Appendix A. Detailed Derivations and Proofs for Sec. 3.1
& 3.2
A.1 Details for Sec. 3.1

To better present our proposed vMF classifier, we formulate Eq. 2 in submission
PDF equivalently as:
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Based on Eq.|l{in Appendix, we calculate the derivative of pé with respect to x;
as:

opl apl (8(/%'561;1:) N 8bi)
Oki Ok - ') +b;) Ok; OK; (2)
=(1—p) (@R —Aalki),
where Aq(r;) = Ig/2(ki)/Iaj2—1(k;). The derivative of p! with respect to x; is
calculated as:
opl op! (8(/@3--@%;) LN
é%j a(ﬂj . ilﬂ;r + bj) 8I<Jj 6/€j (3)
= —p; - (@A) — Aa(k;))-

The derivatives of p. with respect to f1; and f1; are formulated as:
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Implement Details. Both forward and backward operations with respect to b;
are not supported by Pytorch [3] framework. In addition, the floating point
precision for I,,(k) with the large v and small & (e.g., v = 511 and x = 16) exceeds
float64 which is the maximum floating point precision of CUDA. While the
floating point precision for log I,,(x) is in the normal interval.

To implement our method, we first calculate b; and its derivative by mp-
math [I] library which allows the floating pointing operation with arbitrary
precision. Then, we convert them to the data type of Pytorch. Here is our core
code for the above steps:



import mpmath as mp
import numpy as np

;| import torch

Iv = np.frompyfunc (mp. besseli , 2, 1) # Bessel Function 1_v ()

5| log = np.frompyfunc (mp.log, 1, 1) # Logarithmic Function
i|# Forward and backward functions for b_i

class Function_Bias(torch.autograd.Function):

@staticmethod

def forward(self, d, kappa):
self .k = kappa.data.cpu() .numpy ()
self. v=d/2-1
bias = self.v % log(self.k) — log(Iv(self.v, self.k))
bias = torch.Tensor ([ float (bias)]).type_as(kappa)
self.save_for_backward (kappa)
return bias

@staticmethod
def backward(self , grad_output):
kappa = self.saved_tensors[—1]

Adk = Iv(self.v+1, self.k) / Iv(self.v, self.k)
Adk = torch.Tensor ([ float (Adk)]) .type-as (kappa)
return None, — grad_output x Adk

See core code in supplement material for more implement details.

A.2 Details for Sec. 3.2

For simplification, we abbreviate o(k, k5, fLi, ft;) as oa. To better present the
distribution overlap coefficient, we formulate Eq. 6 in submission PDF equiva-
lently as:
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where the derivative of A,4(k;) with respect to k; is defined as:
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The derivatives with respect to ft; and fi; are easily derived, following the
above operations. The results are demonstrated in Tab. 1 of the submission PDF.
Implement Details. Facing the same case as b;, we need to define the forward
and backward functions of A4(k;) manually. The core code is demonstrated as:




import mpmath as mp
import numpy as np

;| import torch

Iv = np.frompyfunc (mp. besseli , 2, 1) # Bessel Function 1_v ()

s|# Forward and backward functions for A_d(\kappa)

class Function_Adk(torch.autograd.Function):
@staticmethod
def forward(self, d, kappa):
k = kappa.data.cpu() .numpy ()
self.d, v=d,d/ 2 -1
Adk = Iv(v+1, k) / Iv(v, k)
Adk = torch.Tensor ([ float (Adk)]) .type_as(kappa)
self.save_for_backward (kappa, Adk)
return Adk
@staticmethod
def backward(self , grad_output):
kappa, Adk = self.saved_tensors
grad_Adk = 1 — (self.d — 1) / kappa * Adk — Adk *x 2
return None, grad_output * grad_Adk

Appendix B. Relation with Other classifiers

B.1 Balanced Cosine Classifier
Setting k; = const o,Vi € [1,C], Eq. 2 in submission PDF can be re-write as:
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Consequently, the balanced cosine classifier can be considered a special case of
our vMF classifier.

(®)

B.2 Convert Other Classifiers into Ours

In this paper, we take three classifiers into account, including linear, 7-norm,
and causal classifiers, following the default setting (i.e., ignoring the bias terms).
To measure the distribution overlap coefficient of them above, we develop a
conversion method to convert them in a vMF classifier way.

For the linear classifier, given a feature vector € R'*¢ and classifier weights
wihin = [ylin | wlin . wln} € RE%4 the score for class i can be defined as:
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For the 7-norm classifier, given a feature vector & € R'*? and classifier
weights W7 = {w], ..., w], ..., w5} € RE*4 the score for class i can be defined
as:
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For the causal classifier, given a feature vector & € R'*? and classifier weights
Weer = {wf™, .., wi™, ..., wH"} € RE*4 the score for class i can be defined
as:
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In our experiment, the optimal setting 7 of 7-norm classifier [2] is equal to
0.7. ~y of the causal classifier [4] is set as 1/16, following the official codes. For the
causal classifier, we do not apply the causal post-processing algorithm proposed
by them. In addition, our ablation study on post-training calibration algorithm
with different classifiers is shown in Tab. 4 of submission PDF.
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