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1 Differences with the arXiv paper: Explicit Sparse
Transformer: Concentrated Attention Through Explicit
Selection (EST)

Similarities: Our method part is similar to EST in terms of the calculation of
top-k.
Differences:

– Our paper is focused not only on the methodology part, but also the deep
understanding. There are many variants of Transformers in the NLP and
vision community now, but few of them provide a deep and thorough analysis
of their proposed methods. The proposed k-NN attention indeed happens to
be similar to EST, which was arxived 2 years ago and we were not aware of it
when conducting our research. In addition to applying the idea to transformers
and conducting extensive experiments as EST did, we provide theoretical
justifications about the idea, which we think is equally or more important
than the method itself, and helps with a more fundamental understanding.

– The conclusion about how to select k is different. In EST, it is found that a
small k is better (8 or 16), but we find a larger k, namely, ≥ 1

2N is better
(N is the sequence length).

– The motivations of these two papers are different: EST targets to get sparse
attention maps while ours aims to distill noisy patches.

– Our paper focuses on vision transformers but EST focuses on NLP tasks,
even though EST applied it to the image captioning task. Since late 2020,
vision transformer backbones have become very popular, and k-NN attention
deserves a deeper analysis. Therefore, we apply the k-NN attention on 11
different vision transformer backbones for empirical evaluations and find it
simple and effective for vision transformer backbones.

– More analysis about the properties of k-NN attention in the context of vision
transformer backbones are provided in our paper. Besides the k selection

? The first two authors contribute equally.
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and convergence speed as EST presented, we also define several metrics
to facilitate the analysis, e.g. layer-wise cosine similarity between tokens,
layer-wise standard deviation of attention weights, ratio between the norms
of residual activation and main branch, and nonlocality. We also compare it
with temperature in softmax and provide the visualizations.

In summary, our paper provides deeper understanding with comprehensive
analysis of the k-NN attention for vision transformers, which provides well-
grounded knowledge advancement.

2 Source codes of fast version k-NN attention in Pytorch

The source codes of fast version k-NN attention in Pytorch are shown in
Algorithm 1, and we can see that the core codes of fast version k-NN attention is
consisted of only four lines, and it can be easily imported to any architecture
using fully-connected attention.

Algorithm 1 Codes of fast version k-NN attention in Pytorch.

1 class kNN -Attention(nn.Module):
2 def __init__(self ,dim ,num_heads=8,qkv_bias=False ,qk_scale=None ,attn_drop

=0., proj_drop =0.,topk =100):
3 super ().__init__ ()
4 self.num_heads=num_heads
5 head_dim=dim// num_heads
6 self.scale=qk_scale or head_dim ** -0.5
7 self.topk=topk
8
9 self.qkv=nn.Linear(dim ,dim*3,bias=qkv_bias)

10 self.attn_drop=nn.Dropout(attn_drop)
11 self.proj=nn.Linear(dim ,dim)
12 self.proj_drop=nn.Dropout(proj_drop)
13
14 def forward(self ,x):
15 B,N,C=x.shape
16 qkv=self.qkv(x).reshape(B,N,3,self.num_heads ,C//self.num_heads).

permute (2,0,3,1,4)
17 q,k,v=qkv[0],qkv[1],qkv[2] #B,H,N,C
18 attn=(q@k.transpose (-2,-1))*self.scale #B,H,N,N
19 # the core code block
20 mask=torch.zeros(B,self.num_heads ,N,N,device=x.device ,requires_grad=

False)
21 index=torch.topk(attn ,k=self.topk ,dim=-1,largest=True)[1]
22 mask.scatter_(-1,index ,1.)
23 attn=torch.where(mask >0,attn ,torch.full_like(attn ,float(’-inf’)))
24 # end of the core code block
25 attn=torch.softmax(attn ,dim=-1)
26 attn=self.attn_drop(attn)
27 x=( attn@v).transpose (1,2).reshape(B,N,C)
28 x=self.proj(x)
29 x=self.proj_drop(x)
30
31 return x



KVT: k-NN Attention for Boosting Vision Transformers 3

3 Comparisons between slow version and fast version

We develop two versions of k-NN attention, one slow version and one fast version.
The k-NN attention is exactly defined by slow version, but its speed is extremely
slow, as for each query it needs to select different k keys and values, and this
procedure is very slow. To speedup, we developed the CUDA version, but the
speed is still slower than fast version. The fast version takes advantages of matrix
multiplication and greatly speedup the computing. The speed comparisons on
DeiT-Tiny using 8 V100 are illustrated in Table 1.

