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In the main paper, we observed the phenomenon that most sub-networks (subnets)
of deep models perform rather poorly on perturbed images. We further demonstrate that
these weak subnets are highly correlated with the overall lack of robustness. Regarding
this correlation, we developed a training method which identifies and enhances weak
subnets (EWS) during training to improve the overall robustness. In the experiments, we
have shown that our EWS greatly improves the robustness against corrupted data of stan-
dard benchmarks, e.g., CIFAR-10-C, CIFAR-100-C, and ImageNet-C/P. Moreover, we
further highlight the flexibility of our EWS by combining it with adversarial training to
improve adversarial robustness. In the supplementary, we provide more implementation
details, complementary experimental results, and additional discussions.

We organize the supplementary as follows:

– In Section A, we provide a concrete example to show how the controller model
generates/finds weak subnets.

– In Section B, we provide more implementation details and results of improving
corruption robustness.

– In Section C, we demonstrate the flexibility of our EWS by elaborating how to apply
it to popular adversarial training methods, e.g., TRADES [15]. We also provide
more implementation details and results of improving adversarial robustness.

– In Section D, we provide additional ablations by compare different losses for en-
hancing subnets in our EWS. We also investigate the effectiveness of our controller
model in finding weak subnets.

A Generating Weak Subnets using the Controller Model

As mentioned in Section 3.2, following [11,4,5], the controller model takes an initial
hidden vector as input and then sequentially selects candidate paths/channels starting
from the first block/layer to the last one. Essentially, the subnet generation process is
a Markov Decision Process (MDP). In other words, we sequentially make decisions
and each decision relies on a previous one. To better illustrate this, we show a concrete
example of subnet generation using our controller model. In Figure I, we take a block
with 2 paths, each of which has 4 channels, for example. As illustrated in the figure, the
controller model first predicts the hidden vector as output and then exploits a softmax
classifier (i.e., a single full-connected layer) to compute the probability of degrading
the accuracy (see objective in Eqn. (1)) for all candidate paths. Based on the predicted
probability distribution, we perform sampling without replacement to determine the weak
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Fig. I: A concrete example of generating weak subnets using the controller model for
a block with 2 paths, each of which has 4 channels. Here, we consider the subset
width ρ = 0.5, i.e., selecting one path and two channels. As illustrated, the LSTM
based controller model takes an initial hidden state as input to predict the hidden
vector for path selection. Then, we exploit a full-connected (FC) layer followed by a
Softmax function to compute the probability of degrading the accuracy for two candidate
paths. A higher probability implies that selecting the corresponding path more likely to
constructs a weak subnet. After that, we perform sampling on the probability distribution
to select the weakest path, i.e., “ Path2 ”. As for channel selection, similarly, we take the
embedding of the selected path (i.e., “Path2”) and previous hidden state as inputs. We
also use a Softmax classifier to predict the probability distribution of candidate channels.
Considering the subnet width ρ = 0.5, we sample two channels without replacement
from the distribution, i.e., Channel1 and Channel3 .

paths, e.g., “ Path2 ” in Figure I. After that, in the next step, we then take the selected path
(represented by an embedding vector method, see details below) and the previous hidden
state as the inputs of LSTM to select weak channels (e.g., Channel1 and Channel3 ).
Finally, we combine all the selected paths and channels to obtain a whole subnet. Note
that different blocks/layers may have different numbers of paths/channels. Tackling this
issue, we initialize the number of neurons in the classifier with a sufficiently large value,
e.g., the maximum number of paths/channels across all the blocks/layers. In this way,
given a block/layer with C candidate paths/channels, we only focus on the first C output
logits when applying softmax and subsequently performing sampling.

Representations of Candidate Paths and Channels. To represent different paths
and channels, we follow [11,4,5] and build a learnable embedding vector for each of them.
In this paper, we use a 100-dimensional vector to represent each path or channel in the
full network. It is worth noting that, since we sample paths/channels without replacement
from the predicted probability distribution, our method allows to simultaneously select
multiple components (e.g., selecting two channels in Figure I). Note that we may obtain
a flexible number of decisions in each step. To guarantee that the input of LSTM
based controller has a fixed dimension, we compute the average embedding over all the
selected components as the input in the next step. For example, for the considered block
in Figure I, we compute the average embedding over both Channel1 and Channel3 as
the input for the decision making of the next block.



Enhancing Weak Subnets 3

Table I: Mean corruption error (mCE) on ImageNet-C for the vanilla data augmentation
scheme, AutoAugment, AugMix and DeepAugment. In all settings, EWS further reduces
mCE. We also show mCE for all corruptions individually. For example, EWS improves
over DeepAugment for all corruptions except snow.

