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Abstract. Object categories are often grouped into a multi-granularity
taxonomic hierarchy. Classifying objects at coarser-grained hierarchy re-
quires global and common characteristics, while finer-grained hierarchy
classification relies on local and discriminative features. Therefore, hu-
mans should also subconsciously focus on different object regions when
classifying different hierarchies. This granularity-wise attention is con-
firmed by our collected human real-time gaze data on different hier-
archy classifications. To leverage this mechanism, we propose a Cross-
Hierarchical Region Feature (CHRF) learning framework. Specifically,
we first design a region feature mining module that imitates humans
to learn different granularity-wise attention regions with multi-grained
classification tasks. To explore how human attention shifts from one hi-
erarchy to another, we further present a cross-hierarchical orthogonal
fusion module to enhance the region feature representation by blending
the original feature and an orthogonal component extracted from adja-
cent hierarchies. Experiments on five hierarchical fine-grained datasets
demonstrate the effectiveness of CHRF compared with the state-of-the-
art methods. Ablation study and visualization results also consistently
verify the advantages of our human attention-oriented modules. The code
and dataset are available at https://github.com/visiondom/CHRF.

Keywords: Fine-grained visual classification, multi-granularity, human
attention, orthogonal fusion

1 Introduction

Fine-grained visual classification (FGVC) is more challenging than traditional
image classification due to the highly similar appearance among subordinate
categories. In the past decade, various approaches have been presented [2, 43,
23, 36, 45] to learn the fine distinction between highly similar objects. Thanks
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Fig. 1. Illustration of human attention behaviour for classification at different ranks. To
recognize the order of a given bird image, humans generally glance at the entire bird,
i.e., large global attention that sufficiently discriminates categories of orders. When
recognizing finer-grained categories, such as genus or species, humans ignore the shared
characteristics in this orders and focus on smaller but significant local discriminative
regions to find the minor inter-class differences between subordinate categories.

to the powerful capability of deep neural networks on discriminative repre-
sentation learning, deep model-based fine-grained methods [21, 10, 44, 31] have
achieved encouraging performance. However, most reported works ignore the
multi-granularity relation among object categories, e.g., different orders and
families of birds, and directly train a classification model on one granularity or
hierarchy.

The affinities of all the beings of the same class have sometimes been repre-
sented by a great tree1. Objects like animals, plants, cars, etc., are often grouped
into a taxon according to their shared morphological characteristics and given a
taxonomic rank. Groups of a certain rank are aggregated to form a higher rank,
thus creating a taxonomic hierarchy. Typically, closely related taxa under the
same lower rank differ much less than more distantly related ones at higher lev-
els. These hierarchical relationships are significant for designing computer vision
models to solve the FGVC task. For example, to identify the family of a given
bird, if its order is known, we then can focus on the differences between families
that belonged to this order and ignore their common characteristics at the order
rank, i.e., more different discriminative regions should be paid attention to from
coarse to fine levels. As illustrated in Fig. 1, the summer tanager, might be first
classified to “passeriformes” according to their common characteristic perching-
like shape, then grouped to “cardinalidae” with red belly, and finally classified
to “summer tanager” due to the red crown and nape. In light of the taxonomic

1 Charles Darwin, On the Origin of Species.
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Order Family Genus SpeciesTobii Pro Nano Eye-tracker

Fig. 2. Left: the eye-tracker device and classification game interface. Right: some sam-
ples of the collected human gaze on the CUB dataset [33]. From left to right are gaze
data from the category hierarchy of order, family, genus and species, respectively.

hierarchy, in this paper, we study the relationship of human attention for image
classification at different granularities.

To investigate the attention mechanism of the human visual system when
handling multi-granularity image classification, we designed a bird classification
game at each category hierarchy of the Caltech-UCSD birds (CUB) dataset [33]
following [22] to collect human gaze data for human attention monitoring. An
eye-tracker is used to record participants’ gaze when they classify the birds
under different category hierarchies. We name the collected human gaze dataset
Attention Reinforced Images on Species TaxonOmy (ARISTO). The detailed
collection process is introduced in Appendix A. Fig. 2 shows some samples of
the ARISTO at different hierarchies. We can see that at the coarser-level category
hierarchy, humans prefer to glance at the entire bird, i.e., global attention. When
classifying the finer-level categories, they attempt to find smaller local regions
to distinguish the slight inter-class differences. In addition, by observing the
position of gaze points of the same image at different hierarchies, we can find
the relationship between human attention at different category hierarchies: the
concerned regions at coarser-level classification tasks are usually different from
the attention for finer-level classification. This is because the attention of higher
hierarchy often reflects the different attributes between the corresponding level
category, while these attributes are common characteristics when classifying the
sub-categories of one particular category. These results demonstrate that the
human attention behavior on FGVC at different granularities coincides with the
knowledge of taxonomic hierarchy.

