Transfer without Forgetting Supplementary Materials

Matteo Boschini¹[®], Lorenzo Bonicelli¹[®], Angelo Porrello¹[®], Giovanni Bellitto²[®], Matteo Pennisi²[®], Simone Palazzo²[®], Concetto Spampinato²[®], and Simone Calderara¹[®]

¹ AImageLab, University of Modena and Reggio Emilia, Italy firstname.lastname@unimore.it
² PeRCeiVe Lab, University of Catania, Italy firstname.lastname@unict.it

A Additional Details on the Model

In this section, we report some additional details on the inner workings of the model which were omitted in the main paper for the sake of brevity.

A.a Further details on \mathbb{M}_{Sp}

The spatial attention map \mathbb{M}_{Sp} is computed on top of the activations of a given layer of the fixed sibling network $\hat{h} \in \mathbb{R}^{b \times c \times h \times w}$, processed through a ResNetinspired bottleneck structure [1,2]. In detail, we expand and detail Eq. 5 in the main paper:

 $\mathbb{M}_{\mathrm{Sp}} \triangleq \mathrm{C}_{1\times 1}^{\mathrm{C}} \circ \mathrm{ReLU} \circ \mathrm{BN} \circ \mathrm{C}_{3\times 3}^{\mathrm{B}} \circ \mathrm{ReLU} \circ \mathrm{BN} \circ \mathrm{C}_{3\times 3}^{\mathrm{B}} \circ \mathrm{ReLU} \circ \mathrm{BN} \circ \mathrm{C}_{1\times 1}^{\mathrm{A}}, \quad (1)$

where ReLU denotes a ReLU activation, BN indicates a Batch Normalization layer (conditioned on the task-identifier) and C indicates a Convolutional layer. More specifically, $C_{1\times 1}^A$ is a 1×1 convolution, projecting from c channels to c/4; $C_{3\times 3}^B$ is a 3×3 dilated convolution with dilation factor 2 and adequate padding to maintain the same spatial resolution as the input, with c/4 channels both as input and output; $C_{1\times 1}^C$ is a 1×1 convolution projecting from c/4 channels to 1 channel. This results in \mathbb{M}_{Sp} having shape $b \times 1 \times h \times w$.

A.b Scaling of \mathbb{M}

The second distillation term in Eq. 9 requires storing the binary attention maps \mathbb{M} computed for each sample stored in the memory buffer. While this implies a memory overhead, we point out that this is limited by two factors:

- The binary nature of M means its elements can be saved using the smallest supported data-type (usually 1 byte due to hardware constraints);
- As M usually encodes low level features, it contains several redundancies that can be exploited by (a) using lossless compression algorithms, or (b) down-sampling its spatial dimensions before saving.

2 M. Boschini et al.

In TwF we save the feature maps \mathbb{M} as bytes and apply down-scaling – with *nearest neighbor* rule – with a factor of 2 if the spatial dimensions are over 16×16 . We use the same strategy to up-scale the maps before computing Eq. 9.

B Hyperparameters

For the experiments of Sec. 4, we employed a choice of hyperparameters validated by grid-search on a random split of 10% of the training set. In the following, we list the values resulting from this process, which can be used to replicate our result. For the sake of fairness, we initialize all models from the same pretraining weights and fix the allowance in terms of iterations and sample efficiency by excluding the number of epochs, lr decay schedule and batch size from the grid-search³.

Split CIFAR-10 - Class-IL		
	Eps: 50 bs: 32 $\text{Eps}_{\text{pretr}}$: 200 lr_{decay} : no	
-	lr : 0.1	
-	lr: 0.1	
-	$\mathrm{lr}:0.1\ \lambda:10\ \gamma:1$	
-	lr : 0.1 α : 0.3 τ : 2 wd : 0.0001	
500	m lr: 0.1	
5120	lr: 0.1	
500	$lr: 0.5 bs: 256 \kappa: 0.2 \lambda: 1 lr_{lin}: 1 lr_{decay}^{lin}: 0.2 \kappa^*: 0.01 \tau: 0.07$	
5120	$lr: 0.5 bs: 256 \kappa: 0.2 \lambda: 1 lr_{lin}: 1 lr_{decay}^{lin}: 0.2 \kappa^*: 0.01 \tau: 0.07$	
500	$lr: 0.1 \text{ wd}: 10^{-5}$	
5120	$lr: 0.03 \text{ wd}: 10^{-5}$	
500	$\ln: 0.03 \alpha: 0.2 \beta: 0.5$	
5120	$\mathrm{lr}: 0.03 \alpha: 0.1 \beta: 1$	
500	m lr: 0.03	
5120	lr: 0.03	
500	$lr: 0.03 \ \alpha: 0.3 \ \beta: 0.9 \ \lambda: 0.1 \ \lambda_{\rm FP}: 5 \times 10^{-3} \ \lambda_{\rm FP}^{\rm repl}: 0.1$	
5120	lr : 0.1 α : 0.3 β : 0.9 λ : 0.1 $\lambda_{\rm FP}$: 5 × 10 ⁻³ $\lambda_{\rm FP}^{\rm repl}$: 0.3	
	- 500 5120 500 5120 500 5120 500 5120 512	

³ It must be noted that, to allow for its regular operation, CO²L demands a larger batch size. All results for this method are influenced by this advantage.