Method mCE ↓ Noise Blur Weather Digital
Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Standard
Vanilla 76.5 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77

Dropout 76.5 77 79 80 78 90 79 87 77 77 67 58 70 84 75 76
EWS 75.1 75 76 77 73 87 77 79 80 73 65 58 73 83 74 75

AutoAugment [1]
Vanilla 72.7 69 68 72 77 83 80 81 79 75 64 56 70 88 57 71

Dropout 73.5 72 70 71 78 85 82 80 81 76 66 56 71 90 56 72
EWS 71.7 67 68 71 78 82 78 79 78 73 64 55 69 86 56 72

AugMix [8]
Vanilla 68.4 65 66 67 70 80 66 66 75 72 67 58 58 79 69 69

Dropout 69.8 67 65 68 73 82 69 67 74 75 68 59 64 81 67 72
EWS 67.5 64 63 63 70 81 65 66 72 70 64 57 63 79 64 70

DeepAugment [7]
Vanilla 60.4 49 50 47 59 73 65 76 64 60 58 51 61 76 48 67

Dropout 61.0 50 51 48 61 74 65 72 65 63 59 54 62 76 49 67
EWS 58.7 48 48 47 58 72 58 62 63 62 58 50 56 74 47 62

B More Details and Results of Improving Corruption Robustness

In the main paper, we have conducted extensive experiments to show the effectiveness
of EWS in improving corruption robustness. Here, we provide more details of the
experimental setups as well as additional results.

Detailed Experimental Settings. We consider two benchmark data sets, namely
CIFAR-10 and ImageNet. For the experiments on CIFAR-10, we train a ResNet-50 with
400 training epochs and use Nesterov momentum for optimization. We compare our
EWS with the vanilla training method and Dropout [12]. By default, we use random
cropping and horizontal flipping as data augmentation (we call it “standard” setting for
convenience). Moreover, we also apply our EWS on top of state-of-the-art augmentation
schemes, including AutoAugment [1] and AugMix [8]. When we apply our EWS on top
of AugMix, we set the augmentation severity to 5 and exploit JSD loss during training.
We set the initial learning rate to 0.1 and decrease it to 0.01 and 0.001 at the 1/3 and 2/3
of the total training process. For the hyper-parameters of EWS, we set K = 10, λ = 1,
and ρ = 0.7. When training the controller model, we follow the settings of [11,4] and use
policy gradient based on a single sampled subnet at each iteration. As for the experiments
on ImageNet, following [8], we train a ResNet-50 model for 180 epochs, with 5 epochs
for warmup. In addition to AutoAugment and Augmix, we consider DeepAugment [7]
using the hyper-parameters proposed by the authors. We adopt the same learning rate
decay strategy as the experiments on CIFAR-10.

More Comparison Results. As mentioned in Tables 2 and 3, we omit the results of
Dropout on top of AutoAugment, AugMix, and DeepAugment. In the supplementary, we
provide the full results of these tables. As shown in Tables I and II, our EWS consistently
outperforms Dropout across different augmentation schemes. The main reasons lie in
the differences between our EWS and Dropout. First, they have different strategies of
selecting subnets. Dropout entirely drops connections at random to select subnets. In
contrast, EWS exploits the controller model to select weak subnets which may contribute
to the poor robustness of the full network. Second, Dropout directly minimizes the
cross-entropy loss w.r.t. the selected subnet. Unlike Dropout, our EWS enhances the
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Table II: Mean flip rate (mFR) on ImageNet-P, testing stability of predictions on (cor-
rupted) videos. In line with Table I, EWS improves consistently over all considered data
augmentation schemes and nearly all corruption types.

Method mFR ↓ Noise Blur Weather Digital
Gaussian Shot Motion Zoom Snow Bright Translate Rotate Tilt Scale

Standard
Vanilla 58.0 59 58 64 72 63 62 44 52 57 48

Dropout 57.8 62 59 65 52 48 58 63 57 44 72
EWS 56.1 62 55 62 49 45 52 64 52 42 71

AutoAugment [1]
Vanilla 51.7 50 45 57 68 63 53 40 44 50 46

Dropout 53.3 53 49 54 67 67 55 44 48 51 47
EWS 50.4 48 44 53 70 62 52 36 45 49 45

AugMix [8]
Vanilla 37.4 46 41 30 47 38 46 25 32 35 33

Dropout 39.1 49 43 35 45 35 49 33 37 31 34
EWS 36.6 45 39 31 42 33 43 39 35 27 32

DeepAugment [7]
Vanilla 32.1 29 28 25 41 31 43 27 31 33 33

Dropout 33.8 31 30 27 42 30 44 30 33 36 35
EWS 30.9 28 26 25 40 28 41 26 30 32 33

subnet while training the full network. The improved performance over Dropout, in
Tables I and II, verifies our idea of enhancing weak subnets.

