Neighborhood Collective Estimation for Noisy Label Identification and Correction (Supplementary Material)

Jichang Li^{1,2}[0000-0001-5778-2232], Guanbin Li^{1*}[0000-0002-4805-0926], Feng Liu³[0000-0002-4811-7828], and Yizhou Yu^{2*}[0000-0002-0470-5548]

¹ Sun Yat-sen University, Guangzhou 510006, China ² The University of Hong Kong, Hong Kong ³ Deepwise AI Lab, Beijing, China csjcli@connect.hku.hk, liguanbin@mail.sysu.edu.cn, liufeng@deepwise.com, yizhouy@acm.org

We present additional implementation details and additional analysis of our proposed method, Neighborhood Collective Estimation (NCE), in this supplementary material.

1 Additional Implementation Details

Our experiments on both Clothing-1M [5] and Webvision-1.0 [3] employ similar hyper-parameter settings, e.g., $T_{wu} = 1$, B = 32, B' = 32, $\alpha = 0.5$ and K = 20. τ is set to 0.65 for Clothing-1M and 0.90 for Webvision-1.0. As shown in Table 2 and Table 3 in the main text, on these two datasets, our model only using clean samples in \mathcal{D}_{clean} for training outperforms previous state-of-the-art methods. Then, we follow the practice in "DivideMix" [2] and also set $\gamma = 0.0$ so that there is no need to set τ' . The learning rate schedule is the same for both datasets, that is, after half training epochs, the initial learning rate is divided by 10. The initial learning rate for Clothing-1M and Webvision-1.0 is set to 0.002 and 0.01 respectively. In addition, we choose Resnet-50 [1] and Inception-Resnet-V2 [4] as the backbones for Clothing-1M and Webvision-1.0, respectively. We train the models using a SGD optimizer with a momentum of 0.9 and a weight decay of 1×10^{-3} . Moreover, the number of training epochs for Clothing-1M and Webvision-1.0 are $T_{tr} = 80$ and $T_{tr} = 100$, respectively.

2 Additional Analysis

Hyper-parameter sensitivity. We also investigate the sensitivity of our proposed method to three key hyper-parameters, *i.e.*, K, τ and τ' . Taking CIFAR-100 with (Noise ratio: 0.80; Noise type: Symmetric) as an example, Fig. 1 shows that the model reaches a significantly high classification performance in this

^{*}Corresponding Authors are Guanbin Li and Yizhou Yu.

2

Fig. 1. Sensitivity with respect to hyper-parameters K, τ and τ' . We conduct these experiments on CIFAR-100 with the same noise profile (Noise ratio: 0.80; Noise type: Symmetric). In this noise profile, our model achieves the best accuracy of 65.2% when we set K = 20, $\tau = 0.90$ and $\tau' = 0.01$.

LNL case when we set K, τ and τ' to 20, 0.90, and 0.01 respectively; on the other hand, a probable decrease in accuracy ensues when we change any of those parameters. With achieving fair comparisons, we follow "DivideMix" [2] to set other hyper-parameters that are involved in the training process or network architectures.

References

- 1. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: European conference on computer vision. pp. 630–645. Springer (2016)
- Li, J., Socher, R., Hoi, S.C.: Dividemix: Learning with noisy labels as semisupervised learning. arXiv preprint arXiv:2002.07394 (2020)
- 3. Li, W., Wang, L., Li, W., Agustsson, E., Gool, L.V.: Webvision database: Visual learning and understanding from web data. Arxiv Preprint (2017)
- 4. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence (2017)
- 5. Xiao, T., Xia, T., Yang, Y., Huang, C., Wang, X.: Learning from massive noisy labeled data for image classification. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 2691–2699 (2015)