Motivated by the adaptive human attention on different hierarchies, we pro-
pose a cross-hierarchical region feature (CHRF) learning framework to solve the
FGVC problem at different granularities. There are two novel modules in the
proposed framework: region feature mining (RFM) module and cross-hierarchical
orthogonal fusion (COF) module. The RFM module mimics the human visual
system that learns granularity-wise attention for individual category hierarchy.
We extract granularity-wise semantic features to guide the learning of different
region prototypes for each hierarchy. The COF module is designed to explore how
human attention varies from higher hierarchy to lower one, further enhancing
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the discriminability of finer-grained region representation. Specifically, we intro-
duce a feature orthogonal fusion operation to implement interaction between
region representations of different hierarchies. The finer-level region representa-
tion can be disentangled by vector orthogonal decomposition with coarser-level
representation, which outputs more discriminative features (orthogonal compo-
nent) for the current hierarchy. Finally, we apply a fusion operation on the region
representation and its orthogonal component.

Our main contributions can be summarized as follows: (1) We propose a
cross-hierarchical region feature (CHRF) learning framework with two novel
modules, i.e.the region feature mining and cross-hierarchical orthogonal fusion
modules, to mimic human attention behavior towards improved FGVC at dif-
ferent granularities. (2) We design an image classification game that collects
a human gaze dataset on the CUB at different category hierarchies. From the
collected ARISTO dataset, we learn hierarchical relationships of human atten-
tion at different granularities, which are significant for the FGVC research. (3)
Extensive experiments on five hierarchical fine-grained datasets show that our
proposed CHRF can learn more discriminative representation on all hierarchies.
The performance of CHRF is superior compared with other hierarchy-based
methods and is also competitive among the state-of-the-art FGVC methods.

2 Related Work

2.1 Fine-Grained Visual Classification

Recently, the development of deep learning has led to remarkable breakthroughs
in FGVC [36, 40, 3, 44]. The primary stream methods of FGVC can be divided
into two branches, i.e., fine-grained feature learning [11, 6, 28, 16] and discrim-
inative part learning [1, 15, 21, 10]. The former explores the invariant represen-
tation of images through end-to-end feature encoding. Methods with a bilinear
structure [25, 13, 23] use high-order feature interactions to enhance the catego-
rization and generalization abilities. However, the lack of spatial distributions
of discriminative regions limits the performance of these feature learning meth-
ods when objects are severely deformed. On the other hand, methods based on
part learning expect to locate the discriminative regions to help fine-grained
recognition. Earlier researches in this direction [2, 43, 17] tend to improve classi-
fication performance by weak supervision of part or bounding box. However, the
annotations for supervision are expensive to obtain. Therefore, some recent part-
based works [38, 9, 20] use attention mechanisms to discover the distinguishable
regions.

More recently, a few works [5, 4] attempt to promote fine-grained classifica-
tion by exploiting the multi-granularity category hierarchy. Chen et al. [5] in-
troduced a hierarchical semantic embedding framework that used the predicted
category score of the coarse level as the prior knowledge to predict the finer level
sequentially. Chang et al. [4] designed a multiple label prediction model that ex-
ploits the inherent coarse-to-fine hierarchical relationship to perform hierarchy-
wise feature disentanglement. Although the prior hierarchy relationship is avail-
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able in these works, the essential multi-granularity classification mechanism of
the human visual system is still not well-modelled in computer vision. Differ-
ent from these works, we study the relationship of human attention for image
classification at different granularities.

