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Abstract. Spiking Neural Networks (SNNs) have gained huge attention
as a potential energy-efficient alternative to conventional Artificial Neu-
ral Networks (ANNs) due to their inherent high-sparsity activation. How-
ever, most prior SNN methods use ANN-like architectures (e.g., VGG-
Net or ResNet), which could provide sub-optimal performance for tempo-
ral sequence processing of binary information in SNNs. To address this,
in this paper, we introduce a novel Neural Architecture Search (NAS)
approach for finding better SNN architectures. Inspired by recent NAS
approaches that find the optimal architecture from activation patterns at
initialization, we select the architecture that can represent diverse spike
activation patterns across different data samples without training. More-
over, to further leverage the temporal information among the spikes, we
search for feed-forward connections as well as backward connections (i.e.,
temporal feedback connections) between layers. Interestingly, SNASNet
found by our search algorithm achieves higher performance with back-
ward connections, demonstrating the importance of designing SNN ar-
chitecture for suitably using temporal information. We conduct extensive
experiments on three image recognition benchmarks where we show that
SNASNet achieves state-of-the-art performance with significantly lower
timesteps (5 timesteps). Code is available on Github.

Keywords: Spiking Neural Networks, Neural Architecture Search, Neu-
romorphic Computing

1 Introduction

Spiking Neural Networks (SNNs) [71, 12, 84, 85, 45, 23] have gained increasing
attention as a promising paradigm for low-power intelligence. Inspired by biolog-
ical neuronal functionality, SNNs process visual information with binary spikes
over multiple timesteps. So far, the majority of works on SNNs have focused
on image classification problem [71] to develop an energy-efficient alternative to
Artificial Neural Networks (ANNs). To this end, recent SNN works utilize ANN
architectures (e.g., VGG-Net [77] or ResNet [33]) designed by human experts.
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Fig. 1. Accuracy and timesteps for different SNN models on (a) CIFAR10, (b)
CIFAR100, and (c) TinyImageNet dataset. While showing comparable accuracy
with state-of-the-art networks, SNASNet achieves significantly lower latency. Also,
SNASNet-Bw where we search both forward and backward connections provides better
performance than the SNASNet-Fw with only forward connections.

While SNNs show an impressive advantage on energy-efficiency, they still lag
behind ANNs in terms of accuracy.

In this paper, we argue that the inherent structural/functional difference be-
tween ANNs and SNNs induces an unignorable architectural gap, resulting in
a sub-optimal solution when we naively deploy ANN architectures on SNNs.
Specifically, different from ANNs with ReLU neurons, SNNs consist of Leaky
Integrate-and-Fire (LIF) neurons which store and transmit temporal informa-
tion. However, manually searching for SNN-friendly architectures is laborious.
Therefore, we use Neural Architecture Search (NAS) [106, 107, 6, 34, 75, 102],
which can automatically discover the optimal SNN architecture. Although NAS
has become a prevalent technique in various ANN tasks [11, 9, 26, 101], NAS for
designing SNNs has not been investigated. In this work, we ask two questions:
Q1. Which NAS algorithm is suitable for SNNs?
Q2. Which SNN architecture provides better performance on an image recogni-
tion task?

For the first question, we highlight that the mainstream NAS algorithms ei-
ther require multiple training stages [106, 107, 2, 105, 78] or require training a
supernet once with all architecture candidates [54, 28, 86, 6] which takes longer
training time to converge than standard training. As SNNs have a significantly
slower training process compared to ANNs (e.g., training SNN with timestep
10 on MNIST with NVIDIA V100 GPU takes 11.43× more latency compared
to the same ANN architecture [52]), the above NAS approaches are difficult to
be applied on SNNs. On the other hand, recent works [57, 88, 10] have pro-
posed efficient NAS approaches that search the best neuron cell from initialized
networks without any training. Specifically, [57] shows that the network architec-
ture with a high representation power at initialization is likely to achieve higher
post-training accuracy. Motivated by this, without the training process, we select
the SNN architecture that can represent diverse spike activation patterns across
different data samples. To quantify the diversity of networks, we measure the
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distance of temporal activation patterns between different mini-batch samples.
However, SNNs show high sparsity variation on the temporal patterns across dif-
ferent mini-batches, resulting in inaccurate distance measures. To address this,
we normalize the distance measure based on the sparsity of given activation
patterns, that we term as Sparsity-Aware Hamming Distance (SAHD).

