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A More Related Works

Deep neural networks (DNNs) have been showing state-of-the-art performances
in various vision tasks [6,19,16,3,4,1,14,25], however, previous works mainly in-
vestigated DNNs in the spatial domain, and also it is still an open problem to
understand their mechanisms. Recently, many researchers take the Fourier trans-
formation as a tool to improve DNNs’ performance or analyze their behaviors
[17,23,18]. One recent work [17] investigates the CNN models from a frequency
perspective. It reveals that CNN can exploit the high-frequency image compo-
nents that are not perceivable to human, and demonstrates that it helps the
generalization behaviors of CNN models. The method in [23] pre-processes the
inputs in the frequency domain to better preserve image information and achieve
improved accuracy in various vision tasks. Inspired by properties of the Fourier
transformation [10,11,13], Xu et al. [24] proposed a novel Fourier-based data aug-
mentation strategy called amplitude mix to help domain generalization. Also,
there are some works studying ViT models from the frequency domain. Park
et al. demonstrated that [12] multi-head self-attentions in ViT models are low-
pass filters, but convolutional layers are high-pass filters, and proposed a novel
architecture to combine these two operations. Theoretically, Wang et al. ex-
plained that [18] cascading self-attention blocks in ViT models is equivalent to
repeatedly applying a low-pass filter. Besides, most recent works [8,21] solved
the self-supervised visual pre-training through the lens of the frequency domain.

B Theoretical Analysis

Based on definitions of the low-pass filtering MS
l and high-pass filtering MS

h in
Section 3, following [18], we present Theorem 1 for the attention map A∈Rn×n

produced by the softmax function in ViT models. It is proven based on the
property of the matrix A and the details can be found in [18]. Theorem 1 reveals
that the self-attention mechanism diminishes the high-frequency information
with depth increasing, which further confirms our hypothesis.
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Theorem 1. limk→∞
||Mn−1

h (Akv)||2
||M1

l(A
kv)||2 = 0 for any vector v ∈ Rn, where Ak de-

notes the product of A with itself k times.

C Algorithm Pipeline

Algorithm 1 Training a ViT model with HAT for one epoch

Input: Training set X = {(x,y)}, model weights θ, learning rate τ , maximum pertur-
bation strength ϵ, number of PGD steps K, PGD step size η

1: for minibatch B ⊂ X do
2: δ0 ← 0
3: for t = 1...K do
4: ▷ Compute gradients of model weights and perturbations simultaneously

5: if t = 1 then
6: ∇θ,∇δ ← ∇L

(
θ,x+ δ0,y

)
7: else
8: ∇θ,∇δ ← ∇ 1

K−1 [αL(θ,x+δt−1,y)+βLkl(θ,x+δt−1,x)]
9: end if
10: gt←gt−1+∇θ ▷ Accumulate gradients of model weights

11: δt←clip(δt−1+η ·sign(∇δ),−ϵ, ϵ) ▷ Update and clip perturbations

12: end for
13: θ ← θ − τ · gK ▷ Update model weights

14: end for

D Implementation Details

D.1 Combining HAT with Knowledge Distillation

We combine HAT with knowledge distillation by optimizing the loss function,
which is obtained by replacing the cross-entropy loss in Eq. (4) with the distil-
lation loss used in DeiT [15], as follows:

E(x,y)∼D

[
Ldist

(
θ,x,y,yt

)
+ max

||δ||∞⩽ϵ

(
αLdist

(
θ,x+δ,y,yt

)
+βLkl

(
θ,x+δ,x

))]
,

where Ldist

(
θ,x,y,yt

)
= 1

2CE(fθ(x),y) +
1
2CE(fθ(x),yt) is the distillation loss

and yt is the hard decision of the teacher model. We also keep the optimization
and all hyper-parameters unchanged.

D.2 Object Detection and Instance Segmentation

We take three variants of Swin Transformer trained without and with our HAT as
pre-trained models to evaluate the performance in object detection and instance
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(b) High-pass Filtering

Fig. I: Comparison of vanilla training and two pre-training methods on low- and
high-pass filtered validation set with different filter sizes. The top-1 accuracy
of ImageNet-1K Vanilla Training, ImageNet-22K Pre-training, and ImageNet-
1K SimMIM Pre-training on the ImageNet validation set is 76.7%, 84.5%, and
83.8%, respectively.

segmentation. The experiments are conducted on COCO 2017 [7], which contains
118K training, 5K validation, and 20K test-dev images. We use the Cascade Mask
R-CNN object detection framework [2,5] with multi-scale training (resizing the
input such that the shorter side is between 480 and 800 while the longer side is
at most 1,333), AdamW optimizer (initial learning rate of 0.0001, weight decay
of 0.05, and batch size of 16), and 3x schedule (36 epochs). Our implementation
is based on Swin Transformer and more details can be found in [9].

D.3 Semantic Segmentation

We also use Swin Transformer to evaluate the performance in semantic segmenta-
tion. We report results on the widely-used segmentation benchmark ADE20K [26],
where ADE20K contains 25K images in total, including 20K images for train-
ing, 2K images for validation, and 3K images for test. And the UperNet [20] is
selected as the segmentation framework. In training, we follow the setup of the
original paper [9]. Specifically, we utilize the AdamW optimizer with an initial
learning rate of 6× 10−5 and a weight decay of 0.01, and we set the linear learn-
ing schedule with a minimum learning rate of 5 × 10−6. Models are trained on
8 GPUs with 2 images per GPU for 160K iterations. In inference, we perform
multi-scale test with interpolation rates of [0.75, 1.0, 1.25, 1.5, 1.75].

E More Frequency Analysis

E.1 Large-scale Pre-training

We analyze supervised (i.e., ImageNet-22K) and self-supervised (i.e., SimMIM
[22]) pre-training in Figure I. It shows that both are helpful for exploiting high-
frequency components, especially for SimMIM.

Besides, we directly use HAT in fine-tuning under the SimMIM pre-training
setting. Specifically, we perform adversarial training in the first 80 epochs for
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Fig. II: Comparison of ViT-B and ViT-B (+KD) with different teacher models
on low- and high-pass filtered validation set with different filter sizes. The top-1
accuracy of ViT-B, ViT-B (+KD, Teacher: Swin-B), and ViT-B (+KD, Teacher:
RegNetY-16GF) on the ImageNet validation set is 82.0%, 82.8%, and 83.6%,
respectively.

ViT-b and normal training in the rest 20 epochs, and keep other settings un-
changed. Training with HAT results in an 83.9% top-1 accuracy, which is better
than an 83.8% top-1 accuracy reported in its paper and an 83.6% top-1 accuracy
in our reproduction without HAT.

E.2 Knowledge Distillation

Here we also analyze the knowledge distillation with CNN (i.e., RegNetY-16GF)
and ViT (i.e., Swin-B) teacher in Figure II. It indicates that, compared to the
ViT teacher, the CNN teacher is more helpful for ViT-B to capture the high-
frequency components.
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