2.2 Human Attention in Vision

Many researchers [7, 35, 12, 8] have exploited human attention behavior in differ-
ent scenarios. Liu et al. [26] utilized human attention maps to guide the learning
of attention maps for neural image caption. Huang et al. [18] proposed a hy-
brid model to predict human gaze by combining bottom-up visual saliency with
task-dependent attention transition in egocentric videos. Liu et al. [27] tackled
zero-shot recognition by learning discriminative attribute localization supervised
by human attention when recognizing an unseen class. Human attention was
also demonstrated to be able to enhance the medical application [19, 34]. Rong
et al. [32] exploited human attention as a data augmentation step to improve the
accuracy of fine-grained classification. Yu et al. [42] proposed vision Transformer
by simulating the glance and gaze behavior of humans when identifying objects
in the natural scenario. Partially motivated by these works, in this paper we
design a CHRF framework by mimicking the human attention behavior to solve
the FGVC task at different granularities.

3 Approach

To classify images at different granularities, humans will focus on different re-
gions of objects. A global observation is helpful to distinguish coarse-grained ob-
jects. However, when humans classify finer-grained objects, they tend to explore
more local discriminative regions which may be ignored during coarser-grained
classification. Motivated by the relationship between the observed regions from
coarse to fine by the human visual system, we investigate the interaction among
interested regions at different hierarchies.

Problem Definition. Different from most existing FGVC tasks [40, 6, 10, 44],
we follow a multi-grained classification setting [5, 4]. For a given image x, the
multi-grained hierarchical labels, {y1, y2, ..., yl, ..., yL}, are available from coarse
to fine. The motivation of this setting is to simulate humans to study the interac-
tions of hierarchies under different granularity views. In this section, we propose
a cross-hierarchical region feature (CHRF) learning framework to simultaneously
perform classification at different category hierarchies.

3.1 Overview

The overview of the proposed CHRF framework is depicted in Fig. 3. CHRF
is a tree structure consisting of three parts, trunk, branches, and leaves. Given
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Fig. 3. An overview of the cross-hierarchical region feature learning (CHRF) frame-
work, which consists of trunk, branches and leaves. The trunk is utilized to extract
image features. Branches include L region feature mining (RFM) modules to mine dif-
ferent grained region representations. Leaves exploit the cross-hierarchical orthogonal
fusion (COF) module to enhance the discriminability of the finer-grained representa-
tion by integrating the region representations of two adjacent hierarchies. The bottom
left is the detailed RFM module. The COF module is shown in Fig. 4.

an image x with labels {y1, y2, ..., yl, ..., yL}, the trunk extracts image feature
f(x) ∈ RW1×H1×C1 by a CNN f(·), where W1, H1 and C1 denote the image
feature’s width, height and the number of channel, respectively.

Although f(x) can describe the characteristics of x, it lacks the insight in
multi-granularity perspective. Therefore, we utilize the branches including L re-
gion feature mining (RFM) modules to mine the different grained region repre-
sentations. Without loss of generality, we consider a multi-grained classification
task with a category hierarchy of L levels. We use 1, 2, ..., l, ..., L to denote each
level from coarse to fine. Each level contains one RFM module to simulate hu-
man cognitive behavior and find visual patterns corresponding to the level, e.g.,
we will see the whole body of a bird or a butterfly in the order level, however,
the head of the bird and the wing stripe of the butterfly will be focused on
in the species level. Then the granularity-wise attention region representation
Bl(x) ∈ RMl×C2 will be excavated, where Ml and C2 denote the number of
region at level l and the number of channels, respectively.

Leaves integrate the region representations of two adjacent levels through a
cross-hierarchical orthogonal fusion (COF) module to enhance the finer-grained
region representation. Our motivation of COF is to compare the difference be-
tween fine-grained observation and coarse-grained observation and improve the
discriminability of the fine-grained representation. Specifically, for level l, COF
takes as inputs Bl−1(x) and Bl(x) respectively produced by RFMl−1 and RFMl

and outputs the region orthogonal feature Ol(x) ∈ RMl×C2 . For the most coarse-
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grained hierarchy, i.e., level 1, we use the region representation B1 and y1 to
directly learn the classifier C1. The classification objective of the first hierarchy
can be formulated as:

Lcls,1 = LCE

(
C1(B1), y

1
)

(1)

where LCE is the cross-entropy loss. For level l among 2 to L, the discriminative
region orthogonal feature Ol(x) and yl are taken as inputs to the classifier Cl.
The classification objective of the l-th hierarchy can be formulated as:

Lcls,l = LCE

(
Cl(Ol), y

l
)
, l = 2, 3, ..., L (2)

The total classification loss function can be then written as:

Lcls =
∑L

l=1 Lcls,l (3)

By minimizing the loss in Equation (3), CHRF is expected to achieve two goals:
1) the fine-grained level can enhance the discriminability of the regional obser-
vation by finding the difference compared with the coarse-grained level during
the forward procedure. 2) the coarse-grained level feature can obtain extra sup-
plementary details from the fine-grained level through the backward procedure.
By the interaction of regions among different hierarchies, both coarse and fine
levels can gain a performance improvement.

