
Appendix: Out-of-Distribution Detection with
Semantic Mismatch under Masking

A Training Process of Generative Model

A.1 Objective Functions

We implement the adversarial loss with a U-net based discriminator [4], denoted as
DUnet. DUnet contains two components: DUnet

enc and DUnet
dec . DUnet

enc ∈ R provides
the real/fake decision as a scalar. While DUnet

dec ∈ RI generates a per-pixel
real/fake map for the input image, where I = h× w indicates the scale of input
image. Compared with the vanilla discriminator, DUnet not only determines
whether the input image is realistic or fake, but also tries to locate the fake
parts. Empowered by the per-pixel real/fake map, our generative model can be
optimized to focus more on structural semantic features and synthesize coherent
image both globally and locally as desired. We formulate the adversarial loss for
the discriminator in Eq. (1)-Eq. (3):

LDUnet = LDUnet
enc

+ LDUnet
dec

, (1)

LDUnet
enc

= −Ex[logD
Unet
enc (x, y)]− Ex[log(1−DUnet

enc (x′, y))], (2)

LDUnet
dec

= −Ex

[∑
I

logDUnet
dec (x, y)

]
− Ex

[∑
I

log(1−DUnet
dec (x′, y))

]
, (3)

where LDUnet and LDUnet
dec

are the loss functions for DUnet
enc and DUnet

dec , respectively.
Correspondingly, the adversarial loss applied on the generator is as follow:

LG = −Ex

[
logDUnet

enc (x′, y)+
∑
I

logDUnet
dec (x′)

]
+ ℓ1(x, x

′)+ ℓ2(x, x
′)+SSIM(x, x′).

(4)

A.2 Training Process

Encoder. We adopt a four-layer convolutional neural network as the feature
extractor for Encoder, then two fully-connected layers are employed to output µ
and Σ. The dimension of latent variable z is set at 128.

Decoder. We employ the generator architecture proposed in [1] as our Decoder’s
backbone, then reset the input size to (3, 32, 32), and the channel multiplier
to 32, which represents the number of units in each layer [1]. The input latent
variable size equals 128.
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Discriminator. We build up DUnet based on the implementation of [4], changing
the channel multiplier to 32.

All three models mentioned above are trained from scratches in an end-to-end
way. We use Adam [3] as the optimizer, with β1 = 0, β2 = 0.999, learning rate
fixed at 5 · 10−5. The batch size is set at 96. We detail the training process of
our generative model in Algorithm 1.

Algorithm 1: Training Framework of G
Input :Training data X = {x}N , Y = {y}N , the random mask M
Output :The parameters of E, D

1 for some training iterations do
2 x′ = G(M(x), y) = D(E(M(x), y));
3 Feed (x, y) and (x′, y) into DUnet, respectively;
4 Optimize D and E for LG(Eq. (4)) and LKLD;
5 Optimize DUnet for LDUnet (Eq. (1));
6 end
7 return E, G

B Quantitative Results

In this section, we provide more experimental results on Cifar-10 and Cifar-100
benchmarks, respectively. In addition, to further validate the effectiveness of the
proposed conditional binary classifier (Cb) in anomalous scoring model, we detail
its performance on each OOD dataset by varying the type of Cb, i.e. trained
with/without external OOD data.

B.1 More Results on Cifar-10 Benchmarks

Table 1 presents the comparison of our MoodCat trained with external unlabeled
data sourcing from Tiny-ImageNet, and baselines implemented with extra data.
We conclude that MoodCat outperforms or at least on par with baselines on
Cifar-10 benchmarks.

Additionally, in Table 1 we observe that OE and UDG achieve a much better
performance on Svhn than on other OOD datasets. In fact, most street number
images contained in Svhn have relatively flat backgrounds, as shown in Fig. 3
and Fig. 4’s Svhn columns. In this case, OE and UDG can achieve excellent
performance by overfitting to this specific low-level feature of Svhn instead
of considering the semantic level shift caused by Svhn. Thus, when encounter
a more challenging case, e.g., Cifar-100, which has the same data source as
Cifar-10 but different semantic meanings, both OE and UDG suffer a noticeable
performance degradation. In contrast, MoodCat identifies OOD according to
their semantic mismatch, thus, remains stable performance on various OODs.
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Table 1: OOD Detection Performance on Cifar-10 benchmarks, MoodCat
trained with external OOD data. All the values are in percentages. ↑/↓ indicates
higher/lower value is better. The best results are in bold.