To answer the second question, we search the optimal architecture block for
SNNs. Here, we find the connection topology as well as the corresponding opera-
tion for each connection following previous works [20, 95]. Different from ANNs,
SNNs can leverage backward connections as they convey information through
time. The backward connections in SNNs can compute more efficiently because
each neuron can participate several times in a network computation [3], and
they are likely to capture the temporal correlation of the given input. A line of
work has studied backward connections in SNNs with various architectures and
training methods [14, 98, 3, 37, 63, 62]. Therefore, we search backward connec-
tions as well as forward connections through our NAS algorithm. Surprisingly,
SNNs with backward connections yield improved accuracy by up to 3% across
various benchmark datasets compared to SNNs with forward connections only.
Also, as shown in Fig. 1, SNASNet founded by our NAS algorithm achieves
state-of-the-art performance with a significantly small number of timesteps.

In summary, our key contributions are as follows: (1) So far, most SNN lit-
erature deploys architectures from ANN models which can yield sub-optimal
performance for SNNs. For the first time, we showcase a NAS technique for
finding better SNN architecture on the image recognition task. (2) Motivated
by the prior work [57, 88, 10], we find an SNN-friendly architecture by compar-
ing temporal activation without any training process. Eliminating the training
cost to find the optimal architecture brings a huge advantage for SNNs that re-
quire significantly longer training time compared to ANNs. (3) We also propose
Sparsity-Aware Hamming Distance (SAHD) for addressing sparsity variation of
LIF neurons. (4) Furthermore, we search backward connections for leveraging
temporal information in spiking inputs, which has not been explored before in
NAS approaches for ANN architecture.

2 Related Work

2.1 Spiking Neural Networks

Spiking Neural Networks (SNNs) have gained great attention as an energy-
efficient alternative over standard Artificial Neural Networks (ANNs) [71, 62,
7, 18, 13, 59, 73, 29, 19, 72, 96, 38, 45, 94, 49, 50, 39, 41, 40, 45, 42, 79, 51, 17].
SNNs process temporal information through weight connections and a Leak-
Integrate-and-Fire (LIF) neuron [36] which works as a non-linear activation in
SNNs. The LIF neuron has its own memory called membrane potential that
can store the temporal spike dynamics by accumulating incoming spike signals.
If the membrane potential exceeds a firing threshold, the neuron generates a
post-synaptic spike. The integrate-and-fire behavior of neurons induces non-
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differentiable transfer function. As a result, standard backpropagation is difficult
to be applied during the training phase [61].

To address this, various methods have been proposed to circumvent the non-
differentiable backpropagation problem. Among them, surrogate gradient learn-
ing approaches have become popular [48, 47, 61, 74, 27, 84] due to their higher
performance and smaller number of timesteps compared to other training tech-
niques. They define a surrogate function for LIF neurons when calculating back-
ward gradients. Wu et al. [85] represent the LIF model in a discrete-time domain
and enable SNN training with a Pytorch platform. The authors of [81] propose a
training algorithm that calculates backward gradients of the accumulated input
and output spikes over the time window. Tandem learning [82, 83] utilizes an
auxiliary ANN that facilitates stable error back-propagation for SNN training. A
line of work [24, 68] train membrane decay or firing threshold in an LIF neuron,
which improves the representation power of SNNs. Also, Batch Norm (BN) [35]
has been applied to accelerate the training process of SNNs [46, 39, 104]. In spite
of the recent developments in SNN training techniques, all of the prior methods
leverage ANN architecture, such as, VGG and ResNet families. We assert that
these architectures may provide sub-optimal solution for SNNs. Different from
previous methods, we search better SNN architectures for the image recognition
task which has not been explored so far. We notify that the concurrent work
[60] also aims to find SNN-friendly architecture using evolutionary algorithm,
whereas our work is based on NAS without training technique. We also have
different search spaces from [60] where we more focus on searching backward
connections.