3.2 Region Feature Mining Module

In light of the insight that humans will focus on different regions and different
extents of a region when classifying images at multiple granularities [41], we
simulate this human attention mechanism to study the region representations
at different hierarchies. The detailed network structure of the RFM module is
shown in the bottom left of Fig. 3.

For the RFM of level l, we firstly extract granularity-wise semantic feature
φl(x) ∈ RW2×H2×C2 by a CNN φl(·) from the image feature f(x), where φl(·)
is exclusive for the specific hierarchy. Specifically, a set of learnable region pro-
totypes Rl = {rl,m ∈ RC2}Ml

m=1 are introduced to discover Ml different regions
of φl(x), where rl,m denotes the m-th region prototype at level l. The feature
vectors of φl(x) are grouped into a series of related similarity map by calculating
the dot product between the feature vector and region prototype. Then, we use
a region mining operation implemented by batch normalization and ReLU acti-
vation to produce the region masks Al(x) = {al,m(x) ∈ RW2×H2}Ml

m=1. Finally,
the vectors of semantic feature are weighted by the region masks and further
aggregated to form region representation by global average pooling:

bl,m(x) =
1

W2H2

W2∑
i=1

H2∑
j=1

ai,jl,m(x)φi,j
l (x) (4)

where bl,m(x) denotes the m-th region representation and (i, j) denotes the spa-
tial location. These region-level representations are futher concatenated to form
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the observation Bl(x) = [bl,1(x), bl,2(x), ..., bl,Ml
(x)] of level l. The observation

Bl including Ml regions can describe the image’s patterns from different views
that is helpful to investigate the relationship of the region observations among
multiple granularity levels.

Then, L region observations B1, B2, ..., BL are obtained from different gran-
ularity levels by branches. These multi-grained attentions contain the spatial
location information and the extent of the regions which are similar to the hu-
man attention mechanism, i.e., the coarser-grained focuses on less different spa-
tial locations with larger extent. In contrast, the finer-grained focuses on more
different spatial locations with smaller extent. For finer-grained classification,
smaller local observations are discriminative, which are not necessarily empha-
sized in coarse-grained observation.

3.3 Cross-Hierarchical Orthogonal Fusion Module

When classifying images at category level l, humans tend to overlook the com-
mon properties of the same category at level l − 1 and pay more attention to
the discriminative properties. We mimic this behavior to realize the interaction
of the region representations of two adjacent levels. Inspired by [39, 37], the
discriminative features are expected to be disentangled from the finer-grained
region representation by feature vector decomposition. Specifically, we design a
COF module to improve the discriminability of region representations at differ-
ent hierarchies.

The structure of COF is shown in Fig. 4(a). Firstly, the global observation
Gl−1(x) ∈ R1×C2 of Bl−1(x) is computed by average pooling operation:

Gl−1(x) =
1

Ml−1

Ml−1∑
m=1

bl−1,m(x) (5)

Then, we calculate the projection bprojl,m (x) of the m-th region representation
bl,m(x) on the global observation. This operation can be written as:

bprojl,m (x) =
bl,m(x) ·Gl−1(x)

|Gl−1(x)|2
Gl−1(x) (6)

The projection contains redundant common properties of the m-th region repre-
sentation of the finer-level. The discriminative region observation can be obtained
by computing the orthogonal component:

borthl,m (x) = bl,m(x)− bprojl,m (x) (7)

A fusion operation is then used to enhance the discriminability of the region rep-
resentation, which is demonstrated in Fig. 4(b), where we use ooptimal

l,m to denote
an optimal region representation for classification. To obtain a distinguishable
feature closer to ooptimal

l,m , we add a component to bl,m(x) along the direction of

borthl,m (x). Therefore, the m-th region orthogonal feature can be calculated by:

ol,m(x) = bl,m(x) + λborthl,m (x) (8)
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where λ is the influence factor controlling the degree of blending orthogonal
component. We further analysis the fusion operation in Appendix B. Then, all
orthogonal features are concatenated to form the whole region orthogonal feature
Ol(x)=[ol,1(x), ol,2(x), ..., ol,Ml