method time per iteration (second)

slow version (pytorch) 8192

slow version (CUDA) 1.55

fast version (pytorch) 0.45
Table 1. The speed comparisons on DeiT-tiny for slow and fast version

4 Evaluations on CIFAR10 or CIFAR100.

As vision transformers are data-hungry, directly training vision transformer
backbones from scratch on small-size datasets such as CIFAR10 or CIFAR100
would yield much worse performances compared with ConvNets. Following
the paradigm and codes of the NIPS2021 paper “Efficient Training of Visual
Transformers with Small Datasets", we briefly conducted experiments on CIFAR10
and CIFAR100 using Swin-T and T2T-ViT-14 with k-NN attention as shown
in Table 2. Adding k-NN attention brings much larger performance gain in the
scratch training (ST) due to its faster convergence speed, while the gain in the
setting of ImageNet-1k pretraining and CIFAR finetuning (FT) is not as large.

Model C10 (ST) C100 (ST) C10 (FT) C100 (FT)

Swin-T 83.9 66.2 98.4 88.4
Swin-T→ k-NN Attn 84.5 67.1 98.6 88.7
T2T-VIT-14 87.6 68.0 98.5 87.7
T2T-VIT-14→ k-NN Attn 88.2 68.8 98.8 88.1

Table 2. Results on CIFAR10 and CIFAR100 (100 epochs).

5 Proof

Notations. Throughout this appendix, we denote xi as i-th element of vector x,
Wij as the element at i-th row and j-th column of matrix W , and Wj as the
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j-th row of matrix W . Moreover, we denote xi as the i-th patch (token) of the
inputs with xi =Xi.

Proof for Lemma 1 We first give the formal statement of Lemma 1.

Lemma 1 (Formal statement of Lemma 1). Let V̂ knn
l be the l-th row of

the V̂ knn and Varal
(x) = Eal

[x>x]−Eal
[x>]Eal

[x] with Eal
[x] =

∑n
t=1 altxt.

Then for any i, j = 1, 2, ..., n, we have

∂V̂l
∂WQ,ij

= xliW
>
K,jVaral(x)WV ∝ Varal(x)

and

∂V̂l
∂WK,ij

= xliW
>
Q,jVaral(x)WV ∝ Varal(x).

The same is true for V̂ of the fully-connected self-attention.

Proof. Let’s first consider the derivative of V̂l over WQ,ij . Via some algebraic
computation, we have

∂V̂l
∂WQ,ij

=
∂(alV )

∂WQ,ij
=

n∑
t=1

alt

(
∂T knnl (t)

∂WQ,ij
−

n∑
k1=1

alk1
∂T knnl (k1)

∂WQ,ij

)
xtWV , (1)

where we denote T knnl (k) as follow for shorthand:

T knnl (k1) =

{
xlWQW

>
Kx
>
k1
, if patch k1 is selected in row l

−∞, otherwise

Let denote set S .
= {i : patch i is selected in row l} and then we consider the

right-hand-side of (1).

(1) =
n∑
t∈S

alt

(
∂
(
xiWQW

>
Kx
>
k

)
∂WQ,ij

−
∑
k1∈S

alk1
∂
(
xiWQW

>
Kx
>
k1

)
∂WQ,ij

)
xtWV

=

n∑
t∈S

alt

(
x1ixtWK,j −

∑
k1∈S

alk1xlixk1WK,j

)
xtWV

=

n∑
t∈S

altxlixtWK,jxtWV︸ ︷︷ ︸
(a)

−
n∑
t∈S

altxtWV︸ ︷︷ ︸
(b)

·
∑
k1∈S

alk1xlixk1WK,j︸ ︷︷ ︸
(c)

. (2)

Since al is the l-th row of the attention matrix, we have alt ≥ 0 and
∑
t alt = 1.

