
Cifar100 0.01 64 4 · 10−4 1 0 20k {5, 10, 20}
Cifar100-Pam 0.01 20 4 · 10−4 1-2 0.9 10k {10, 20}
Landmarks-User-160k 0.1 64 4 · 10−5 5 0 5k 10

Cityscapes (unif.) 0.05 8 5 · 10−4 2 0.9 1.5k 5

Cityscapes (het.) 0.05 8 5 · 10−4 2 0.9 1.5k 5
Idda (country) 0.1 8 0 2 0.9 1.5k 5
Idda (rainy) 0.1 8 0 2 0.9 1.5k 5

IDDA [1] is a synthetic dataset for semantic segmentation, specific for the field
of autonomous driving. In addition to the annotations for 16 semantic classes,
the driving conditions are further characterized by three axes: a city among the
7 available, ranging from Urban to Rural environments; one of 5 viewpoints,
simulating different vehicles; an atmospheric condition among 3 possible choices
(Noon, Sunset, Rainy), for a total of 105 domains. As done for Cityscapes, we
refer to FedDrive [6] for the federated splits. In the uniform distribution of IDDA,
each client has access to 48 images randomly drawn from the whole dataset. The
heterogeneous version is built so that every user only sees a single domain. Two
distinct testing scenarios are proposed to assess the generalization abilities of
the learned model: one with images belonging to domains likely already seen at
training time (“seen” in Table 8 of the main text) and another one containing a
never-seen one (“unseen”). The unseen domain either contains images taken in
the countryside (“country”) to analyze the semantic shift or in rainy conditions
(“rainy”) for studying the shift in appearance.

Model: As done for Cityscapes, BiSeNetv2 is the model of choice.

Data pre-processing: The images are randomly scaled in the range (0.5, 2.0) and
cropped to a 512× 928 shape.

C.2 Hyper-parameters Tuning

We consider a different hyper-parameters setup for each dataset. The final choices
of training hyper-parameters are summarized in Table 2. Table 3 and 4 respectively
show the values used for SAM/ASAM and SWA.

CIFAR10 and CIFAR100 For both datasets, the training hyper-parameters
follow the choice of [13]. The client learning rate is tuned between the values
{0.01, 0.1} and set to 0.01, the batch size is 64, E ∈ {1, 2} is tested for the
number of local epochs and the former is chosen. As for the weight decay the
value 4 · 10−4 leads to better performances than 0. The local optimizer is SGD
with no momentum. No learning rate scheduler is used for simplicity. We optimize
the cross-entropy loss. As for the server-side, we compare the behavior of different
optimizers (i.e. SGD, Adam, AdaGrad) with learning rates in {0.001, 0.01, 0.1, 1}
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Table 3: FedSAM and FedASAM hyper-parameters

Dataset Distribution
SAM ASAM

ρ ρ η

Cifar10
α = 0 0.1 0.7 0.2
α = 0.05 0.1 0.7 0.2
α = 100 0.02 0.05 0.2

Cifar100
α = 0 0.02 0.5 0.2
α = 0.5 0.05 0.5 0.2
α = 1000 0.05 0.5 0.2

Cifar100-Pam α = 0.1 0.05 0.5 0/0.2
Landmarks-User-160k - 0.05 0.5 0/0.2
Cityscapes het/unif 0.01 0.1 0.2
Idda het/unif 0.01 0.5 0.2

(results in Appendix E.1), following the setup of [23], and find out that FedAvg,
i.e. SGD with learning rate 1, is the best choice. When testing FedAvgM, the
server-side momentum β = 0.9. As for the other SOTAs, we choose µ = 0.1 in
FedProx and α = 0.01 in FedDyn from {0.001, 0.01, 0.1}; in AdaBest, we tune
β ∈ {0.8, 0.9} and µ ∈ {0.01, 0.02} and pick (0.9, 0.02) for Cifar10 and (0.8, 0.02)
for Cifar100. The training proceeds for 10k rounds on Cifar10 and 20k rounds
on Cifar100.

Mixup/Cutout: Following the setup of [32], we fix αmixup = 1, resulting in λ
uniformly distributed between 0 and 1. As for Cutout instead, we select a cutout
size of 16× 16 pixels for Cifar10 and 8× 8 for Cifar100, as done by [5].