(x)] of level l.
The region orthogonal features will be used next for classification. Further-

more, we introduce an orthogonal region bank to store the center representation

cy
l

m of the orthogonal region for every category at level l. Inspired by [30], we
design an orthogonal region regularization to make each region more discrimi-
native,, which can be written as:

Lorr,l=
1

Ml

Ml∑
m=1

1−cos(ol,m(x), cy
l

m)+
1

Ml − 1

Ml∑
j=1
j ̸=m

∣∣∣cos(ol,m(x), cy
l

j )
∣∣∣


=
1

Ml

Ml∑
m=1

(
1−cos(ol,m(x), cy

l

m)
)
+

1

Ml(Ml−1)

Ml∑
m=1

Ml∑
j=1
j ̸=m

(∣∣∣cos(ol,m(x), cy
l

j )
∣∣∣)

(9)

where cos(·, ·) and |·| denote a cosine similarity and an absolute value operator,
respectively. The first term makes the similarity between the region orthogonal
feature and its center close to 1, which ensures clustering of the same region or-
thogonal feature. The second term makes the similarity close to 0, which ensures
the orthogonality of different region orthogonal features to reduce their correla-
tion, so that RFM can explore more different regions. The center representation

cy
l

m of an orthogonal region is initialized from zero and optimized by momentum
update:

cy
l

m ← cy
l

m + β
(
ol,m(x)− cy

l

m

)
(10)

where β is a momentum coefficient controlling the update rate of cy
l

m. The total
orthogonal region regularization can be written as:

Lorr =
∑L

l=2 Lorr,l (11)
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Then, the whole objective can be formulated as:

L = Lcls + Lorr (12)

The joint training establishes the relationship between hierarchies, thus improv-
ing discriminability of region representation .

4 Experiments and Analysis

In this section, we report comprehensive experiments to verify the effectiveness
of our method. We analyse the influence of hierarchy interaction and compare
our CHRF with baselines on five hierarchical fine-grained datasets. CHRF is
also compared with the state-of-the-art fine-grained methods on three widely
used FGVC datasets. Finally, we present additional experiments to demonstrate
the consistency of results and human vision system in handling the hierarchical
data. The implementation details are provided in Appendix C.

4.1 Datasets

CUB [33] is the most widely used benchmark for FGVC task. It contains 11, 877
images covering 200 species of birds. The dataset is divided into two sets includ-
ing 5, 994 training images and 5, 794 test images. The 200 species of birds are
grouped into 122 genera, 37 families, and 13 orders by a bird taxonomy hierar-
chy according to the ornithological systematics [5].
Butterfly-200 [5] is a newly released butterfly dataset, which has a hierarchical
structure with 200 species, 116 genera, 23 subfamilies, and 5 families according
to the insect taxonomy. The dataset contains 25, 279 images, including a training
set of 5, 135 images, a validation set of 5, 135 images and a test set of 15, 009
images.
VegFru [14] is a dataset with fine-grained vegetables and fruits recognition cov-
ering 292 subordinate classes and 25 upper-level categories. VegFru dataset has
29, 200 images for training, 14, 600 for validation and 116, 931 for testing.
FGVC-Aircraft [29] contains 100 fine-grained aircraftmodels, which are grouped
into 70 families and 30 makers by tracing superclasses in Wikipedia pages [4].
The dataset has 10, 000 images, 6, 667 are for training and 3, 333 for evaluation.
Stanford Cars [24] contains 196 car models, which can be re-organised into
9 makers by tracing superclasses in Wikipedia pages [4]. The dataset contains
16, 185 images, including 8, 144 images for training and 8, 041 images for testing.

4.2 Hierarchy Interaction Analysis

Evaluation Metrics. Directly calculating the arithmetic mean of the accuracy
across all hierarchies [4] cannot reasonably evaluate the overall performance of
the model, since the classification difficulty at different hierarchies varies. There-
fore, we propose a more convincing evaluation metric. First, we calculate the
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Table 1. Comparison with different baselines on CUB, Butterfly-200 and VegFru under
the multi-granularity setting. The best and the second best results are marked in red
and blue.

