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Appendix

In this section, we give more results on OOD detection with our proposed BAL
together with the detailed parameter settings in training and inference phase.

6.1 Hardware and Software

All experiments are performed with Python 3.6.5 and Pytorch 1.6.0. Eight
NVIDIA GeForce Titan X (each with 12GB memory) GPUs are used for training
and inference.

6.2 Pre-trained Neural Networks

The pre-trained classification networks and post-processed dataset used in this
paper are from ODIN git repository °, including ResNet, DenseNet and many
other resources.

6.3 Quantitative results on OOD detection.

We give the average confidence scores of max-softmax baseline and the proposed
BAL on ID and OOD data respectively. From the results shown in Table 77, we
can see that the proposed BAL gives OOD data much lower scores compared to
max-softmax baseline, while it still gives high confidence scores to ID data.

Table 6. Average confidence scores on ID and OOD. C-10, C-100, TIN are CIFAR-10,
CIFAR-100 and TinyImageNet respectively.

Train Test ResNet[11] DenseNet[16]
max-softmax[12] BAL(ours) max-softmax[12] BAL(ours)
C-10 0.98 0.87 0.97 0.86
.10 SVHN 0.84 0.03 0.85 0.22
LSUN 0.72 0.40 0.79 0.66
TIN 0.76 0.48 0.80 0.67
C-100 0.86 0.75 0.85 0.79
C-100 SVHN 0.60 0.33 0.60 0.27
LSUN 0.74 0.38 0.66 0.30
TIN 0.72 0.33 0.64 0.28
SVHN 0.98 0.74 0.99 0.69
C-10 0.75 0.23 0.79 0.17
SVHN LSUN 0.69 0.20 0.80 0.18
TIN 0.68 0.18 0.79 0.17

6.4 Hyperparameters of ODIN

In ODIN, we search the optimal parameter settings for temperature 7" and mag-
nitude e. We list them below.

® https://github.com/ShiyuLiang/odin-pytorch
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Table 7. Hyperparameters settings for ODIN.

ID CIFAR-10 CIFAR-100 SVHN
ResNet DenseNet ResNet DenseNet ResNet DenseNet
T 100 10 100 10 10 10

e 0.0014 0.0005 0.0024 0.0020 0.0005 0.0005

6.5 Decision boundary of different schemes

We provide more visualization results of different schemes’ decision boundary

here.
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(a) ODIN [25] ) G-ODIN [15] ) AEC [0]

Fig. 7. Decision boundaries of ex1st1ng schemes. We train a clas51ﬁer (MLP) to
identify two gaussian distribution. The lime points in image above are the original
training data. The background color indicates the distribution of confidence score in
raw data space. For AEC, we train a reconstruction neural network to rebuild the input.
The reconstruction error is mapping to confidence using function e~ % where d represents
the L; distance between the input and rebuilt data. AEC is trained with an AdamW
optimizer. ODIN and G-ODIN are post-processing methods without introducing any
new module.

6.6 Parameters for image normalization

Since we use the pretrained classification models, it important to use the same
normalization method for reproducing the original results. For colour images
fed in ResNet, they are normalized with mean (0.4914,0.4822,0.4465) and std
(0.2023,0.1994,0.2010) for RGB channels respectively. For colour images fed
in DenseNet, they are normalized with mean (0.4914,0.4824,0.4467) and std
(0.2471,0.2435,0.2616) for RGB channels respectively.

6.7 Optimizers for training

Adam is used with learning rate decay from le-4. The learning rate halves every
30 epochs. a and 8 od Adam are set to (0.5, 0.999).
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Table 8. Architectures of conditional GAN.

Generator Discriminator
layerl nn.Linear (feat_dim, 32) nn.Linear(feat_dim, 32)
layer2 nn.Linear(label_dim, 32) nn.Linear(label_dim, 32)
layer3  concatenate + nn.Linear(64, 128)  concatenate + nn.Linear(64, 128)
layerd nn.Linear(128, 64) nn.Linear(128, 64)
layerb nn.Linear(64, feat_dim) nn.Linear(64, 2)

6.8 Architectures of conditional GAN

Both generator and discriminator use four fully connected layer since the input
features are vectors. LeakyReLU is used as activation function. We give the
architectures of conditional GAN in Pytorch style below.

6.9 More results on mixture dataset

We provide detection results of AEC and G-ODIN on mixture dataset.

Table 9. Detecting OOD samples on MNIST, Fashion-MNIST and Omniglot with
ResNet18. We use the mixture of two datasets as OOD samples.

D MNIST F-MNIST

00D F-MNIST & Omniglot MNIST & Omniglot

Methods Softmax baseline / ODIN / G-ODIN / GCPL / AEC / BAL(ours)

1T Cls Acc 99.43 99.43 99.39 99.23 99.12 99.43|91.51 91.51 91.47 90.93 90.27 91.51
J Det Err 4.14 5.01 376 4.77 3.10 3.06 | 32.42 19.14 12.17 30.Y3 17.32 7.10
J FPR 95 3.29 5.03 214 454 1.01 1.11 | 59.84 33.27 23.01 56.45 21.92 9.20
T AUROC 97.66 97.94 98.96 97.96 99.36 99.32 | 89.44 93.45 96.70 81.79 94.57 97.82
1T AUPR,;, 97.22 97.42 99.21 98.14 99.42 99.46 | 90.80 94.28 96.82 72.40 95.09 98.31

1 AUPRow: 97.24 97.64 98.47 97.35 99.13 99.09 | 86.20 91.36 96.33 82.38 92.92

96.95

6.10 Evaluation metrics

We report the following metrics to measure the performance of OOD detection.
The quantity of ID and OOD examples are strictly kept same in evaluation.
FPR at 95% TPR (FPR95) is the probability of an OOD example being
misclassified as ID examples when the True Positive Rate is 95%. True positive
Rate and False Positive Rate are the same as defined in ROC curve.
Detection Error measures the misclassification probability when True Positive
Rate is 95%. It is defined as 0.5(1 — TPR) + 0.5FPR.

AUROC represents the area under ROC curve. Greater AUROC indicates that
the neural network is more confident to assign higher score to ID data than OOD
data. An ideal classifier has an AUROC score of 100%.

AUPR represents the area under Precision-Recall curve. AUPR;,, indicates the
ability of detecting ID data while AUPR,,; indicates that of OOD data.