Split CIFAR-10 - Task-IL

shared		$Eps: 50 bs: 32 Eps_{pretr}: 200 lr_{decay}: no$
JOINT	-	lr:0.1
SGD	-	lr: 0.1
oEwC	-	$\mathrm{lr}: 0.03 \; \lambda: 0.5 \; \gamma: 1$
LwF	-	lr : 0.01 α : 0.3 τ : 2 wd : 0.0001
\mathbf{ER}	500	lr: 0.1
	5120	m lr: 0.1
$\rm CO^2 L$	500	lr : 0.5 bs : 256 κ : 0.2 λ : 1 lr _{lin} : 1 lr ^{lin} _{decay} : 0.2 κ^* : 0.01 τ : 0.07
	5120	lr : 0.5 bs : 256 κ : 0.2 λ : 1 lr _{lin} : 1 lr ^{lin} _{decay} : 0.2 κ^* : 0.01 τ : 0.07
iCaRL	500	$lr: 0.1 \text{ wd}: 10^{-5}$
	5120	$lr: 0.03 \text{ wd}: 10^{-5}$
DER++	500	$\mathrm{lr}: 0.03~\alpha: 0.2~\beta: 0.5$
	5120	$\mathrm{lr}: 0.03~\alpha: 0.1~\beta: 1$
ER-ACE	500	lr: 0.03
	5120	lr : 0.03
TwF	500	$lr: 0.03 \ \alpha: 0.3 \ \beta: 0.9 \ \lambda: 0.1 \ \lambda_{\rm FP}: 5 \times 10^{-3} \ \lambda_{\rm FP}^{\rm repl}: 0.1$
	5120	$ m lr: 0.1 \; lpha: 0.3 \; eta: 0.9 \; \lambda: 0.1 \; \lambda_{ m FP}: 5 imes 10^{-3} \; \lambda_{ m FP}^{ m repl}: 0.3$

Split CIFAR-100 - Class-IL

shared		Eps: 50 bs: 64 $\text{Eps}_{\text{pretr}}$: 200 lr_{decay} : 0.1 $\text{lr}_{\text{decay}}^{\text{steps}}$: [35, 45]
JOINT	-	lr:0.1
SGD	-	lr: 0.1
oEwC	-	$\mathrm{lr}: 0.1 \lambda: 5 \gamma: 1$
LwF	-	lr : 0.03 α : 0.3 τ : 2 wd : 0.0005
\mathbf{ER}	500	lr: 0.01
	2000	lr: 0.01
$\rm CO^2L$	500	lr: 0.1 bs: 256 κ : 0.2 λ : 1 lr _{lin} : 1 lr ^{lin} _{decay} : 0.2 κ^* : 0.01 τ : 0.07
	2000	$lr: 0.1 bs: 256 \kappa: 0.2 \lambda: 1 lr_{lin}: 1 lr_{decay}^{lin}: 0.2 \kappa^*: 0.01 \tau: 0.07$
iCaRL	500	$lr: 1 md: 10^{-5}$
	2000	$lr: 1 md: 10^{-5}$
DER++	500	$\ln: 0.1 \alpha: 0.3 \beta: 0.3$
	2000	${\rm lr}: 0.1 \alpha: 0.1 \beta: 0.5$
ER-ACE	500	lr: 0.1
	2000	lr: 0.1
TwF	500	$ m lr: 0.03 \; lpha: 0.3 \; eta: 1.2 \; \lambda: 0.3 \; \lambda_{ m FP}: 0.03 \; \lambda_{ m FP}^{ m repl}: 1.5$
	2000	lr : 0.1 α : 0.3 β : 1.2 λ : 0.3 $\lambda_{\rm FP}$: 5 × 10 ⁻³ $\lambda_{\rm FP}^{\rm repl}$: 1.2