2.2 Neural Architecture Search

Neural Architecture Search (NAS) has been proposed to discover high-performing
networks [106, 107, 6, 34, 75, 102]. The early stage of NAS algorithm uses re-
inforcement learning [106, 107, 2, 105, 78] or evolutionary algorithm [70]. How-
ever, such methods require training the searched architecture from scratch for
each search step, which is extremely computationally expensive. To address this,
weight-sharing approaches have been proposed [6, 54, 80, 86, 4, 5, 66, 100, 28,
8, 92]. They train the supernet once which includes all architecture candidates.
For instance, Darts [54] jointly optimizes the network parameters and the im-
portance of each architecture candidate. Also, SPOS [28] trains the weight pa-
rameters with uniform forward path sampling and finds the optimal architecture
via evolutionary strategy. The weight-sharing methods do not require training
the architecture from scratch at each search step, resulting in better efficiency
compared to previous NAS algorithms. In very recent works, the key focus has
been the efficiency of the NAS technique [93, 91, 90, 1, 103] owing to the growing
size of dataset and architecture. Interestingly, a line of work suggests the con-
cept of NAS without training where the networks do not require training during
the search stage [88, 57, 10]. This can significantly reduce the computational
cost for searching optimal architecture. At the same time, several benchmarks
[20, 95, 76, 21] have been proposed in order to remove the burden of training
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time. Following the success of NAS on image classification domain, NAS has been
deployed on various tasks such as object detection [11], segmentation [53, 101],
GAN [26], transformer [9], and human pose estimation [97, 89]. Despite the huge
progress of NAS algorithm in ANN domain, NAS for SNNs has not been devel-
oped yet. In this work, we aim to build better SNN architecture by leveraging
NAS. Different from the previous methods that search only forward connections
of the networks, we search for backward connections in addition to forward,
which furthers leverage the temporal information of spikes.

3 Preliminaries

3.1 Leaky Integrate-and-Fire neuron

Leaky Integrate-and-Fire (LIF) neuron is widely used for constructing SNNs
[71, 85, 24]. A neuron has a membrane potential that stores the temporal spike
information. We convert the above continuous differential equation into a discrete
version as in previous works [85, 24]:

ut
i = (1− 1

τm
)ut−1

i +
1

τm

∑
j

wijo
t
j , (1)

where, ut
i represents the membrane potential of a neuron i at timestep t, τm is a

time constant for decaying the membrane potential. Also, wij stands for weight
connections between neuron j and neuron i. The neuron i accumulates membrane
potential and generates a spike output oti whenever membrane potential exceeds
the threshold. After firing, the membrane potential is reset to zero.

3.2 NAS without Training

Compared to standard ANNs, SNNs require significantly higher computational
cost for training due to multiple feedforward steps [52]. This makes it difficult
to search for an optimal SNN architecture with NAS techniques that train the
architecture candidate multiple times [106, 107, 2, 105, 78] or train a complex
supernet [54, 28, 86, 6]. To minimize the training budget, our work is moti-
vated by the previous works [57, 88, 10] which demonstrate that the optimal
architecture can be founded without any training process. Specifically, Mellor
et al. [57] provide the interesting observation that the architecture having dis-
tinctive representations across different data samples is likely to achieve higher
post-training performance. To measure the discriminative power of initialized
networks, they utilize the activation pattern of ReLU neurons as a binary in-
dicator. If the ReLU neuron generates a positive value (i.e., input > 0), the
neuron is mapped to 1; otherwise 0. As a result, ReLU neurons in one layer can
be encoded to binary vector c. Given N samples in a mini-batch, they construct
a kernel matrix by computing Hamming distance dH(ci, cj) between different
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samples i and j, which can be formulated as follows:

KH =

NA−dH(c1, c1) · · · NA−dH(c1, cN )
...

. . .
...

NA−dH(cN , c1) · · · NA−dH(cN , cN )

 (2)

Here, NA stands for the number of ReLU neurons in the given layer. The final
score of the architecture candidate is obtained by:

s = log(det |
∑
l

Kl
H |), (3)

where, Kl
H is the kernel matrix at layer l. A high score implies low off-diagonal

elements of kernel matrix KH , which means that the activation patterns from
different samples are not similar. Finally, the highest-scored architecture among
the candidates is selected for training.

4 Methodology

In this section, we first introduce a temporal binary indicator of an LIF neuron
based on the concept of linear region in neural networks. After that, we present
sparsity-aware hamming distance that accounts for the sparsity variation of an
LIF neuron. Finally, we provide the search space for our NAS algorithm where
we find both forward and backward connections.

