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We present additional implementation details and additional analysis of our
proposed method, Neighborhood Collective Estimation (NCE), in this supple-
mentary material.

1 Additional Implementation Details

Our experiments on both Clothing-1M [5] and Webvision-1.0 [3] employ similar
hyper-parameter settings, e.g., Twu = 1, B = 32, B′ = 32, α = 0.5 and K = 20.
τ is set to 0.65 for Clothing-1M and 0.90 for Webvision-1.0. As shown in Table 2
and Table 3 in the main text, on these two datasets, our model only using clean
samples in Dclean for training outperforms previous state-of-the-art methods.
Then, we follow the practice in “DivideMix” [2] and also set γ = 0.0 so that there
is no need to set τ ′. The learning rate schedule is the same for both datasets,
that is, after half training epochs, the initial learning rate is divided by 10.
The initial learning rate for Clothing-1M and Webvision-1.0 is set to 0.002 and
0.01 respectively. In addition, we choose Resnet-50 [1] and Inception-Resnet-
V2 [4] as the backbones for Clothing-1M and Webvision-1.0, respectively. We
train the models using a SGD optimizer with a momentum of 0.9 and a weight
decay of 1×10−3. Moreover, the number of training epochs for Clothing-1M and
Webvision-1.0 are Ttr = 80 and Ttr = 100, respectively.

2 Additional Analysis

Hyper-parameter sensitivity. We also investigate the sensitivity of our pro-
posed method to three key hyper-parameters, i.e., K, τ and τ ′. Taking CIFAR-
100 with (Noise ratio: 0.80; Noise type: Symmetric) as an example, Fig. 1 shows
that the model reaches a significantly high classification performance in this
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Fig. 1. Sensitivity with respect to hyper-parameters K, τ and τ ′. We conduct these
experiments on CIFAR-100 with the same noise profile (Noise ratio: 0.80; Noise type:
Symmetric). In this noise profile, our model achieves the best accuracy of 65.2% when
we set K = 20, τ = 0.90 and τ ′ = 0.01.

LNL case when we set K, τ and τ ′ to 20, 0.90, and 0.01 respectively; on the
other hand, a probable decrease in accuracy ensues when we change any of those
parameters. With achieving fair comparisons, we follow “DivideMix” [2] to set
other hyper-parameters that are involved in the training process or network
architectures.
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