
Supplemental Material for LDET

A Experimental Details

In this appendix, we provide experimental details, additional analysis, and visu-
alizations.
Data augmentation. Alg. 1 shows the pytorch-style pseudo-code for our data
augmentation.
Implementation. We use the default hyper-parameters, provided by Detec-
tron2, to train and test LDET, Mask RCNN, Mask RCNNS, and Mask RCNNP.
Default configuration files are used for COCO 1 and Cityscapes 2 respectively. 2
GPUs of NVIDIA RTX A6000 with 48GB are used to train models.
One-Stage Detector. We use the same hyper-parameters for data augmenta-
tion as in Mask RCNN. Also, we follow the default hyper-parameters of Reti-
naNet and TensorMask. Since RetinaNet does not have mask head by default,
we add the mask head on top of the feature pyramid following Mask RCNN. We
will publish the code of one-stage detector upon accepntance.
Baselines.

1) Mask R-CNN. We do not make any change to the default training config-
uration.

2) Mask RCNNS. We compute the area of intersection with ground truth
boxes over the area of the proposal box, which we call IoA, and sample back-
ground boxes with a large value of this criterion. In both region proposal network
and roi head, we pick background regions whose IoA is larger than 0.7.

3) Mask RCNNP. Given the classification output (after softmax) from roi
head, boxes confidently predicted as one of the foreground classes are choosen
from background regions. The threshold to pick the pseudo-foreground is set as
0.9. The classification loss on the pseudo-foreground regions is incorporated to
train the detector.
Experiments on texture dataset. To make a background using images of
DTD [2], we crop the patch with the size of 256 x 256, and rescale it to the size
of a detection training image. Then, we blend the foreground and background
in the same way as LDET.

B Analysis

Precision-Recall curve. Fig. B (a) shows precision and recall curve measured
on non-VOC classes. In most points, the precision of LDET is better than that of

1 detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_

FPN_1x.yaml
2 detectron2/blob/main/configs/Cityscapes/mask_rcnn_R_50_FPN.yaml

detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
detectron2/blob/main/configs/Cityscapes/mask_rcnn_R_50_FPN.yaml
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Algorithm 1: PyTorch-style pseudocode for our data augmentation

# scale= 1
8
: the size of background region to crop.

# M: mask of the foreground regions.

# Apply gaussian smoothing.

image = gaussian(image)

w, h = image.shape

# Randomly crop background with the specified size.

backg = randomcrop(image, w*scale, h*scale)

# Upscale to the size of the input.

backg = upscale(backg, scale)

# Downsample the input.

image = downsample(image, scale)

# Upsample to the original size.

image = upscale(image, scale)

# Paste foreground objects on the synthesized background.

image = M * image + (1 - M) * backg

# Apply smoothing.

image = smooth(image)
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Fig.A: Visualization for detectors trained on Cityscapes. Leftmost two
images are validation images of Cityscapes, rightmost two are from Mapillary.

the plain model, which means that LDET outputs more precise bounding boxes
for novel objects.

Comparison to unsupervised domain adaptation baseline. Although un-
supervised domain adaptation (UDA) methods are tailored for a different prob-
lem, we conduct comparison to two baselines in the setting of Table 1 in the main
paper. Due to the misalignment in the background contents, applying image-level
feature alignment should be sub-optimal. We conduct experiments on aligning
bounding-box level feature distributions. First, since both synthetic and real im-
ages are fully annotated, the use of paired images is natural to align real and
synthetic box-level features. Then, we apply supervised contrastive loss [4] on
the pair of synthetic and real foreground regions. Second, we follow [1] and
apply adversarial training by training a domain classifier on bounding box-level
features. Resulting losses include detection loss on synthetic data and adaptation
loss on synthetic/real data. AR100 of the first baseline is 21.8, outperforming no-
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(a) VOC to Non-VOC. (b) VOC to UVO.

Fig. B: Precision-Recall Curve. The precision is measured at the IoU thresh-
old of 0.5. The comparison demonstrates that LDET detects novel objects more
precisely than the plain model.

adapted baseline models (18.0), but underperforming LDET (30.8). Adversarial
training (AR100 is 4.0.) performs significantly worse than all baselines probably
due to the instability of training.