Methods
CUB Butterfly-200 VegFru

P1 P2 P3 P4 wAP P1 P2 P3 P4 wAP P1 P2 wAP

Baseline 98.5 95.4 91.6 85.4 88.9 98.9 97.4 94.4 84.3 88.8 90.6 88.5 88.7
Baseline++ 98.6 95.5 91.4 85.3 88.8 98.9 97.3 94.2 84.4 88.8 90.8 88.8 89.0
HSE [5] 98.8 95.7 92.7 88.1 90.7 98.9 97.7 95.4 86.1 90.2 90.0 89.4 89.5

Ours-RF 98.7 95.7 92.8 87.2 90.3 98.9 97.8 95.3 86.5 90.4 92.0 90.6 90.7
Ours-CHRF 99.0 96.3 93.5 89.4 91.8 99.1 97.8 96.0 87.4 91.2 92.2 91.3 91.4

Table 2. Comparison with different baselines on CUB, FGVC-Aircraft and Stanford
Cars under the multi-granularity setting. The best and the second best results are
marked in red and blue.

Methods
CUB FGVC-Aircraft Stanford Cars

P1 P2 P3 wAP P1 P2 P3 wAP P1 P2 wAP

Baseline 98.5 95.7 85.4 87.6 95.9 93.8 91.5 93.0 96.7 93.5 93.6
Baseline++ 98.6 95.5 85.3 87.5 96.0 94.1 91.9 93.3 96.9 93.4 93.6
FGN [4] 98.0 94.7 85.4 87.5 95.6 94.6 92.7 93.8 97.0 94.1 94.2

Ours-RF 98.7 96.0 87.2 89.1 96.4 95.2 92.5 94.0 97.2 94.1 94.2
Ours-CHRF 98.9 96.2 89.2 90.8 96.5 95.6 93.6 94.7 97.2 95.2 95.3

Top-1 precision of all hierarchies, respectively. Then, the hierarchical classifica-
tion performance can be evaluated by the weighted average precision (wAP) of
all hierarchies:

wAP =

L∑
l=1

class numl∑L
k=1 class numk

Pl (13)

where class numl and Pl denote the number of categories and Top-1 classifica-
tion accuracy at level l, respectively. The finer-grained hierarchy contains more
categories, so the performance of the finer-grained hierarchy should account for
a larger proportion.

Compared Methods. To verify the effectiveness of CHRF and different mod-
ules, we compare them with several baseline methods. Baseline contains funda-
mental structures including f(·) and φ(·), which is similar to CHRF. The shared
former network is frozen and the latter is learnable to adapt different hierarchies.
Baseline++ has the same structure as Baseline, but the parameters of f(·) are
freed. HSE [5] also adopts a hierarchical structure for multi-granularity setting,
which focuses on the influence of the prediction score of coarse hierarchy on
the classification of fine hierarchy. FGN [4] investigates the impact of transfer
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between classification tasks at different granularities. Ours-RF is the Baseline
model with the RFM module. Ours-CHRF is the full framework of our CHRF
with hierarchy interaction. For fair comparisons, all methods were implemented
with the same setting. For HSE, we show the results reported in [5]. For FGN,
we re-produced the method and did experiments under the same setting as ours.
We utilized the groups of CUB mentioned in [4].

Results and Ablation Study. The results are shown in Table 1 and Table 2.
Baseline and Baseline++ exhibit similar performance under the metric of wAP
on all datasets. We speculate that this is because the pre-trained f(·) can well
extract visual feature representation. Thus, it is reasonable to fix the parameters
of f(·) in our other models. When the RFM modules are added into Baseline,
i.e. Ours-RF, the model extracts region representations to improve discrimi-
nation of different categories at all hierarchies and obtains 1.4%, 1.6%, 2.0%,
1.0%, and 0.6% improvement under wAP on all five datasets, respectively. Fur-
thermore, compared with Ours-RF, Ours-CHRF can achieve 1.5%, 0.8%, 0.7%,
0.7%, and 1.1% wAP improvement on all five datasets, respectively. In the end,
Ours-CHRF outperforms both HSE and FGN by a large margin.