SAM/ASAM: The parameter ρ of SAM is searched in {0.01, 0.02, 0.05, 0.1, 0.2,
0.5}. As for ASAM, the value of ρ is tuned in {0.05, 0.1, 0.2, 0.5, 0.7, 1.0, 2.0} and
η ∈ {0.0, 0.01, 0.1, 0.2}. The choices made for each dataset and α are shown in
Table 3. There is no distinction of values as clients vary per round.

SWA: We test SWA’s starting round in {5%, 25%, 50%, 75%} of the rounds budget
and as expected [15] the best contribution is given if applied from 75% of the
training onwards (see Appendix E). We set the value of the learning rate γ1 to
0.01 and test γ2 ∈ {10−5, 10−4, 10−3}, selecting γ2 = 10−4. The cycle length c
is tested in {5, 10, 20} and set to 10 for Cifar10 and 20 for Cifar100. Table 4
summarizes the choices.

CIFAR100-PAM The hyper-parameters follow the same choice of [23] (see
Table 2). We report accuracy at 5K and 10K communication rounds.

Mixup/Cutout: Same as Cifar100.

SAM/ASAM: We search hyperpameters in the same values as Cifar100. For ρ
we found 0.05 and 0.5 to be the best values respectively for SAM and ASAM in all
configurations. For ASAM we found that η = 0.2 is working fine when cutout or
no augmentations are applied, while η = 0 works best in the case of Mixup.
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Table 4: SWA hyper-parameters
Dataset c γ1 γ2 Start round

Cifar10 10 10−2 10−4 7500

Cifar100 20 10−2 10−4 15000

Cifar100-Pam 5 10−2 10−4 15000

Landmarks-User-160k 5 10−1 10−3 3750/5000

Cityscapes 5 5 · 10−2 5 · 10−4 1125

Idda 5 10−1 10−3 1125

SWA: Same as Cifar100.

Landmarks-User-160k We start from the hyper-parameters proposed by [13].
In contrast with the original paper, we found that FedAvgM with momentum
β = 0.9 is unstable with 10 participating clients and requires reducing the server
learning rate to 0.1 to train the model. Better performance and faster convergence
can be obtained with 50 clients per round and β = 0.9. However, we use 10
clients per round and FedAvg as the baseline because of our limited resources
and to maintain consistency with other experiments. All hyper-parameters are
described in Table 2.

SAM/ASAM: The parameter ρ of SAM is searched in {0.01, 0.05, 0.1}. As for
ASAM, the value of ρ is tuned in {0.1, 0.3, 0.5} and η ∈ {0.0, 0.1, 0.2}.

SWA: We tested both SWA starting at the 75% and 100% of training, i.e. the
3750-th and 5000-th rounds. We tested different combinations of cycle lengths
c ∈ {5, 10, 20} and learning rate γ2 ∈ {10−2, 10−3, 10−4}. The best performing
learning rates (γ1, γ2) are respectively (10−1, 10−3) and the cycle length is 5.

Cityscapes and IDDA For both Cityscapes and IDDA, we maintain the choice
of hyper-parameters of [6]. The clients’ initial learning rate is 0.05 on Cityscapes
and 0.1 on IDDA, the weight decay is 5 · 10−4 on Cityscapes, while it is not
used on IDDA, 2 local epochs, the client optimizer is SGD with momentum 0.9.
Differently from [6], we do not use mixed precision, thus the batch size is reduced
from 16 to 8. A polynomial learning rate scheduler is applied locally, following
[31]. The optimization is based on the Online Hard-Negative Mining [26], which
selects the 25% of the pixels having the highest cross-entropy loss. The training
is spanned across 1.5k rounds.

SAM/ASAM: The parameter ρ of SAM is searched in {0.01, 0.05, 0.1}. As for
ASAM, the value of ρ is tuned in the set {0.05, 0.1, 0.5} and η ∈ {0.0, 0.1, 0.2}.

SWA: Following the setup established for the Cifar datasets, SWA starts at the
75% of training, i.e. the 1125th round. The learning rates (γ1, γ2) are respectively
(10−1, 10−3) for IDDA and (5 · 10−2, 5 · 10−4) for Cityscapes. The cycle length is
5 for both datasets.
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C.3 Plotting the Loss Landscapes

In the main text, we introduced both 2-D (Fig. 2 of the main text) and 3-D plots
of the loss landscapes (Fig. 1 of the main text). Implementation details follow.