4.1 Linear Regions from LIF neurons

NAS without training approaches in ANN domain [57, 10] are based on the the-
oretical concept of linear region in neural networks [31, 87, 30, 67, 58]. That
is, each piecewise linear function (such as, ReLU) divides the input space into
multiple linear regions. The composition of multiple piecewise linear functions
brings multiple linear regions on the input space. Such a pattern of linear regions
is used for measuring the representation power of initialized networks by com-
paring the patterns between different samples. Here, based on previous work, we
introduce the definition of neuron transition (i.e., the boundary of linear region)
in a piecewise linear function.
Definition 1. (Raghu et al. [67]) For fixed W, we say a neuron with piecewise
linear region transitions between inputs x, x+δ if its activation function switches
linear region between x and x+ δ.
For instance, ReLU and Hard Tanh have neuron transition at 0 and {−1, 1},
respectively [67]. Fig. 2(a) also shows the simple example with three ReLU neu-
rons. The input space is divided into two regions by a single ReLU neuron. By
composing ReLU neurons, the input space is partitioned into multiple regions
where each region represents a different linear function.

According to Definition 1, a LIF neuron can be regarded as a piecewise
linear function. For each timestep, the LIF neuron transfers 0 if the membrane
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(a) ReLU (b) LIF

Fig. 2. Illustration of the concept of lin-
ear regions from ReLU and LIF neurons.
Each ReLU (or LIF neuron) divides the
two-dimension input space into active and
inactive regions.

(a) ReLU (b) LIF (t=1)

(c) LIF (t=3) (d) LIF (t=5)

Fig. 3. Sparsity variance of activation pat-
tern across different layers and different
samples in a mini-batch. LIF neuron shows
higher variance of activation pattern com-
pared to ReLU neuron.

potential is lower than a firing threshold, otherwise it generates 1 (i.e., spike).
Thus, neuron transition occurs when a given input generates an output spike.
We illustrate the transfer function of an LIF neuron in Fig. 2(b). Different from
ReLU neuron, the output of LIF neuron is not solely dependent on the input.
As we shown in Eq. 1, the output of LIF neuron is based on the current input as
well as the previous membrane potential. Therefore, the neuron transition point
can be changing across time. For example, suppose that the firing threshold is
1 and the membrane potential from the previous timestep is 0.3. In this case,
neuron transition happens at input = 0.7. After the neuron fires, the membrane
potential is reset to 0, where, the neuron transition point becomes 1. With this
time-varying transfer function, the linear region of SNNs becomes more diverse.

4.2 Sparsity-Aware Hamming Distance

In NASWOT [57], Hamming Distance (HD) is a key metric to compare the
binary activation pattern ci, cj between two different mini-batch samples i, j.
However, standard HD gives inaccurate distance measurement for SNNs due to
the large sparsity variance of binary activation pattern c of LIF. Here, the term
“sparsity” denotes the percentage of 0 in binary activation pattern c from one
layer at a given timestep t. Note, the definition of “sparsity” here is slightly
different from the previous works which defines “sparsity” from the activation
across all timesteps.
Observation on the sparsity of activation pattern. A ReLU neuron pro-
vides a binary activation pattern with about 50% sparsity from Gaussian/Uni-
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neural architecture search.

form weight initialization [32], which is similar across all data samples. On the
other hand, a LIF neuron shows a large variation of sparsity across different
data samples since the activation pattern is based on the previous membrane
potential which is different in each sample. In Fig. 3, we visualize the sparsity of
binary activation pattern with 16 mini-batch samples. The results demonstrate
that LIF neuron causes a large sparsity variation across different samples.
A problem due to large sparsity variation. This large sparsity variation
induces different scales of HD. To explain this, for the data sample i, we model
the distribution of LIF neuron output (at each timestep) as i.i.d. Bernoulli dis-
tribution where the probability of observing 1 is 1− rli:

oli ∼ Bern(1− rli). (4)

Here, rli is sparsity of binary activation pattern at layer l. Then, the probability of
an activation difference (at the same neuron position) between two data samples
i, j can be represented as:

Pr(|oli − olj | = 1) = Bern(rli(1− rlj) + (1− rli)r
l
j). (5)

Considering that each element of binary activation patterns cl ∈ RN l
A is sampled

from Bernoulli distribution (Eq. 4), where N l
A denotes the number of neurons

at layer l. Then, the expectation of HD (i.e., dH(cli, c
l
j)) can be formulated as:

E[dH(cli, c
l
j)] = N l

AE[Pr(|oli − olj | = 1)] = N l
A{rli(1− rlj) + (1− rli)r

l
j}, (6)

Note, all quantities in Eq. 4, Eq. 5, and Eq. 6 are evaluated per timestep, and
we average them across timesteps.

