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This supplementary material provides details, experimental results on down-
stream tasks and additional visual results that could not be included in the
paper submission due to space limitation. In Sec. A, we first provide more de-
tails about several model architectures (i.e., DFvT-T, DFvT-S and DFvT- B).
Then, we demonstrate the effectiveness and efficiency of DFvT by providing ex-
perimental results on downstream tasks (in Sec. B and C). Sec. D provides some
visual results to show what we have learned in the features.

A Model Variants

We construct models across a spectrum of different model sizes by simply chang-
ing the number of Transformer blocks at each stage, the hidden feature dimen-
sion and the MLP ratio of increasing dimension, termed DFvT-T, DFvT-S, and
DFvT-B, which represents the tiny, small and base models, respectively. The
details of these models are shown in Table 1.

B Object Detection on COCO

The object detection experiments are conducted on COCO 2017 detection dataset
[3], which covers 80 categories and contains 80k training images, 30k testing im-
ages, 5k validation images. We report the final results on the validation subset

Output Size
DFvT-T DFvT-S DFvT-B

Context Module Spatial Module Context Module Spatial Module Context Module Spatial Module

Patch Stem 56 x 56

[
3× 3, stride 2, 24
3× 3, stride 2, 48

] [
3× 3, stride 2, 48
3× 3, stride 2, 96

] [
3× 3, stride 2, 64
3× 3, stride 2, 128

]

Stage 1 28 x 28

maxpool 3× 3, stride 21× 1, stride 1, 48
3× 3, stride 2, 48
1× 1, stride 1, 48

 [
h1 = 3, r = 4

]
× 1

[
3× 3, stride 1, 48

] maxpool 3× 3, stride 21× 1, stride 1, 96
3× 3, stride 2, 96
1× 1, stride 1, 96

 [
h1 = 3, r = 2

]
× 1

[
3× 3, stride 1, 96

] maxpool 3× 3, stride 21× 1, stride 1, 128
3× 3, stride 2, 128
1× 1, stride 1, 128

 [
h1 = 4, r = 2

]
× 2

[
3× 3, stride 1, 128

]
Patch Aggr. 28 x 28 1× 1, stride 1, 96 1× 1, stride 1, 192 1× 1, stride 1, 256

Stage 2 14 x 14

maxpool 3× 3, stride 21× 1, stride 1, 96
3× 3, stride 2, 96
1× 1, stride 1, 96

 [
h2 = 6, r = 4

]
× 1

[
3× 3, stride 1, 96

] maxpool 3× 3, stride 21× 1, stride 1, 192
3× 3, stride 2, 192
1× 1, stride 1, 192

 [
h2 = 6, r = 2

]
× 1

[
3× 3, stride 1, 192

] maxpool 3× 3, stride 21× 1, stride 1, 256
3× 3, stride 2, 256
1× 1, stride 1, 256

 [
h2 = 8, r = 2

]
× 2

[
3× 3, stride 1, 256

]
Patch Aggr. 14 x 14 1× 1, stride 1, 192 1× 1, stride 1, 384 1× 1, stride 1, 512

Stage 3 7 x 7

maxpool 3× 3, stride 21× 1, stride 1, 192
3× 3, stride 2, 192
1× 1, stride 1, 192

 [
h3 = 12, r = 4

]
× 2

[
3× 3, stride 1, 192

] maxpool 3× 3, stride 21× 1, stride 1, 384
3× 3, stride 2, 384
1× 1, stride 1, 384

 [
h3 = 12, r = 2

]
× 2

[
3× 3, stride 1, 384

] maxpool 3× 3, stride 21× 1, stride 1, 512
3× 3, stride 2, 512
1× 1, stride 1, 512

 [
h3 = 16, r = 2

]
× 6

[
3× 3, stride 1, 512

]
Patch Aggr. 7 x 7 1× 1, stride 1, 384 1× 1, stride 1, 768 1× 1, stride 1, 1024

Stage 4 7 x 7

1× 1, stride 1, 384
3× 3, stride 1, 384
1× 1, stride 1, 384

 [
h4 = 24, r = 4

]
× 1 -

1× 1, stride 1, 768
3× 3, stride 1, 768
1× 1, stride 1, 768

 [
h4 = 24, r = 2

]
× 1 -

1× 1, stride 1, 1024
3× 3, stride 1, 1024
1× 1, stride 1, 1024

 [
h4 = 32, r = 2

]
× 2 -

Classifier 1 x 1

[
avgpool

1× 1, stride 1, 1000

] [
avgpool

1× 1, stride 1, 1000

] [
avgpool

1× 1, stride 1, 1000

]
FLOPs 0.3G 0.8G 2.5G

Table 1. Detailed architecture specifications. hi denotes the number of head in block
i, and r represents the up-dimensioning ratio of mlp block.
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of bounding box AP and mask AP with the representative Mask R-CNN [2]
framework in Table 2.