2D Loss Landscape Following the indications of [8,20]:

1. We choose three weight vectors θ1, θ2, θ3 and use them to obtain two basis

vectors u⃗ = (θ2 − θ1) and v⃗ = (θ3 − θ1)− ⟨θ3−θ1,θ2−θ1⟩
||θ2−θ1||2 · (θ2 − θ1).

2. Then, the normalized vectors û = u/||u|| and v̂ = v/||v|| form an orthonormal
basis in the plain containing θ1, θ2, θ3.

3. We now define a Cartesian grid of N ×N points in the basis û, v̂. In our case,
N = 21.

4. For each point of the grid, the corresponding weights are computed and the
loss is consequently evaluated with the resulting network. For each point P of
the grid having coordinates (x, y), the corresponding weights are computed
as P = θ1 + x · û+ y · v̂. As a consequence, θ1 is the reference and can be
found in the origin (0, 0).

We adapted the code of [8]4 to our scenario.

3D Loss Landscape The plots in Fig. 1 in the main text are generated using
the code of [18]5, modified to fit our datasets and models. Given a network
architecture and its pre-trained parameters, the loss surface is computed along
random directions near the optimal parameters.

C.4 Computing Hessian Eigenvalues

We refer to [21] for computing both the local and the top 50 Hessian eigenvalues
(Figs. 4,5 in the main text) with Stochastic Power Iteration method [30] with
maximum 20 iterations per run.

D Results on Corrupted CIFAR10 and CIFAR100

In Fig. 2, we compare the performance obtained by FedAvg, FedSAM, FedASAM,
FedAvg + SWA, FedSAM + SWA and FedASAM + SWA on Cifar10-C and Cifar100-
C as α varies. All results tell us that ASAM (alone or combined with SWA) is the
algorithm with the best generalization capabilities, as already seen in Sec. 5.2 of
the main text.

E Ablation Studies

In this Section, we present our ablation studies on server-side optimizers, SAM,
ASAM and SWA, moved from the main text due to space constraints.
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Fig. 2: Domain generalization in FL. Results with 20 clients, severity level 5 on Cifar10-
C and Cifar100-C.

E.1 Ablation Study on Server-Side Optimizers

To choose the best server-side optimizer, we test SGD, Adam and AdaGrad on
the heterogeneous (α = 0) and homogeneous (α = 1k) versions of Cifar100
with 5 clients per round. Following [23], we set β1 = β2 = 0 for AdaGrad and
β1 = 0.9, β2 = 0.99 for Adam. As Table 5 shows, SGD with learning rate 1, i.e.
FedAvg, is certainly the best choice to have acceptable performances both in the
homogeneous scenario and above all in the heterogeneous one.

E.2 Ablation Study on SAM and ASAM

We present here an analysis on the sensitivity of the model to the hyper-parameters
ρ and η in ASAM and ρ in SAM (Fig. 3), having as a reference the setting with 5%
clients participation on Cifar100. Regardless of the distribution, we can see that
high values of SAM’s ρ lead to a fast decline in performance (Fig. 3a), meaning
that the algorithm handles smaller neighborhoods better. On the other hand,

4 https://github.com/timgaripov/dnn-mode-connectivity
5 https://github.com/tomgoldstein/loss-landscape

https://github.com/timgaripov/dnn-mode-connectivity
https://github.com/tomgoldstein/loss-landscape
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Table 5: Final accuracy (%) using different server-side optimizers with varying learning
rate (LR) on Cifar100 @ 20k rounds. 5% clients participation. In bold the best results
on both α = 0 and α = 1k.

Optimizer LR α = 0 α = 1k

SGD

1 30.25 49.92
0.1 14.09 40.43
0.01 2.67 11.35
0.001 1.20 1.12

Adam

1 1.00 51.73
0.1 29.75 51.62
0.01 13.72 40.12
0.001 2.60 11.31

AdaGrad

1 1.00 1.00
0.1 1.77 46.74
0.01 26.25 51.44
0.001 9.70 32.01

ASAM allows us to have more freedom and expand the size of the neighborhood up
to the value of ρ = 0.5 (Fig. 3b), index of the greater robustness of the method.
In Fig. 3c, we notice that the performances improve linearly as η increases, where
η is a hyper-parameter balancing the trade-off between stability and adaptivity.
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Fig. 3: Results on Cifar100, 5% clients participation. (a) Sensitivity to SAM’s
parameter ρ. (b)-(c) Sensitivity to ASAM’s parameters ρ (with fixed η = 0.2) and
η (with fixed ρ = 0.5) as α varies.