It is possible to treat terms (a), (b) and (c) as the expectation of some quantities
over t replicates with probability alt. Then (2) can be further simplified as
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(2) = Eal
[xlixWK,j · xWV ]−Eal

[xWK,j ] ·Eal
[xlixWV ]

= xli
(
Eal

[W>
K,jx

> · xWV ]−Eal
[W>

K,jx
>] ·Eal

[xWV ]
)

= xliW
>
K,j

(
Eal

[x>x]−Eal
[x>] ·Eal

[xt]
)
WV

= xliW
>
K,jVaral

(x)WV , (3)

where the second equality uses the fact that xtWK,j is a scalar.
Combing (1)-(3), we have

∂V̂l
∂WQ,ij

= xliW
>
K,jVaral

(x)WV ∝ Varal
(x). (4)

Due the symmetric on Q and K, we can follow the similar procedure to show

∂V̂l
∂WK,ij

= xliW
>
Q,jVaral

(x)WV ∝ Varal
(x). (5)

Finally, by setting k = n, one may verify that equations (4) and (5) also hold for
fully-connected self-attention.

Proof for Lemma 2 Before given the formal statement of the Lemma 2, we
first show the assumptions.

Assumption 2

1. The token xi is the sub-gaussian random vector with mean µi and variance
(σ2/d)I for i = 1, 2, ..., n.

2. µ follows a discrete distribution with finite values µ ∈ V . Moreover, there exist
0 < ν1, 0 < ν2 < ν4 such that a) ‖µi‖ = ν1, and b) µiWQW

T
Kµi ∈ [ν2, ν4]

for all i and |µiWQW
>
Kµ
>
j | ≤ ν2 for all µi 6= µj ∈ V.

3. WV andWQW
>
K are element-wise bounded with ν5 and ν6 respectively, that

is, |W (ij)
V | ≤ ν5 and |(WQW

>
K)(ij)| ≤ ν6, for all i, j from 1 to d.

In Assumption 2 we ensure that for a given query patch, the difference between
the clustering center and noises are large enough to be distinguished.

Lemma 2 (formal statement of Lemma 2). Let patch xi be σ2-subgaussian
random variable with mean µi and there are k1 patches out of all k patches
follows the same clustering center of query l. Per Assumption 2, when

√
d ≥

3(ψ(δ, d) + ν2 + ν4), then with probability 1− 5δ, we have

∥∥∥∥∥∥
∑k
i=1 exp

(
1√
d
xlWQW

>
k xi

)
xiWV∑k

j=1 exp
(

1√
d
xlWQW>

Kxj

) − µlWV

∥∥∥∥∥∥
∞

(6)

≤ 4 exp

(
ψ(δ, d)√

d

)
σν5

√
2

dk
log

(
2d

δ

)
+

[
8 exp

(
ν2 − ν4 + ψ(δ, d)√

d

)
−
(
7 + exp

(
ν2 − ν4 + ψ(δ, d)√

d

))
k1
k

]
‖µ1WV ‖∞,
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where ψ(δ, d) = 2σν1ν6

√
2 log

(
1
δ

)
+ 2σ2ν6 log

(
d
δ

)
.

Proof. Without loss of generality, we assume the first k patch are the top-
k selected patches. From Assumption 2.1, we can decompose xi = µi + hi,
i = 1, 2, ..., k, where hi is the sub-gaussian random vector with zero mean. We
then analyze the numerator part.

k∑
i=1

exp

(
1√
d
xlWQW

>
k xi

)
xiWV

=

(a)︷ ︸︸ ︷
k∑
i=1

exp

(
1√
d
µlWQW

>
Kµ
>
i

)
µiWv +

(b)︷ ︸︸ ︷
k∑
i=1

exp

(
1√
d
xlWQW

>
Kx
>
i

)
hiWv

+

(c)︷ ︸︸ ︷
k∑
i=1

[
exp

(
1√
d
xlWQW

>
k xi

)
− exp

(
1√
d
µlWQW

>
Kµ
>
i

)]
µiWv . (7)

Below we will bound (a), (b) and (c) separately.

Upper bound for (a). Let denote index set S1 = {i : µ1 = µi, i = 1, 2, ..., k}.
We then have∥∥∥∥∥(a)−∑

i∈S1

exp

(
1√
d
x1WQW

>
Kx
>
i

)
µ1WV

∥∥∥∥∥
∞

≤(k − |S1|)max
i

{
exp

(
1√
d
x1WQW

>
Kx
>
i

)}
‖µ1WV ‖∞

≤(k − k1) exp
(
ν2√
d

)
‖µ1WV ‖∞, (8)

where last inequality is from the Assumption 2.2.

Upper bound for (b). Since each dimension in hl is the i.i.d random vector
with zero mean variance σ2/d based on Assumption 2.1, we can use Hoeffding
Inequality to derive the following result holds with probability 1− δ.