Analysis. The experimental results show that our CHRF framework is effec-
tive in solving the FGVC task at different granularities. The proposed RFM and
COF modules are the main technical contributions to ensure that the CHRF can
mimic the human visual system, and the more discriminative regions are grad-
ually focused on from coarse to fine. Different from other attention models [15,
21, 31], RFM explores granularity-wise attentions for different category hierar-
chies. On the coarser hierarchy, attention tends to be a global observation, so
the improvement is not obvious. On finer hierarchy, attention tends to focus on
more local regions, and more details are extracted, so Ours-RF has a significant
improvement compared with the Baseline. Built on granularity-wise attention,
COF investigates the interaction among attentions of different hierarchies. More
discriminative regions of the finer hierarchy can be found by comparing coarse
attention and fine attention. The interaction effectively boosts boost the classi-
fication accuracy of both coarse and fine granularity hierarchies.

Where to Focus? We visualize the attention maps of humans, Ours-RF, and
Ours-CHRF in Fig. 5. By the region representations interaction through COF
module, coarse-granularity and fine-granularity learn where to focus. Attention
maps produced by Ours-RF and Ours-CHRF exhibit the consistent character-
istic as human attentions, i.e., global attentions are preferred to produce at
coarser-granularity category hierarchy and more smaller discriminative local re-
gions are attempted to explore when classifying the finer-granularity categories.
From the visualization results, we can see that the attentions of finer-granularity
are usually different from the concerned regions of coarser-granularity. The com-
mon properties of the coarser-granularity are overlooked and the discriminative
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Fig. 5. Visualization of the attention maps from human, Ours-RF and Ours-CHRF on
four hierarchies (order, family, genus and species) on the CUB dataset.

properties are concerned. In addition, attentions of Ours-CHRF are more dis-
tinct than Ours-RF for the discriminative regions mining at different hierarchies.
This comparison validates the effectiveness of our COF module.

4.3 Evaluation on Traditional FGVC Setting

In this section, we also validate the effectiveness of our CHRF compared with
recent state-of-the-art FGVC methods. We report the top-1 classification accu-
racy of CHRF at the bottom of the hierarchy. The results are shown in Table 3.
For FGVC-Aircraft and Stanford Cars, CHRF outperforms all compared meth-
ods. For CUB, our CHRF can also achieve a competitive result which is only
slightly lower than PMG. Notably, different from these methods, partial param-
eters of CHRF (i.e. f(·)) are frozen. CHRF depends on the interaction among
different hierarchies to improve the performance and achieve competitive results
compared with state-of-the-art FGVC methods.

4.4 Further Analysis

Fig. 6 shows the effect of the influence factor λ. We vary λ among {0.0, 0.2, 0.4,
0.6, 0.8} to observe the performance changes. The best results are achieved for
CUB and Cars datasets when λ is 0.4. For Butterfly-200 and Aircraft datasets,
the best results are achieved when λ is 0.6. Thus, we set λ to 0.4 to achieve a
trade-off performance on all datasets. Due to the length limitation of the paper,
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Table 3. Comparison of the proposed CHRF with the state-of-the-art methods on
traditional FGVC setting. The best and the second best results are marked in red and
blue, respectively.

Methods
Accuracy(%)

CUB FGVC-Aircraft Stanford Cars

NTS-Net(ECCV’18) [40] 87.5 91.4 93.9
PC(ECCV’18) [11] 86.9 89.2 92.9
DCL(CVPR’19) [6] 87.8 93.0 94.5
S3N(ICCV’19) [9] 88.5 92.8 94.7

ACNet(CVPR’20) [21] 88.1 92.4 94.6
PMG(ECCV’20) [10] 89.6 93.4 95.1
SPS(ICCV’21) [16] 88.7 92.7 94.9

CHRF(Ours) 89.4 93.6 95.2
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Fig. 6. The effect of λ with different values on CUB, Butterfly-200, FGVC-Aircraft
and Stanford Cars.

more analyses about region prototypes and orthogonal region regularization are
given in Appendix C.

5 Conclusions

In this paper, we aim to solve the fine-grained visual classification task at dif-
ferent granularities. We study the relationship between hierarchical human at-
tention by collecting human gaze data from a designed classification game. We
designed a cross-hierarchical region feature learning framework to mimic hu-
man attention behavior that learns different discriminative representations for
the corresponding category hierarchy. Extensive experiments on five hierarchical
fine-grained datasets validate the superiority of the proposed human attention-
oriented method. The code of our method and the collected human gaze dataset
on four hierarchies of the CUB have been released. We believe there is tremen-
dous potential for investigating the hierarchical human attention relationship for
the multi-granularity image classification task.
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