COCO 2017

Method Backbone AP box APmask Params(M) FLOPs(G) FPS Memory

SSDLite MobileNetV2† 22.1 - 4.3 - - -
Mask RCNN DFvT-T 32.9 30.7 25 178 39.3 2.0
Mask RCNN DFvT-S 38.0 35.4 32 198 31.5 2.5

Mask RCNN ResNet50† 37.8 34.2 44 260 22.6 4.0

Mask RCNN ResNet101† 40.0 36.1 63 336 16.6 6.4

Mask RCNN PVT-Medium† 42.0 39.0 64 392 - -

Mask RCNN Swin-Tiny† 43.7 39.8 48 267 16.0 5.9
Mask RCNN DFvT-B 43.1 39.2 58 242 22.7 3.9

Table 2. Object detection on COCO 2017 with Mask R-CNN framework. † denotes
that the results are reported by their original papers or mmdetection library. The batch
size is set to 2 when test FPS and memory on a single NVIDAI 2080 Ti GPU. When
computing FLOPs, the input size is set to 1280× 800.

Our DFvT-B backbone achieves 43.1 mAP on the object detection task and
39.2 mAP on the instance segmentation task, which is 3.1 higher than that of
ResNet101 backbone with much fewer computational costs and faster speed. It is
worth noting that our DFvT is very competitive considering inference speed and
memory cost. For example, DFvT-B is as fast as ResNet50 (e.g., FPS 22.7) and
occupies less memory (e.g.3.9G) with exceeding it 5.3 in box mAP. Moreover,
DFvT-B achieves compelling results compared to Swin-Tiny with much less cost,
that is, our FPS is 42% faster and memory occupation is 34% less.

C Semantic Segmentation on ADE20K

ADE20K [5] is a widely-used dataset, dense pixel-level semantic annotations are
provided for 20,210 training images, 2,000 validation images, and 3,000 testing
images. ADE20K contains 150 semantic categories with a broad range. In the
experiment setup, we utilize UperNet [4] as the semantic segmentation frame-
work along with our DFvT-B to get final segmentation prediction maps. The
results are presented in Table 3.

The mIoU of DFvT-B with UperNet on the validation set is 44.7, while that
with Resnet101 and Swin-Tiny are 42.0 and 44.5, respectively. It can be seen
that our proposed method is also efficient in semantic segmentation in terms of
computation cost, speed and memory.

D Visual Results

We provide visual inspection results of DFvT-B using Grad-CAM++ [1] in Fig-
ure 1. The visualization of the features shows which important regions our model
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ADE20K

Method Backbone val mIoU Params(M) FLOPs(G) FPS Memory

UperNet MobileNetV2 34.8 31 - - -
UperNet DFvT-T 36.1 34 849 9.0 7.7
UperNet DFvT-S 40.7 44 874 8.6 8.1

UperNet ResNet50† 40.4 67 952 7.6 8.3

UperNet ResNet101† 42.0 86 1029 6.8 OOM

UperNet Swin-Tiny† 44.5 60 945 6.7 9.5
UperNet DFvT-B 44.7 72 925 7.7 9.4

Table 3. Semantic segmentation on ADE20K. The batch size is set to 4 when testing
speed and memory cost in a single NVIDIA 2080 Ti GPU, and the image size is set to
2048× 512 for FLOPs computing. † means that the mIoU results are copied from the
papers or mmsegmentation library.

classifies based on. As can be seen in the figure, our proposed DFvT-B can ac-
curately locate the targets and focus more attention on identifiable features.
This can be attributed to our specially designed context and spatial modules. In
particular, the context module can handle the entire concept of the object, and
the spatial module can well learn fine-grained features to accurately locate the
object.
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Input InputVisual Explanations Visual Explanations

Fig. 1. Visualization of features of DFvT-B.



Title Suppressed Due to Excessive Length 5

References

1. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-cam++:
Generalized gradient-based visual explanations for deep convolutional networks. In:
Proceedings of the IEEE Winter Conference on Applications of Computer Vision.
pp. 839–847 (2018)

2. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE International Conference on Computer Vision. pp. 2961–2969 (2017)

3. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Proceedings of the
European Conference on Computer Vision. pp. 740–755 (2014)

4. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene
understanding. In: Proceedings of the European Conference on Computer Vision.
pp. 418–434 (2018)

5. Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., Torralba, A.: Se-
mantic understanding of scenes through the ade20k dataset. International Journal
of Computer Vision 127(3), 302–321 (2019)