∥∥∥∥∥
k∑
i=1

exp

(
1√
d
x1WQW

>
Kx
>
i

)
hiWV

∥∥∥∥∥
∞

≤ σν5

√
2(k1U2

1 + (k − k1)U2
2 )

d
log

(
2d

δ

)
,

(9)

where
U1 = max

i∈S1

{
exp

(
1√
d
x1WQW

>
Kx
>
i

)}
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and

U2 = max
i/∈S1

{
exp

(
1√
d
x1WQW

>
Kx
>
i

)}
.

We then build the upper bound for U1 and U2. Since xi = µi + hi for
i = 1, 2, ..., k, we have

|x1WQW
>
Kx
>
i | ≤ |µ1WQW

>
Kµ
>
i |+ |µ1WQW

>
Kh
>
i | (10)

+ |h1WQW
>
Kµ
>
i |+ |h1WQW

>
Kh
>
i |

Via Assumption 2.3 and Hoeffding Inequality, with probability 1− 4δ, the
follow results hold.

|µ1WQW
>
Kh
>
i | ≤ σν1ν6

√
2 log

(
1

δ

)
(11)

|h1WQW
>
Kµ
>
i | ≤ σν1ν6

√
2 log

(
1

δ

)
(12)

|h1WQW
>
Kh
>
i | ≤ 2σ2ν6 log

(
d

δ

)
(13)

and we denote ψ(δ, d) = 2σν1ν6

√
2 log

(
1
δ

)
+ 2σ2ν6 log

(
d
δ

)
for shorthand and

then we have

U1 ≤ exp

[
1√
d
(ν2 + ψ(δ, d))

]
U2 ≤ exp

[
1√
d
(ν4 + ψ(δ, d))

]

As a result, with a probability 1− 5δ, we have:

‖(b)‖∞ ≤ σν5 exp
(
ψ(δ, d)√

d

)√√√√2(k1 exp
(

2ν2√
d

)
+ (k − k1) exp

(
2ν4√
d

)
)

d
log

(
2d

δ

)
.

(14)

Upper bound for (c).

‖(c)‖∞ ≤

∣∣∣∣∣
k∑
i=1

[
exp

(
1√
d
x1WQW

>
Kx
>
i

)
− exp

(
1√
d
µ1WQW

>
Kµ
>
i

)]∣∣∣∣∣ ‖µ1WV ‖∞
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and it implies

‖(c)‖∞
‖µ1WV ‖∞

≤

∣∣∣∣∣∣
∑
i/∈S1

[(
exp

(
1√
d

(
x1WQW

>
Kx
>
i − µ1WQW

>
Kµ
>
i

))
− 1

)]∣∣∣∣∣∣ exp
(ν2
λ

)

+

∣∣∣∣∣∑
i∈S1

[(
exp

(
1√
d

(
x1WQW

>
Kx
>
i − µ1WQW

>
Kµ
>
i

))
− 1

)]∣∣∣∣∣ exp(ν5λ ) .
(15)

Combine (15) with (11)-(13) and we have with probability 1− 4δ:

‖(c)‖∞ ≤
∣∣∣∣exp(ψ(δ, d)√

d

)
− 1

∣∣∣∣ [(k − k1) exp( ν2√
d

)
+ k1 exp

(
ν5√
d

)]
‖µ1WV ‖∞.

(16)

From (7), (8), (14) and (16), with probability 1− 5δ, we have

∥∥∥∥∥
k∑
i=1

exp

(
1√
d
x1WQW

>
Kx
>
i

)
xiWV −

∑
i∈S1

exp

(
1√
d
µ1WQW

>
Kµ
>
i

)
µ1WV

∥∥∥∥∥
∞

≤ exp

(
ψ(δ, d)√

d

)[
τ1(k, k1)‖Wvµ1‖∞ + σν5

√
2τ2(k, k1)

d
log

(
2d

δ

)]
, (17)

where τ1(k, k1) = (k−k1) exp
(
ν2√
d

)
+k1 exp

(
ν5√
d

)
and τ2(k, k1) = k1 exp

(
2ν2√
d

)
+

(k − k1) exp
(

2ν4√
d

)
.

Now we consider the upper bound the denominator part.