E.3 Ablation Study on SWA

SWA adds two new concepts to the standard federated training: the average of
stochastic weights collected along the trajectory of SGD (Eq. 8) and the cyclical
learning rate (Eq. 7), which decreases from γ1 to γ2 according to the cycle length
c, transmitted as additional information to the clients of each round. Our ablation
studies aim to understand which of these two components has the greatest impact
on the achieved stability and increased model performance. We compare the
results obtained by SWA with c > 1 with those reached when the learning rate
is kept constant, i.e. c = 1, and when the server-side average of the collected
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Table 6: SWA ablation study: comparison between cyclical (c > 1) and constant learning
rate (c = 1) and contribution given by averaging stochastic weights. Highlighted in bold
the best result for each combination (Algorithm, α, participating clients).

Dataset Algorithm WeightsAvg c
α = 0 α = 0.5/0.05 α = 1k/100

5cl 10cl 20cl 5cl 10cl 20cl 5cl 10cl 20cl

Cifar100

FedAvg
✓ 20

39.34 39.74 39.85 43.90 44.02 42.09 50.98 50.87 50.92
FedSAM 39.30 39.51 39.24 47.96 46.76 46.47 53.90 53.67 54.36
FedASAM 42.01 42.64 41.62 49.17 48.72 48.27 53.86 54.79 54.10

FedAvg
✓ 1

38.86 39.82 40.19 43.86 43.93 42.67 51.33 51.05 51.11
FedSAM 38.58 39.20 39.37 47.29 46.34 46.40 53.88 53.70 54.36
FedASAM 42.50 42.40 41.76 48.67 48.50 47.95 54.16 55.07 54.19

FedAvg
✗ 20

30.68 34.86 37.42 40.34 42.40 41.89 50.06 50.21 50.81
FedSAM 31.51 35.87 37.81 44.08 45.80 46.43 53.76 53.46 54.28
FedASAM 36.85 39.76 41.03 46.34 48.06 48.38 54.21 55.06 54.22

FedAvg
✗ 1

30.25 36.74 38.59 40.43 41.27 42.17 49.92 50.25 50.66
FedSAM 31.04 36.93 38.56 44.73 44.84 46.05 54.01 53.39 53.97
FedASAM 36.04 39.76 40.81 45.61 46.58 47.78 54.81 54.97 54.50

Cifar10

FedAvg
✓ 10

69.71 69.54 70.19 73.48 72.80 73.81 84.35 84.32 84.47
FedSAM 74.97 73.73 73.06 76.61 75.84 76.22 84.23 84.37 84.63
FedASAM 76.44 75.51 76.36 76.12 76.16 76.86 84.88 84.80 84.79

FedAvg
✓ 1

69.88 69.83 70.72 73.91 73.12 73.07 84.90 84.47 84.67
FedSAM 75.17 74.00 73.53 76.93 76.06 76.55 84.53 84.54 84.77
FedASAM 76.80 75.48 76.84 76.87 76.30 77.55 85.09 85.06 84.73

FedAvg
✗ 10

61.41 63.96 67.39 67.17 69.88 72.19 84.18 84.15 84.45
FedSAM 70.66 71.14 73.04 73.93 74.96 76.20 84.23 84.40 84.69
FedASAM 75.07 74.87 76.37 75.37 76.17 77.14 84.68 84.72 84.71

FedAvg
✗ 1

65.00 65.54 68.52 69.24 72.50 73.07 84.46 84.50 84.59
FedSAM 70.16 71.09 72.90 73.52 74.81 76.04 84.58 84.67 84.82
FedASAM 73.66 74.10 76.09 75.61 76.22 76.98 84.77 84.72 84.75

weights is not applied while maintaining c > 1, i.e. changing only the clients’
learning rate cyclically (Table 6). We point out that using c = 1 and not applying
the average brings us back to the standard federated setting. We discover that
the server-side average gives the major contribution, which helps in stabilizing
learning, while the cycle length does not particularly affect the results. Since the
best results in the most difficult scenarios (i.e. low value of both α and number of
participating clients on Cifar100) are reached when c > 1, we prefer the cyclical
learning rate to the constant one in further experiments.