Study on the background. We choose to use the small region of the image
as the background. An alternative way is to use a uniform pixel value as the
background color. Specifically, we test using the mean pixel value or random
pixel value as the background. The performance of using the mean pixel value
and the random value are 29.8 and 30.0 respectively (AR100 in Table 1). The
uniform pixel value is one option of the background canvas. Although we did not
focus on improving the performance of LDET by the selection of background
canvas, this result indicates a more room for improvements by it, which we leave
for future work.

Number of training classes. We investigate the effect of the classes used for
training, where 1 (person), 5, and 10 training classes are utilized in the setting
of Table 1. AR in each setting is 1: 16.8, 5: 23.9, and 10: 29.5 respectively (All:
30.8). Although including the various categories is important to achieve better
performance, using only 10 classes performs on par with using 20 classes.

Comparison to Copy-Paste baseline. Existing copy-paste [3] just cuts ob-
jects and paste them on other images without excluding the unlabeled objects
while ours excludes the unlabeled objects. We conduct experiments on copy-paste
augmentation in the setting of Table 1. AR100 in detection is 10.9 (plain model),
23.0 (copy-paste), and 30.8 (LDET). The augmentation partially solves the issue
of suppressing unlabeled objects because pasted objects can hide the unlabeled
objects. But, we can still see the significant advantage of LDET. Study on the
number of classes.

Study on the confidence threshold. In Fig. C, we vary the confidence thresh-
old used to remove unconfident bounding boxes in ROI classification head, where
the value is set as 0.05 by default. Here, we vary thresholds starting from 0.0
(no thresholding) to 0.5. This result demonstrates that the baseline drops AR by
applying a very small threshold value (Compare AR at 0.0 and 0.01), meaning
that the baseline confuses many novel objects with the background.
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(a) VOC to Non-VOC.
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(b) VOC to UVO.

Fig. C: Speed (sec /image) v.s. AR. We vary the confidence threshold of the
ROI head and see the changes of the speed and AR. Note that the speed changes
due to the non-maximum supression after confidence thresholding. Points at con-
fidence threshold at 0.0 and 0.01 are highlighted with red arrows. The baseline
mask rcnn significantly drops performance between the points at 0.0 and 0.01,
which indicates that the model suppresses many foreground objects at the con-
fidence value of 0.01.

C Visualization

Cityscapes. Fig. A visualizes some qualitative results. Leftmost two images
are from the validation set of Cityscapes, others are from Mapillary. We see
that, as indicated by the quantitative results, LDET detects more objects, e.g .,
baby carriage in the leftmost image. However, it is also true that LDET misses
novel objects such as dog in the leftmost image, probably because there are
no categories similar to dogs in the Cityscapes’ 8 training categories. This fact
indicates some room for improvement in our approach.
More visualizations in COCO. Fig. D and E are additional visualizations in
VOC-COCO and COCO, respectively. Note that we add the results of Mask RCNNS,
which are not visualized in the main paper due to a limited space. Mask RCNNS

locates many novel objects while generating many false positives. This is proba-
bly due to the imbalanced sampling of background regions. By contrast, LDET
detects many novel objects, e.g ., elephants, toilet paper, lizard, statue, toy, etc.,
with small number of false positives.
Demo on video. Fig. F and G are demo of applying LDET to UVO [5] videos.
Click the images to play the videos.
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Ours Mask RCNN Mask RCNNS

Fig.D: Visualization in VOC-COCO to COCO setting. Note that VOC-
COCO does not contain objects such as lizard, toilet paper, and elephant.
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Ours Mask RCNN Mask RCNNS

Fig. E: Visualization of models trained on COCO. The images are from
COCO and UVO.



Supplemental Material for LDET 7

Fig. F: Video demo of models trained on COCO. Left: Mask RCNN. Right:
LDET. Click the image to play the video.

Fig.G: Video demo of models trained on COCO. Left: Mask RCNN. Right:
LDET.

https://cs-people.bu.edu/keisaito/videos/video_let/video1_concat.mp4
https://cs-people.bu.edu/keisaito/videos/video_let/video2_concat.mp4
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