∣∣∣∣∣
k∑
i=1

exp

(
1√
d
x1WQW

>
Kx
>
i

)
−

k∑
i=1

exp

(
1√
d
µ1WQW

>
Kµ
>
i

)∣∣∣∣∣
≤

(g1)︷ ︸︸ ︷∣∣∣∣∣
k∑
i=1

exp

(
1√
d
µ1WQW

>
Kµ
>
i

)[
exp

(
1√
d

(
x1WQW

>
Kx
>
i − µ1WQW

>
Kµ
>
i

))
− 1

]∣∣∣∣∣ .
(18)
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Via Assumption 2.2, (11)-(13) and the definition of ψ(δ, d), with probability
1− 5δ the follow results hold.

(g1) ≤ exp

(
ν4√
d

) ∣∣∣∣∣
k∑
i=1

[
exp

(
1√
d

[
x1WQW

>
Kx
>
i − µ1WQW

>
Kµ
>
i

])
− 1

]∣∣∣∣∣
≤ exp

(
ν4√
d

) ∣∣∣∣∣
k∑
i=1

[
exp

(
ψ(δ, d)√

d

)
− 1

]∣∣∣∣∣
≤ k exp

(
ν4√
d

)[
exp

(
ψ(δ, d)√

d

)
− 1

]
. (19)

Combining (18), (19) and Assumption 2.2, we have

k∑
i=1

exp

(
1√
d
x1WQW

>
Kx
>
i

)

≥
k∑
i=1

exp

(
1√
d
µ1WQW

>
Kµ
>
i

)
− k exp

(
ν4√
d

)(
exp

(
ψ(δ, d)√

d

)
− 1

)
≥k exp

(
− ν2√

d

)
− k exp

(
ν4√
d

)(
exp

(
ψ(δ, d)√

d

)
− 1

)
. (20)

When
√
d ≥ 3(ψ(δ, d) + ν2 + ν4), one may verify

exp

(
ψ(δ, d) + ν2 + ν4√

d

)
− exp

(
ν2 + ν4√

d

)
≤ exp

(
1

3

)
− 1 ≈ 0.39 < 1

⇒ exp

(
ψ(δ, d)√

d

)
− 1− exp

(
−ν2 + ν4√

d

)
< 0

⇒ exp

(
− ν2√

d

)
− exp

(
ν4√
d

)(
exp

(
ψ(δ, d)√

d

)
− 1

)
> 0

⇒k exp
(
− ν2√

d

)
− k exp

(
ν4√
d

)(
exp

(
ψ(δ, d)√

d

)
− 1

)
> 0. (21)
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Finally, via (17), we have∥∥∥∥∥∥
∑k
i=1 exp

(
1√
d
x1WQW

>
Kx
>
i

)
∑k
j=1 exp

(
1√
d
x1WQW>

Kx
>
j

)xiWV − µ1WV

∥∥∥∥∥∥
∞

·
k∑
j=1

exp

(
1√
d
x1WQW

>
Kx
>
j

)

=

∥∥∥∥∥∥
k∑
j=1

exp

(
1√
d
x1WQW

>
Kx
>
i

)
xiWV −

k∑
i=1

exp

(
1√
d
x1WQW

>
Kx
>
j

)
µ1WV

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥
k∑
i=1

exp

(
1√
d
x1WQW

>
Kx
>
i

)
xiWV −

∑
i∈S1

exp

(
1√
d
µ1WQW

>
Kµ
>
i

)
µ1WV

∥∥∥∥∥
∞

+

∥∥∥∥∥∥
∑
i/∈S1

exp

(
1√
d
µ1WQW

>
Kµ
>
i

)
µ1WV

∥∥∥∥∥∥
∞

≤ exp

(
ψ(δ, d)

λ

)[
2τ1(k, k1)‖µ1WV ‖∞ + σν5

√
2τ2(k, k1)

d
log

(
2d

δ

)]

−k1 exp
(
ν4√
d

)
‖µ1WV ‖∞ + (k − k1) exp

(
ν2√
d

)
‖µ1WV ‖∞. (22)

Per (22) and (21), we have∥∥∥∥∥∥
∑k
i=1 exp

(
1√
d
x1WQW

>
Kx
>
i

)
∑k
j=1 exp

(
1√
d
x1WQW>

Kx
>
j

)xiWV − µ1WV

∥∥∥∥∥∥
∞

≤
(
k exp

(
− ν2√

d

)
− k exp

(
ν4√
d

)(
exp

(
ψ(δ, d)√

d

)
− 1

))−1
·

(
exp

(
ψ(δ, d)√

d

)[
2τ1(k, k1)‖µ1WV ‖∞ + σν5

√
2τ2(k, k1)

d
log

(
2d

δ

)]