As we can observe in Eq. 6, the expectation of HD is the function of sparsity
rli and rlj . Therefore, HD will provide an inaccurate distance measure for SNN
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where sparsity rl has a large variation across data samples (Fig. 3). For example,
HD is likely to be small if two activations are in extreme cases, highly-sparse
(r → 1) or highly-dense (r → 0). On the other hand, HD is likely to be high if
two activations are in a moderate range (r ≈ 0.5). Thus, based on the sparsity
of two activations, HD has a different contribution to the final score s (Eq. 3);
the ideal case is when all HD have the same contribution.
The proposed solution. To address this problem, we propose Sparsity-Aware
Hamming Distance (SAHD) where Hamming Distance is normalized based on
the sparsity of two binary activation patterns. This can be simply done by nor-
malizing the expectation of HD value to a constant α:

dSAH(cli, c
l
j) =

α

N l
A{rli(1− rlj) + (1− rli)r

l
j}

dH(cli, c
l
j). (7)

We compute the global SAHD score by accumulating layer-wise SAHD across
all layers, i.e., dSAH(ci, cj) =

∑
l dSAH(cli, c

l
j). Instead of HD, we use SAHD for

computing the kernel matrix (Eq. 2) at each timestep. After that, we sum all
kernel matrices to compute the final score using Eq. 3. In Fig. 4, we compare the
correlation between architecture score and post-training accuracy for HD and
SAHD. The results demonstrate that the proposed SAHD has a higher Kendall’s
τ value which implies it is a more accurate metric for architecture selection.

4.3 Searching Forward and Backward Connections

Cell-based approach [107, 70, 66, 75, 54, 86] is widely used in NAS research.
These methods usually search for the connection topology as well as the corre-
sponding operation for each connection. Then, multiple generated cell architec-
tures construct the whole network. In our search algorithm, we also investigate
cell-based architectures. Fig. 5 shows the macro skeleton of our SNN architec-
ture. The first block is the spike encoding layer which directly converts a float
value image into spikes like previous works [85, 104, 99]. The main body of the
skeleton consists of two searched neuron cells and one reduction cell. The reduc-
tion cell includes one convolution layer and 2-by-2 Average pooling with stride
2. Finally, a linear classifier is used for prediction.
Cell Search Strategy. Our cell search space is identical to NAS-Bench-201 [20]
(except for backward connections) where each cell includes V = 4 nodes with
multiple connections sampled from operation set O = {zeroize, skip connection,
1-by-1 convolution, 3-by-3 convolution, 3-by-3 average pooling} (see Fig. 5). Each
node contains the sum of all incoming feature maps from edge operation. How-
ever, different from [20], we search backward connections in addition to forward
connections. In backward operation, we add transformed node feature of l-th
layer at timestep t− 1 to the node of l′-th (l′ < l) layer at timestep t. The back-
ward connections also have the same operation set search space O as forward
connections. In Fig. 5, we show examples of cell candidates. In the predefined
search space, we select the optimal spiking neuron cell. Reduction cell downsam-
ples the spatial size of the feature map. We do not illustrate Zeroize operation for
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Table 1. Classification Accuracy (%) on CIFAR10, CIFAR100, and TinyImageNet.