In addition, in Table 7 we report the differences in results when applying SWA

from {5%, 25%, 50%, 75%} of the training onwards on FedAvg with 5 clients per
round, showing that a longer pre-training of the network leads to the greater
effectiveness of this algorithm.

F Tables Omitted in the Main Text

F.1 Heterogeneous FL Benefits Even More from Flat Minima -
Additional Material

Table 8 completes the analysis introduced in Sec. 5.1 regarding the gains obtained
in the federated scenario w.r.t. the centralized one. Here we report the results for
α ∈ {0, 1k}. As noted for α = 0 (Table 5 in the main text), data augmentations
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Table 7: SWA ablation study: comparison between SWA starting rounds when using FedAvg

with 5 clients per round

Dataset c Start round
Test Accuracy (%)

α = 0 α = 0.5/0.05 α = 1k/100

Cifar100 20

1000 24.53 34.52 49.38
5000 30.66 39.71 51.52
10000 36.21 42.55 51.01
15000 39.34 43.90 50.98

Cifar10 10

500 55.57 60.50 79.09
2500 60.34 65.72 81.49
5000 66.22 70.55 83.79
7500 69.71 73.48 84.35

fail in the federated heterogeneous scenarios (α ∈ {0, 0.5}), but reasonably work
in the homogeneous ones.

Table 8: Comparison of improvements (%) in centralized and federated scenarios
(α ∈ {0.5, 1k}, 5 clients) on Cifar100, computed w.r.t. the reference at the bottom

Algorithm
Accuracy Absolute Improvement Relative Improvement

Centr. α = 0.5 α = 1k Centr. α = 0.5 α = 1k Centr. α = 0.5 α = 1k

SAM 55.22 44.73 54.01 +3.02 +4.30 +4.01 +5.79 +10.64 +8.03
ASAM 55.66 45.61 54.81 +3.46 +5.18 +4.89 +6.63 +12.81 +9.80
SWA 52.72 43.90 50.98 +0.52 +3.47 +1.06 +1.00 +8.58 +2.12
SAM + SWA 55.75 47.96 53.90 +0.55 +7.53 +3.98 +1.06 +18.63 +7.97
ASAM + SWA 55.96 49.17 53.86 +3.76 +8.74 +3.94 +7.20 +21.62 +7.89
Mixup 58.01 35.10 55.34 +5.81 -5.33 +5.42 +11.13 -13.18 +10.86
Cutout 55.30 37.72 53.48 +3.10 -2.71 +3.56 +5.94 -6.70 +7.13

Centralized: 52.20 - FedAvg α = 0.5: 40.43, α = 1k: 49.92

F.2 Data Augmentations with CIFAR10

Here we show the results obtained when applying Mixup and Cutout to Cifar10
as the value of α, clients participation and algorithm change (Table 9). As
demonstrated for Cifar100 (Sec. 5.1), data augmentations do not improve
generalization in a federated context, but on the contrary they seem to inhibit
learning, leading to sometimes even worse results than FedAvg.

G Figures Omitted in the Main Text

All plots are best seen in colors.

Convergence plots As shown in Sec. 5.1, once combined with FedAvgM- i.e. server-
side momentum β = 0.9 - SAM and ASAM allow to reach convergence even in the
most heterogeneous scenarios on both Cifar10 and Cifar100. Fig. 4 shows the
convergence plots of those runs. In addition, Fig. 5 compares the behavior of
FedAvg, FedSAM, FedASAM and their combination with SWA on the most difficult
setting, i.e. α = 0 and 5 clients per round on both Cifar datasets, highlighting
the stability and the positive gap in performance introduced by SWA.
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Table 9: FedAvg, SAM, ASAM and SWA w/ strong data augmentations (Mixup, Cutout) on
Cifar10