+(k − k1) exp
(
ν2√
d

)
‖µ1WV ‖∞ − k1 exp

(
ν4√
d

)
‖µ1WV ‖∞

)

≤
exp

(
ψ(δ,d)√

d

)
σν5

√
exp

(
−2ν4√
d

)
2τ2(k,k1)
dk2 log

(
2d
δ

)
1 + exp

(
−ν4+ν2√

d

)
− exp

(
ψ(δ,d)√

d

)
+

exp
(
ψ(δ,d)−ν4√

d

)
2τ1(k,k1)

k − k1
k exp

(
ν4√
d

)
+ (1− k1

k ) exp
(
ν4√
d

)
1 + exp

(
−ν4+ν2√

d

)
− exp

(
ψ(δ,d)√

d

) · ‖µ1WV ‖∞

≤
[
8 exp

(
ν2 − ν4 + ψ(δ, d)√

d

)
−
(
7 + exp

(
ν2 − ν4 + ψ(δ, d)√

d

))
k1
k

]
‖µ1WV ‖∞

+ 4 exp

(
ψ(δ, d)√

d

)
σν5

√
2

dk
log

(
2d

δ

)
, (23)
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where second inequality uses ν4 ≥ µ2 and last inequality uses the definition of
τ1(k, k1), τ2(k, k1) and

√
d ≥ 3(ψ(δ, d) + ν2 + ν4).

Proof of Lemma 3
Without loss of generality, we only consider the case with first query patches.

In the k-NN attention scheme, we first use the dot-product product to compute
the similarity between query and each key-patches and then use the softmax
to normalize the similarities. We make the following assumption to facility our
analysis.

Assumption 3.1 There exists β∗ ∈ R1×n and β∗ ∈ ∆ such that q1 = βK + ε,
where ε is filled with random variable follows N (0, σ2) for some σ > 0.

To see the connection between the Assumption 3.1 with attention scheme,
we consider the follow problem.

min
β∈∆
‖K>β> − q>1 ‖22, (24)

IfK is normalized with zero columns mean and we apply the exponential gradient
method on the initial solution β0 = 1

ne with step length 1/
√
d, the one step

updated solution β1 is

β1 =
exp( 1√

d
Kq>1 )∑k

i=1 exp(
1√
d
kiq>1 )

. (25)

The above equation (25) is just the attention scheme used standard transformer
type model. Based on Assumption 3.1, we can treat β1 as an approximation of
underlying true parameters β∗.

On the other hand, it is commonly believed that only part of patches are
correlated with the query patch (i.e., with non-zero similarity weights.) and it
would be ideal if we could use a computational cheap method to eliminate the
irrelevant patches. In this paper, we consider the top-k selection scheme. To
see the rationality of the top-k selection, we consider augmenting (24) with L2

regularization on β.

min
β∈∆
‖K>β> − q>1 ‖22 +

λ

2
‖β‖22,

⇒K(K>β> + q>1 ) + λβ> + λ1 + eλ2 = 0,

⇒β> = (KK> + λI)−1
(
Kq>1 + λ1 + eλ2

)
,

where we use the KKT optimal condition, and λ1, λ2 are Lagrange multipliers
to make sure β ∈ ∆. If λ is large enough and β > 0, we will have

β> ≈ 1

λ

(
Kq>1 + eλ2

)
∝Kq>1 (26)

The above result indicates that we may selection the important elements in β
(e.t., with large magnitude) by considering rankness in vector Kq>1 .
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We then discussion the correctness of the top-k selection with the following
regularity assumptions on K and q1.

Assumption 3.2

1. K is normalized with row zero mean. Let Σ =KK> and Z = Σ−1/2K>.
We assume there exist some c, c4 > 1 and C1 > 0 such that the following
inequality

P

(
λmax(p̃

−1Z̃Z̃>) > c4 and λmax(p̃
−1Z̃Z̃>) <

1

c4

)
< exp(−C1d)

holds for any p̃× d submatrix Z̃ of Z with cn < p̃ ≤ n.
2. var(q1) = O(1) and for some κ ≥ 0 and c5, c6 > 0,

min
i:β∗

i>0
βi ≥

c5
dκ

and min
i:β∗

i>0
cov(β−1i q>1 ,k

>
i ) ≥ c6

3. There exist some τ ∈ [0, 1) and c7 > 0 such that

λmax(Σ) ≤ c7dτ .