In addition, we also compare with a pruning based method CARDs [3] that yields
better results than ours on CIFAR-10-C. Note, however that [3] uses different training
settings from ours and its better results mainly stem from a better baseline model (11.10%
vs 13.57%, error rate). Since the authors did not release the code, we cannot directly use
their settings to evaluate our EWS. Nevertheless, we highlight that our EWS yields a
larger relative improvement than CARDs (2.77% vs 1.50%). More critically, EWS is
complementary to CARDs since we can provide a better dense model for pruning.

Table III: Clean and corruption error on CIFAR-10(-C) and CIFAR-100(-C). We consider
a ResNet-50 trained with AugMix as the baseline. EWS obtains a larger improvement of
robustness than CARDs [3]. This improvement is also observed on CIFAR-100.

Method
Error on CIFAR-10 (%) Error on CIFAR-100 (%)
Clean ↓ Corruption ↓ Clean ↓ Corruption ↓

Baseline of [23] 4.10 11.10 (-0.00)
Not Reported

CARDs [23] 3.60 9.60 (-1.50)
Baseline (Ours) 4.35 13.57 (-0.00) 22.45 38.28

EWS 3.76 10.80 (-2.77) 21.81 35.24 (-3.04)

C More Details of Combining EWS with Adversarial Training

In the main paper, we highlight the flexibility of our EWS by combining it with adversar-
ial training. It is worth noting that our method can easily generalize other variants such
as TRADES [15], as will be elaborated in Section C.1. Then, we provide more detailed
experimental settings and additional results in Section C.2.
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C.1 Combining EWS with TRADES [15]

As mentioned in Section 3.4, we optimize the following problem for the vanilla adver-
sarial training method [9]:

min
w

E(x,y)∼D [L(x′, y)] where x′= argmax
∥x−x′∥p≤ϵ

LCE(M(x′), y).

Following TRADES, we only need to slightly modify the objective to apply our EWS
by 1) introducing an additional CE loss on clean data; and 2) replacing CE loss with
KL divergence loss to generate adversarial samples. Letting γ be a hyperparameter, we
optimize a loss on adversarial images L(x′, y) and a loss on clean images Lc(x, y):

min
w

E(x,y)∼D [L(x′, y)+γLc(x, y)] where x′= argmax
∥x−x′∥p≤ϵ

LKL(M(x′),M(x)).

For both adversarial images x′ and clean images x, we introduce an additional distillation-
based KL divergence loss to enhance weak subnets. Formally, the losses on adversarial
and clean examples become

L(x′, y) = LKL(M(x′),M(x)) + λLKL

(
α(x′),M(x′)

)︸ ︷︷ ︸
enhance subnet on x′

Lc(x, y) = LCE(M(x), y) + λLKL

(
α(x),M(x)

)︸ ︷︷ ︸
enhance subnet on x

C.2 More Experimental Settings and Results

In this section, we provide the detailed experimental settings and additional comparison
results of our EWS for improving adversarial robustness.

Detailed Experimental Settings. We apply our EWS on top of three popular adver-
sarial training variants on CIFAR-10, including AT [9], TRADES [15] and AWP [13].
Note that AWP is often applied to existing training approaches to further boost the
performance. Here, we seek to highlight the improved adversarial robustness over both
the vanilla AT and TRADES, as well as their AWP variants. In this experiments, we
set λ = 0.1. As for TRADES, we set γ = 1/6. We consider three deep models, namely
PreAct ResNet-18 [6], WideResNets28/34 with the width factor of 10 [14]. During
training, we employ early stopping and train the models for 200 epochs. We adopt the
SGD optimizer using a batch size of 128, a step-wise learning rate decay set initially at
0.1 and divided by 10 at epochs 100 and 150, and weight decay 5× 10−4. Here, we use
projected gradient descent (PGD) with p = ∞ and ϵ = 8/255 with 10 iterations.