_

shared		Eps: 50 bs: 64 Eps _{pretr} : 200 lr_{decay} : 0.1 lr_{decay}^{steps} : [35, 45]
JOINT	-	lr : 0.1
SGD	-	lr: 0.01
oEwC	-	$\mathrm{lr}: 0.01 \lambda: 0.5 \gamma: 0.7$
LwF	-	lr : 0.03 α : 0.3 τ : 2 wd : 0.0005
\mathbf{ER}	500	lr: 0.01
	2000	lr: 0.01
$\rm CO^2L$	500	lr : 0.1 bs : 256 κ : 0.2 λ : 1 lr _{lin} : 1 lr ^{lin} _{decay} : 0.2 κ^* : 0.01 τ : 0.07
	2000	lr : 0.1 bs : 256 κ : 0.2 λ : 1 lr _{lin} : 1 lr ^{lin} _{decay} : 0.2 κ^* : 0.01 τ : 0.07
iCaRL	500	$lr: 1 md: 10^{-5}$
	2000	$lr: 1 md: 10^{-5}$
DER++	500	$lr: 0.1 \alpha: 0.3 \beta: 1.2$
	2000	$\ln: 0.1 \alpha: 0.1 \beta: 0.5$
ER-ACE	500	lr: 0.1
	2000	lr: 0.1
TwF	500	$ m lr: 0.03 \; lpha: 0.3 \; eta: 1.2 \; \lambda: 0.3 \; \lambda_{ m FP}: 0.03 \; \lambda_{ m FP}^{ m repl}: 1.5$
	2000	$ m lr: 0.1 \; lpha: 0.3 \; eta: 0.8 \; \lambda: 0.3 \; \lambda_{ m FP}: 0.03 \; \lambda_{ m FP}^{ m repl}: 0.3$

Split CIFAR-100 - Task-IL

Split CUB-200 - Class-IL

		-
shared		$Eps: 50 bs: 64 Eps_{pretr}: 50$
JOINT	-	lr:0.1
SGD	-	lr: 0.1
oEwC	-	$\mathrm{lr}: 0.01 \lambda: 1 \gamma: 1$
LwF	-	lr : 0.1 α : 1 τ : 2 wd : 0.0005
\mathbf{ER}	400	m lr: 0.03
	1000	lr: 0.1
$\rm CO^2L$	400	lr : 0.1 bs : 256 κ : 0.2 λ : 1 lr _{lin} : 1 lr ^{lin} _{decay} : 0.2 κ^* : 0.01 τ : 0.07
	1000	$lr: 0.1 \text{ bs}: 256 \ \kappa: 0.2 \ \lambda: 1 \ lr_{lin}: 1 \ lr_{decay}^{lin}: 0.2 \ \kappa^*: 0.01 \ \tau: 0.07$
iCaRL	400	$lr: 0.1 \text{ wd}: 10^{-5}$
	1000	$lr: 0.1 \text{ wd}: 10^{-5}$
DER++	400	$\mathrm{lr}: 0.1~\alpha: 1~\beta: 0.5$
	1000	$\ln: 0.1 \alpha: 0.5 \beta: 0.5$
ER-ACE	400	lr: 0.1
	1000	lr: 0.1
TwF	400	lr : 0.03 α : 1 β : 1 λ : 0.3 $\lambda_{\rm FP}$: 5 × 10 ⁻⁴ $\lambda_{\rm FP}^{\rm repl}$: 0.1
	1000	lr : 0.03 α : 1 β : 1.2 λ : 0.3 $\lambda_{\rm FP}$: 5 × 10 ⁻⁴ $\lambda_{\rm FP}^{\rm repl}$: 0.1

Split CUB-200 - Task-IL

shared		$Eps: 50 bs: 64 Eps_{pretr}: 50$
JOINT	-	lr : 0.1
SGD	-	lr: 0.1
oEwC	-	$\mathrm{lr}: 0.1 \; \lambda: 0.5 \; \gamma: 0.9$
LwF	-	lr : 0.1 α : 1 τ : 2 wd : 0.0005
\mathbf{ER}	400	m lr: 0.1
	1000	lr: 0.1
$\rm CO^2L$	400	$lr: 0.1 \text{ bs}: 256 \ \kappa: 0.2 \ \lambda: 1 \ lr_{lin}: 1 \ lr_{decay}^{lin}: 0.2 \ \kappa^*: 0.01 \ \tau: 0.07$
	1000	lr : 0.1 bs : 256 κ : 0.2 λ : 1 lr _{lin} : 1 lr ^{lin} _{decay} : 0.2 κ^* : 0.01 τ : 0.07
iCaRL	400	$lr: 0.1 \text{ wd}: 10^{-5}$
	1000	$lr: 0.1 \text{ wd}: 10^{-5}$
DER++	400	$\mathrm{lr}: 0.1 \alpha: 0.5 \beta: 0.5$
	1000	${\rm lr}: 0.1 \alpha: 0.5 \beta: 0.5$
ER-ACE	400	lr: 0.1
	1000	lr : 0.1
TwF	400	$lr: 0.03 \ \alpha: 0.3 \ \beta: 1 \ \lambda: 0.3 \ \lambda_{\rm FP}: 5 \times 10^{-4} \ \lambda_{\rm FP}^{\rm repl}: 0.1$
	1000	lr : 0.03 α : 1 β : 1 λ : 0.3 $\lambda_{\rm FP}$: 5 × 10 ⁻⁴ $\lambda_{\rm FP}^{\rm repl}$: 0.1

References

- 1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (2016)
- 2. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: Bottleneck attention module. In: British Machine Vision Conference (2018)