Dataset Training Method Architecture Timesteps Accuracy(%)

Wu et al. [85] CIFAR10 Surrogate Gradient 5Conv, 2Linear 12 90.53
Wu et al. [82] CIFAR10 Tandem Learning 5Conv, 2Linear 8 89.04
Rathi et al. [69] CIFAR10 Hybrid VGG9 100 90.50
Han et al. [29] CIFAR10 ANN-SNN Conversion VGG16 2048 93.63
Kundu et al. [44] CIFAR10 Hybrid VGG16 100 91.29
Zheng et al. [104] CIFAR10 Surrogate Gradient ResNet19 6 93.16
Deng et al. [16] CIFAR10 ANN-SNN Conversion ResNet20 16 92.42
Li et al. [49] CIFAR10 ANN-SNN Conversion VGG16 32 93.00
Fang et al. [24] CIFAR10 Surrogate Gradient 6Conv, 2Linear 8 93.50
Rathi et al. [68] CIFAR10 Hybrid VGG16 5 92.70
SNASNet-Fw (ours) CIFAR10 Surrogate Gradient Searched Architecture 5 93.12 ± 0.42
SNASNet-Fw (ours) CIFAR10 Surrogate Gradient Searched Architecture 8 93.64 ± 0.35
SNASNet-Bw (ours) CIFAR10 Surrogate Gradient Searched Architecture 5 93.73 ± 0.32
SNASNet-Bw (ours) CIFAR10 Surrogate Gradient Searched Architecture 8 94.12 ± 0.25

Lu and Sengupta [56] CIFAR100 ANN-SNN Conversion VGG15 62 63.20
Park et al. [64] CIFAR100 TTFS VGG15 680 68.80
Rathi et al. [69] CIFAR100 Hybrid VGG16 125 67.80
Han et al. [29] CIFAR100 ANN-SNN Conversion VGG16 2048 70.90
Garg et al. [25] CIFAR100 DCT VGG9 48 68.30
Kundu et al. [44] CIFAR100 Hybrid VGG11 120 64.98
Deng et al. [16] CIFAR100 ANN-SNN Conversion ResNet20 32 68.40
Li et al. [49] CIFAR100 ANN-SNN Conversion ResNet20 16 72.33
Rathi et al. [68] CIFAR100 Hybrid VGG16 5 69.67
SNASNet-Fw (ours) CIFAR100 Surrogate Gradient Searched Architecture 5 70.06 ± 0.45
SNASNet-Bw (ours) CIFAR100 Surrogate Gradient Searched Architecture 5 73.04 ± 0.36

Sengupta et al. [73] TinyImageNet ANN-SNN Conversion VGG11 2500 54.20
Kundu et al. [44] TinyImageNet Hybrid VGG16 150 51.92
Garg et al. [25] TinyImageNet DCT VGG13 125 52.43
SNASNet-Fw (ours) TinyImageNet Surrogate Gradient Searched Architecture 5 52.81 ± 0.56
SNASNet-Bw (ours) TinyImageNet Surrogate Gradient Searched Architecture 5 54.60 ± 0.48

simplicity. The forward connections and backward connections can be combined
seamlessly. Surprisingly, adding backward connections improves the accuracy of
SNNs especially on complex datasets such as CIFAR100 and Tiny-ImageNet.
To train the searched SNNs, we use surrogate gradient training [61, 84, 85] (see
Supplementary C for details).

5 Experiments

5.1 Implementation Details

Dataset. We evaluate our method on CIFAR10 [43], CIFAR100 [43], TinyIma-
geNet [15]. The details of datasets can be found in Supplementary.

Hyperparameters. Our implementation is based on PyTorch [65]. We train
the networks with standard SGD with momentum 0.9, weight decay 0.0005 and
also apply random crop and horizontal flip to input images. We set batch size
for training as 64. The base learning rate is set to 0.2, 0.1, 0.1 for CIFAR10,
CIFAR100, TinyImageNet, respectively. We use cosine learning rate schedul-
ing [55]. Here, we set the total number of epochs to 300, 300, 200, for CIFAR10,
CIFAR100, TinyImageNet, respectively. We set τm in Eq. 1 to 4

3 . We set α in
Eq. 7 to 0.5N l

A to get similar sparsity scale in LIF neuron as a ReLU neuron.
Also, we search 5000 architecture candidates from search space (We observe
the accuracy saturates after 5000 samples, shown in Supplementary E). We use
SpikingJelly [22] package for implementing an LIF neuron.
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Fig. 6. Searched architecture examples (forward and backward configuration) for three
benchmarks. Blue and red arrows denote forward connection and backward connection,
respectively. The number on each arrow represents operations introduced in Fig. 5.