Lemma 3 (formal statement of Lemma ). Let’s assume only be s keywords
are relevant to the query l. Under Assumption 3.1 and 3.2, when 2κ+ τ < 1,
with probability 1−O(s exp(−Cd1−2κ/ log d)), we have

n∑
i=1

1(qlk
>
i ≥ min

i∈M∗
qlk
>
i ) ≤ cnd2κ+τ−1, (27)

where M∗ = {i : keyword i is relevant to the query l.} , and τ , κ, c and C are
positive constants.

Proof. Our strategy is the similar to the proof of Theorem 1 in [1].
Based on equation (44) in [1], we have

KK> = nΣ1/2Ũ>diag(µ1, ..., µd)ŨΣ
1/2, (28)

where µ1,..., µd are d eigenvalues of p−1ZZ>, Ũ = (Id,0)d×nU , and U is
uniformally distributed on the orthogonal group O(n). To facility our further
analysis we denote ω = qlK

>. By definition of ω and per Assumption 3.1, we
have

ω> =Kq>l =KK>β> +Kε>
.
= ξ + η. (29)

We then separately study ξ and η.
Analysis on ξ. We first bound ξ from above. Since {µi} is the eigenvalues

of n−1ZZ>, we have

diag(µ2
1, ..., µ

2
d) ≤

[
λmax(n

−1ZZ>)
]2
Id (30)
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and
ŨΣŨ> ≤ λmax(Σ)Id

There lead to

‖ξ‖2 ≤ n2λmax(Σ)
[
λmax(n

−1ZZ>)
]2 · β>Σ1/2Ũ>ŨΣ1/2β. (31)

Let Q belongs to the orthogonal group O(n) such that Σ1/2β = ‖Σ1/2β‖Qe1.
Then, it follows from Lemma 1 in [1] that

β>Σ1/2Ũ>ŨΣ1/2β = ‖Σ1/2β‖〈Q>SQe1, e1〉
(d)
= ‖Σ1/2β‖〈Se1, e1〉, (32)

where we use the symbol
(d)
= to denote being identical in distribution. By part 3

in Assumption 3.2, ‖Σ1/2β‖2 = β>Σβ ≤ var(y) = O(1), and thus via Lemma
4 in [1], we have for some C > 0,

P

(
β>Σ1/2Ũ>ŨΣ1/2β > (d/n)

)
≤ O (exp(−Cd)) . (33)

Combining with λmax(Σ) = O(dτ ) and P(λmax(n
−1ZZ>) > c1) ≤ exp (−C1d)

by parts 1 and 3 in Assumption 3.2 along with union bound, we have

P
(
‖ξ‖2 ≥ O(d1+τn)

)
≤ O(exp(−Cd)). (34)

We then consider the lower bound on ξi for i ∈M∗. By (28), we have

ξi = ne>i Σ
1/2Ũ>diag(µ1, ..., µd)ŨΣ

1/2β. (35)

Note that ‖Σ1/2ei‖ =
√

var(Xi) = 1, ‖Σ1/2β‖ = O(1). By part 2 of Assumption
3.2, there exists some c > 0 such that

〈Σ1/2β,Σ1/2ei〉 = βicov(β−1i q>1 ,ki) ≥
c

dκ
. (36)

Thus, there exists Q in orthogonal group O(n) such that Σ1/2ei = Qe1 and

Σ1/2β = 〈Σ1/2β,Σ1/2ei〉Qe1 +O(1)Qe2. (37)

Since (µ1, ...., µd)
> is independent of Ũ by Lemma 1 in [1] and the uniform

distribution on the orthogonal group O(n) is invariant under itself, it follows that

ξi
(d)
= 〈Σ1/2β,Σ1/2ei〉R1 +O(n)R2

.
= ξi,1 + ξi,2, (38)

where R = (R1, R2, ..., Rn)
> = Ũ>diag(µ1, ..., µd)Ũ

>e1. We will bound the
above two terms ξi,1 and ξi,2 separately. One can verify

R1 ≥ e>1 Ũ>λmin(n
−1ZZ>)IdŨe = λmin(n

−1ZZ>)〈Se1, e1〉, (39)
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and thus by part 1 of assumption 3.2, Lemma 4 in [1], and union bound, we have
for some c, C > 0,

P(R1 < cd/n) ≤ O(exp(−Cd)). (40)

Therefore we have for some c > 0,

P(ξi,1 ≤ cd1−κ) ≤ O(exp(−Cd)) (41)

Similarly, we can also show that

P(‖R‖2 ≥ O(d/n)) ≤ O(exp(−Cd)). (42)

Via some analysis, we can show that the distribution of R̃ = (R2, ..., Rn)
> is

invariant under the orthogonal group O(n − 1). Then, it follows that R̃
(d)
=

‖R̃‖W /‖W ‖, where W = (W1, ...,Wn−1)
> ∼ N (0, In−1), independent of ‖R̃‖.