Comparisons of Training Convergence. In the paper, we have shown the improve-
ment obtained by EWS on top of AT and TRADES in Table 4. Here, we further compare
the convergence curves in Figure II. Clearly, for both AT and TRADES, no matter with or
without AWP, our EWS (blue and red lines) consistently yields an obvious performance
improvement in terms of robust accuracy against PGD-20. These results demonstrate the
effectiveness of our EWS in improving adversarial robustness.
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(a) Comparisons based on AT.
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(b) Comparisons based on TRADES.

Fig. II: Comparisons of convergence curves in terms of adversarial robust error on
CIFAR-10. Left: Training curves obtained with and without EWS based on AT. Right:
Training curves obtained with and without EWS based on TRADES. Clearly, our EWS
consistently improves adversarial robustness over both the vanilla AT and TRADES as
well as their AWP variants.

Comparisons with More Adversarial Training Variants. We provide more com-
parisons with a recent adversarial training method LBGAT [2] and evaluate models on
both CIFAR-10 and CIFAR-100. For fair comparisons, we follow the LBGAT paper to
train a WRN-34-10 model for 100 epochs on top of TRADES. As shown in Table IV,
our EWS yields better adversarial robustness and clean performance (i.e., lower error)
than LBGAT on both CIFAR-10 and CIFAR-100.

Table IV: Clean and AutoAttack (AA) error on CIFAR datasets. We consider a WRN-34-
10 equipped with TRADES as the baseline. For fair comparisons, we follow the settings
of LBGAT and retrain our EWS models for 100 epochs.

Method
Error on CIFAR-10 (%) Error on CIFAR-100 (%)
Clean ↓ AA ↓ Clean ↓ AA ↓

Baseline 15.08 47.36 (-0.00) 43.50 73.23 (-0.00)
LBGAT 18.02 46.86 (-0.50) 39.57 70.66 (-2.57)

EWS 14.56 46.62 (-0.74) 39.25 70.08 (-3.15)

Adversarial training with more tricks. Actually, our setup closely follows the
recommendations of [10]. In fact, our vanilla adversarial training baseline obtains com-
parable robustness to [59] (52.53% vs 52.19% on AA, WRN-34-10) without label
smoothing or Softplus, which we avoided in order to disentangle our EWS from other
regularizers. When incorporating these two tricks, as shown in Table V, EWS still yields
a promising improvement of 0.77%.

Table V: Clean and AutoAttack (AA) error on CIFAR-10. We apply EWS on top of AT
to train a WRN-34-10 model. “*” denotes the results using label smoothing and Softplus.

Method Baseline EWS Baseline* EWS*
Clean ↓ 14.74 14.33 13.58 13.35
AA ↓ 47.47 46.58 (-0.89) 46.81 46.04 (-0.77)
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D More Ablations and Discussions

Comparison of Different Losses for Enhancing Subnets. In our EWS, we exploit a
Kullback-Leibler (KL) divergence loss LKL

(
α(x),M(x)

)
to enhance weak subnets. To

achieve this goal, we can also consider other forms of loss function. For example, we
may directly minimize the cross-entropy (CE) loss of the subnet, i.e., LCE

(
α(x), y

)
.

Here, we empirically compare these two losses on CIFAR-10 dataset. As shown in
Table VI, since both CE and KL losses enhance weak subnets, they yield better results
than the vanilla model trained without EWS. These results verify our idea of enhancing
weak subnets. More critically, the KL loss outperforms the CE loss in terms of both
clean error and corruption error. As argued in [16], this might be because the KL loss
treats the output of the full network M(x) as a kind of soft label, making optimization
easier. Thus, we propose to use the KL loss to enhance weak subnets.

Table VI: Comparison of different forms of the distillation loss in terms of clean and
corrupted test error on CIFAR-10(-C). We compare the Kullback-Leibler (KL) divergence
loss and cross-entropy (CE) loss. Clearly, the KL loss outperforms the CE loss in terms
of both clean error and corruption error.

Loss for Enhancing Subnets Clean Error (%) Corruption Error (%)
Vanilla (w/o EWS) 5.32 26.46
LCE(α(x), y) 4.73 25.81

LKL(α(x),M(x)) 4.12 24.94

Whether the controller learns well? We find that our controller converges well and
is effective in finding weak subnets. Based on our pretrained ImageNet model with the
standard augmentation, we compare the accuracy of 1K subnets (with ρ=0.7) sampled
by our controller model and the random sampling strategy. In practice, our controller πθ

clearly identifies weaker subnets with significantly lower accuracy 30.5±0.9% than those
randomly sampled ones with 43.8±1.7%. These results demonstrate the effectiveness of
our method in finding particular weak subnets.
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