Architectures. Here, we provide details for architectures in Fig. 5. Note, we do
not allow two nodes to have both forward and backward connections to ensure
training convergence and stability. For the spike encoding layer, we use direct
coding [85, 104, 99] where we pass the input image for T time-steps through the
first convolution layer which generates spikes. The first neuron cell has C -channel
input and C -channel output. Reduction cell consists of Conv(C, 2C)-BN(2C)-
LIF followed by AvgPool(2). The second neuron cell has 2C -channel input and
2C -channel output. Note, the structures of the first neuron cell and second neu-
ron cell are identical. We set C to 256, 128, 128 for CIFAR10, CIFAR100, TinyI-
magNet, respectively. For vectorize block, we first apply AvgPool(2) to the input
feature and vectorize the output. Finally, the classifier consists of Dropout(0.5)-
FC(1024)-Voting layer, where a voting layer is used to improve the robustness
of classification [24].

5.2 Performance Comparison

Table 1 shows the performance comparison between our SNASNet founded by
the proposed NAS algorithm and previous SNN models on three benchmarks. As
our NAS approach has randomness, we run the same configuration 5 times and
report the mean and standard deviation. In the table, “SNASNet-Fw” refers to
our searched model with only forward connections and “SNASNet-Bw” denotes
our searched model with both forward and backward connections. SNASNet-Fw
achieves comparable performance with the previous works with extremely small
timesteps. For example, our searched model achieves 70.06% with timestep 5
on CIFAR100, which is similar to the VGG16 model performance from Rathi
et al. [68]. Note that, for CIFAR10, which is a relatively simple dataset, a few
methods yield marginally better performance than SNASNet-Fw. Interestingly,
compared to SNASNet-Fw, SNASNet-Bw improves the performance by 0.61%,
2.98%, and 1.79%, for CIFAR10, CIFAR100, and TinyImageNet, respectively.
We note that SNASNet-Bw yields SOTA results across all datasets with only
5/8 timesteps. The results support our assertion that the representation power
of SNNs can be enhanced by passing information through backward connections
where temporal information is further exploited. We also illustrate the example of
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Fig. 7. Accuracy vs. cell attributes. 1st & 2nd columns: Searching Fw connection
only. 3rd∼7th columns: Searching both Fw and Bw connections. 1st, 2nd, 3rd rows
show statistics of Fw, Bw, Fw+Bw, respectively.

searched architecture cell found by our proposed NAS algorithm for each dataset
in Fig. 6. Recently, Shu et al. [75] show that fast convergence ANN architectures
bring smooth loss landscape and accurate gradient information, resulting in high
test accuracy. We also found that our searched SNN architectures achieve fast
convergence with high test accuracy, as shown in Fig. 8. By using this early stage
information, there is a possibility of applying an evolutionary algorithm [70] to
SNN searching in future works.

5.3 Experimental Analysis

Observations from Searched Cells. We provide several observations ob-
tained from our searching algorithm. To this end, in Fig. 7, we ran 100 random
searches on CIFAR100 and provide averaged accuracy with respect to the num-
ber of forward connections (Fw), backward connections (Bw), skip connections,
Conv 3×3, Conv 1×1, Average pooling. The key observations are as follows. For
SNASNet with only forward connections, (1) a deeper and wider cell im-
proves performance, which implies that scaling up SNN is important (1st & 2nd
columns in Fig. 7). (2) Convolutional layers are important for getting higher
performance. On the other hand, average pooling is not preferred for SNNs.
For SNASNet with both forward and backward connections (3rd∼7th
columns in Fig. 7), (1) The trend of forward connections (1st row) also prefer
convolutional layers, which is similar to that of 1st row in Fig. 7. (2) As shown
in the 2nd row, a small number of backward connections are preferred. Also,
the type of connections does not affect the accuracy except for skip connection.
(3) More than 2 backward skip connections degrade accuracy significantly. This
implies that feedback without transformation (e.g., convolutional or pooling op-
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Table 2. Transferability study of founded architectures. ∆Acc denotes the performance
change compared to the best performed architecture shown in Fig. 6.