Thus, we have

R2
(d)
= ‖R̃‖ W1

‖W ‖
. (43)

And via the Lemma 5 in [1], we can show

P(|ξi,2| ≥ c
√
d|W |) ≤ O(exp(−Cd)), (44)

whereW isN (0, 1)-distributed random variable. We then pick xd = c
√
2Cd1−κ/

√
log d.

Then, by standard tail bound, we have

P(c
√
d|W | ≥ xd) ≤ O(exp(−Cd1−2κ/ log d)), (45)

Then

P(|ξi,2| ≥ xd) ≤ O(exp(−Cd1−2κ/ log d)). (46)

It implies that for i with β∗i > 0, we have

P
(
ξi,1 − |ξi,2| ≤ cd1−κ

)
≤ O(exp(−Cd1−2κ/ log d))

⇒P
(
ξi ≤ cd1−κ

)
≤ O(exp(−Cd1−2κ/ log d)).

Next, we examine term η = (η1, ..., ηn)
> =Kε>. Clearly, we have

K>K = ZΣZ> ≤ Zλmax(Σ)InZ
> = nλmax(Σ)λmax(n

−1ZZ>)Id. (47)

Then, it follows that

‖η‖2 = εK>Kε> ≤ nλmax(Σ)λmax(n
−1ZZ>)‖ε‖2. (48)

From Assumption 3.1, we know that {ε2i /σ2} are i.i.d. χ2
1-distributed random

variables. Thus there exist c, C > 0 such that

P(‖ε‖2 > cdσ2) ≤ exp(−Cd) (49)
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Along with parts 1 and 3 of Assumption 3.2, we have

P(‖η‖2 > O(d1+τn)) ≤ O(exp(−Cd)). (50)

We then bound |ηi| from above. Given that η = Kε> ∼ N (0, σ2KK>). Hence
ηi|K=K ∼ N (0, var(ηi|K=K)) with var(ηi|K =K) = σ2e>i Kei.

Let E be the event {var(ηi|K) ≤ cd} for some c>0. Then, using the same
argument in the previous proof. we can show that

P(Ec) ≤ O(exp(−Cd)). (51)

Condition on the event E , for all x > 0, we have

P(|ηi| > x|K) ≤ P(
√
cd|W | > x) (52)

, where W is N (0, 1) random variable. Via union bound, we have

P(|ηi| > x) ≤ O(exp(−Cd)) +P(
√
cd|W | > x) (53)

By setting x =
√
2cCd1−κ/

√
log d, we have

P(
√
cn|W | > x) ≤ O(exp(−Cd1−2κ/ log d)) (54)

Then

P(|ηi| > o(d1−κ)) ≤ O(exp(−Cd1−2κ/ log d)) (55)

Finally, we could reach

P( min
i:β∗

i>0
ξi − |ηi| ≤ c1dκ) ≤ O(s exp(−Cd1−2κ/ log d))

⇒ P( min
i:β∗

i>0
ωi ≤ c1dκ) ≤ O(s exp(−Cd1−2κ/ log d))

Therefore, with probability 1−O(s exp(−Cd1−2κ/ log d)), the magnitudes of
ωi with β∗i > 0 are uniformly at least of order d1−κ and for some c > 0, we have

n∑
i=1

1(ωk ≥ min
i:β∗

i>0
ωi) ≤

cp

d1−2κ−τ
≤ cnd2κ+τ−1

⇒
n∑
i=1

1(qlk
>
i ≥ min

i∈M∗
qlk
>
i ) ≤ cnd2κ+τ−1.

References

1. Fan, J., Lv, J.: Sure independence screening for ultrahigh dimensional feature space.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70(5),
849–911 (2008) 12, 13, 14


	Supplemental Material: KVT: k-NN Attention for Boosting Vision Transformers