Algorithm SWA Aug
α = 0 α = 0.5/0.05 α = 1000/100

5cl 10cl 20cl 5cl 10cl 20cl 5cl 10cl 20cl

C
if
a
r
1
0

FedAvg ✗

N
o
n
e

65.00 65.54 68.52 69.24 72.50 73.07 84.46 84.50 84.59
FedSAM ✗ 70.16 71.09 72.90 73.52 74.81 76.04 84.58 84.67 84.82
FedASAM ✗ 73.66 74.10 76.09 75.61 76.22 76.98 84.77 84.72 84.75
FedAvg ✓ 69.71 69.54 70.19 73.48 72.80 73.81 84.35 84.32 84.47
FedSAM ✓ 74.97 73.73 73.06 76.61 75.84 76.22 84.23 84.37 84.63
FedASAM ✓ 76.44 75.51 76.36 76.12 76.16 76.86 84.88 84.80 84.79

FedAvg ✗

M
i
x
u
p

62.26 63.61 65.54 65.63 68.44 68.21 82.38 84.46 83.58
FedSAM ✗ 67.35 69.32 69.78 70.34 72.98 72.54 81.88 82.24 82.25
FedASAM ✗ 70.61 71.31 71.62 72.19 72.84 72.72 82.36 82.75 83.08
FedAvg ✓ 66.31 66.89 66.26 69.79 69.12 68.80 82.27 82.88 82.67
FedSAM ✓ 72.42 70.65 69.75 73.36 72.29 72.44 81.04 81.18 81.15
FedASAM ✓ 72.37 72.40 71.89 72.54 72.36 72.32 81.86 81.70 81.92

FedAvg ✗

C
u
t
o
u
t

61.12 64.47 64.20 66.45 69.09 68.99 83.77 83.91 84.31
FedSAM ✗ 63.69 66.30 67.25 67.66 71.39 70.67 83.03 83.84 83.49
FedASAM ✗ 68.50 69.26 69.75 69.23 71.91 71.28 83.73 84.10 84.00
FedAvg ✓ 65.54 65.60 65.79 69.94 69.55 69.63 83.35 83.39 83.64
FedSAM ✓ 69.40 68.45 67.36 71.36 71.56 70.99 82.61 82.75 82.52
FedASAM ✓ 71.30 71.12 70.91 72.79 71.76 71.09 83.06 83.31 83.11

Loss Surfaces Fig. 6 shows the convergence points of three local models trained
with α = 0.5 on the corresponding test error surface, while Fig. 7 displays the
train loss surfaces with α ∈ {0, 0.5, 1000}. In addition, in Fig. 8 we compare
the convergence points of FedAvg, FedSAM and FedASAM in the heterogeneous
scenarios of Cifar100, i.e. α ∈ {0, 0.5}, proving that ASAM reaches the best local
minimum.

Hessian Eigenvalues The top 50 eigenvalues of the global model trained with
α = 0.5 are showed in Fig. 9. Fig. 10 shows the complete comparison of the
local Hessian eigenvalues partially shown in Sec. 3.2, introducing the values of
λk
max ∀k ∈ [K] resulting with SAM and α = 0.5.
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Fig. 4: Convergence plots with α = 0, 20 clients. When combining FedAvgM or
FedSAM (Cifar100)/FedASAM (Cifar10) with SWA, convergence is reached even
in the most heterogeneous scenarios. FedAvgM + SWA applied to Cifar10 fails to
learn, while adding momentum to FedASAM significantly speeds up training.
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Fig. 5: Convergence plots with α = 0, 5 clients, highlighting the positive gap in
performance and the stability introduced by SWA (both if applied on FedAvg but
especially on FedASAM) in the most difficult setting.
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Fig. 6: Test error surface computed on Cifar100 using three distinct local models
trained with α = 0.5 for 20k rounds.
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Fig. 7: Train cross-entropy loss surfaces computed with three local models after
20k training rounds on Cifar100. (a) α = 0 (b) α = 0.5 (c) α = 1000.
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Fig. 8: Loss surfaces comparing the convergence points of FedAvg, FedSAM and
FedASAM after 20k training rounds on Cifar100. The minima reached by SAM

and ASAM are found within low-loss neighborhoods. (a) Train loss surface α = 0.
(b) Test error surface α = 0. (c) Train loss surface α = 0.5. (d) Test error surface
α = 0.5.
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Fig. 10: Maximum Hessian eigenvalue computed for each client as rounds pass.
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