Celltype Searching dataset Train/test dataset Accuracy (%) ∆Acc (%)

Forward CIFAR10 CIFAR100 69.98 -0.22
Forward CIFAR10 TinyImageNet 52.02 -0.56
Forward CIFAR100 CIFAR10 93.12 +0.01
Forward CIFAR100 TinyImageNet 52.28 -0.30
Forward TinyImageNet CIFAR10 93.16 +0.05
Forward TinyImageNet CIFAR100 70.31 +0.11

Backward CIFAR10 CIFAR100 73.19 -0.12
Backward CIFAR10 TinyImageNet 54.61 -0.80
Backward CIFAR100 CIFAR10 93.73 -0.09
Backward CIFAR100 TinyImageNet 56.00 +0.59
Backward TinyImageNet CIFAR10 93.64 -0.18
Backward TinyImageNet CIFAR100 73.14 -0.17
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Fig. 9. (a) Accuracy and (b) search time
with respect to number of search samples.
We run the same settings 5 times.

eration) deteriorates representation of SNNs. (4) Considering both forward and
backward connections (3rd row), the total number of connections should be care-
fully designed.
Transferability of Searched Architecture. We conduct transferability anal-
ysis on searched SNN architecture in order to check the dependency of our
searching method on the dataset. We search the optimal architecture on dataset
A and train/test the searched architecture on dataset B (A ̸= B). In Table 2, for
both forward and backward configurations, we use the searched architecture (Fig.
6) for all experiments. Note, ∆Acc in 2 denotes the performance difference be-
tween the accuracy of the original searched architecture and transferred architec-
ture. The results show that the searched SNASNets are surprisingly transferable
across diverse datasets, which opens up the promising advantage of eliminating
searching time for huge and complex datasets.
Analysis on Distance Metric. In our method, we use we propose Sparsity-
Aware Hamming Distance (SAHD) where Hamming Distance (HD) is normal-
ized based on the sparsity of the given two binary activation patterns. This
effectively addresses a large variation of spike activation across data samples.
We evaluate the performance of SNASNet according to the distance metric: HD
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Table 3. Performance comparison be-
tween HD and SAHD on CIFAR100.

Architecture HD SAHD

SNASNet-Fw 64.16 ± 2.02 70.06 ± 0.45
SNASNet-Bw 66.80 ± 1.73 73.04 ± 0.36

Table 4. Ablation studies on timesteps
on CIFAR100.

Architecture T=5 T=10 T=15 T=20

SNASNet-Fw 70.06 70.08 70.56 70.52
SNASNet-Bw 73.04 73.46 73.49 74.24

vs. SAHD. In Table 3, we report the performance of SNASNet-Fw and SNASNet-
Bw on CIFAR100. Here, we also run the search algorithm 5 times and report
the mean and standard deviation. The results demonstrate that SAHD reveals
better architecture with less standard deviation in terms of test accuracy for
both SNASNet-Fw and SNASNet-Bw architectures.
Ablation on Number of Search Samples. In Fig. 9(a), we report the ac-
curacy with respect to the number of search samples used in our searching al-
gorithm. We change the number of search samples [50, 100, 500, 1000, 5000]
on CIFAR100. The backward connection configuration (marked as red) shows
higher variation as well as higher performance increase compared to that of the
forward connection setting. This is because searching backward connections has
larger search space than searching forward connections only. We also measure
the computational time for searching in Fig. 9(b). We conduct the experiments
on NVIDIA RTX 2080ti GPU and Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz
processor. The results show that searching backward connection requires sightly
longer time than searching forward connection.
Analysis on Timesteps. In Table 4, we report the performance on CIFAR100
with respect to the number of timesteps used in SNNs. Both SNASNet-Fw
and SNASNet-Bw achieve performance gain with more number of timesteps.
SNASNet-Fw and SNASNet-Bw with 20 timesteps have improved accuracy by
0.48% and 1.2% compared to 5 timesteps, respectively. Interestingly, the perfor-
mance gain from SNASNet-Bw is larger than SNASNet-Fw. The results suggest
that adding backward connections to SNNs effectively leverages the temporal in-
formation for improved learning, and thus supports the advantage of backward
connections in SNNs.

6 Conclusion

In this paper, we search better SNN architecture using the temporal activation
pattern of initialized network. Our search space considers backward search con-
nections in addition to forward connections, which brings the benefit of using
temporal information. By achieving better performance than the previous works,
we demonstrate that a new type of architecture is more suitable for SNNs where
spikes convey information through multiple timesteps.
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