Detection
Methods OOD

FPR@
TPR95%

↓

AUROC
↑

AUPR
In
↑

AUPR
Out
↑

Classification
Accuracy

↑

MCD

Svhn 60.27 89.78 85.33 94.25 90.56
Cifar-100 74.00 82.78 83.97 79.16 90.56

Tiny-ImageNet 78.89 80.98 85.63 72.48 87.33
Texture 83.92 81.59 90.20 63.27 90.56

Lsun 68.96 84.71 85.74 81.50 90.56
Places365 72.08 83.51 69.44 92.52 88.51

Mean 73.02 83.89 83.39 80.53 89.68

OE

Svhn 20.88 96.43 93.62 98.32 91.87
Cifar-100 58.54 86.22 86.17 84.88 91.87

Tiny-ImageNet 58.98 87.65 90.09 82.16 89.27
Texture 51.17 89.56 93.79 81.88 91.87

Lsun 57.97 86.75 87.69 85.07 91.87
Places365 55.64 87.00 73.11 94.67 90.99

Mean 50.53 88.93 87.55 87.83 91.29

UDG

Svhn 13.26 97.49 95.66 98.69 92.94
Cifar-100 47.20 90.98 91.74 89.36 92.94

Tiny-ImageNet 50.18 91.91 94.43 86.99 90.22
Texture 20.43 96.44 98.12 92.91 92.94

Lsun 42.05 93.21 94.53 91.03 92.94
Places365 44.22 92.64 87.17 96.66 91.68

Mean 36.22 93.78 93.61 92.61 92.28

Ours

Svhn 24.27 95.93 92.98 98.05 95.02
Cifar-100 39.92 91.45 91.54 91.73 95.02

Tiny-ImageNet 32.41 93.34 93.63 93.41 92.54
Texture 6.86 98.69 99.29 97.71 95.02

Lsun 33.31 93.40 93.85 93.22 95.02
Places365 35.51 92.77 82.25 94.82 93.87

Mean 28.71 94.27 92.26 94.82 94.42

B.2 More Results on Cifar-100 benchmarks

Table 2 shows the comparison of our MoodCat trained without external OOD
data, and baselines are implemented under the same setting. We conclude that
MoodCat achieve the state-of-the-art performance on Cifar-100 benchmarks.

B.3 Ablation Study on Conditional Binary Classifier

To study how much the proposed Conditional Binary Classifier (Cb) contributes
to MoodCat, we conduct several ablations on Cb. More specific, we consider
three configurations: Cb, Cb(Tiny-ImageNet), and Cb+ Cb(Tiny-ImageNet),
where Cb referring to the Conditional Binary Classifier trained only on In-D
samples, Cb(Tiny-ImageNet) denoted the Conditional Binary Classifier using
Tiny-ImageNet as extra training data and Cb+ Cb(Tiny-ImageNet) indicating
that Cb and Cb (Tiny-ImageNet) are used in a cascade way.

Table 3 and Table 4 demonstrate Cb’s performance on Cifar-10 and Cifar-
100 benchmarks across six OOD datasets, respectively. The main takeaways



4 Y. Yang et al.

Table 2: OOD Detection Performance on Cifar-100 as In-D, MoodCat training
without external data. All the values are in percentages. ↑/↓ indicates higher/lower
value is better. The best results are in bold.

Detection
Methods OOD

FPR@
TPR95%

↓

AUROC
↑

AUPR
In
↑

AUPR
Out
↑

Classification
Accuracy

↑

ODIN

Svhn 90.33 75.59 65.25 84.49 76.65
Cifar-10 81.28 77.90 79.93 73.39 76.65

Tiny-ImageNet 82.74 77.58 86.26 61.38 69.56
Texture 79.47 77.92 86.69 62.97 76.65

Lsun 80.57 78.22 86.34 63.44 76.10
Places365 76.42 80.66 66.77 89.66 77.56

Mean 81.89 77.98 78.54 72.56 75.53

EBO

Svhn 78.23 83.57 75.61 90.24 76.65
Cifar-10 81.25 78.95 80.01 74.44 76.65

Tiny-ImageNet 83.32 78.34 87.08 62.13 69.56
Texture 84.29 76.32 85.87 59.12 76.65

Lsun 84.51 77.66 86.42 61.40 76.10
Places365 78.37 80.99 68.22 89.60 77.56

Mean 81.66 79.31 80.54 72.82 75.53

Ours

Svhn 58.16 87.38 78.25 93.81 76.65
Cifar-10 54.31 85.91 86.27 85.91 76.65

Tiny-ImageNet 55.33 86.95 87.55 86.67 69.56
Texture 46.70 89.20 93.48 83.28 76.65

Lsun 53.43 87.98 88.82 87.32 76.10
Places365 54.20 87.41 71.68 95.78 77.56

Mean 53.69 87.47 84.34 88.80 75.53

are: (1) Cb or Cb(Tiny-ImageNet) alone can achieve acceptable performance;
(2) Cb(Tiny-ImageNet) outperforms Cb, which means that adding external
unlabeled data into the training process can improve the detection ability; (3)
coupling scorers, here Cb+ Cb(Tiny-ImageNet), usually leads to a better detec-
tion capability than that of any single scorer within the coupling. Above findings
align with what we have reported in our paper, and further indicate that Cb plays
a key role in the proposed anomalous scoring model.

B.4 Ablation Study on Masking Style

We try several masking forms as exemplified in Fig. 1, and summarize correspond-
ing experimental results in Table 5. Experiments show the randomly masking
outperforms other strategies.

From the first three rows in Table 5, we notice that masking can indeed help
with performance improvement. However, as we can observed from the second
column in Fig. 1, a fixed mask with high ratio (e.g., 0.3) can lead the synthesis to
loss fine details. In addition, we implement a patched masking like [2]. However,
such masking style may break the continuity within the image, thus lead to low
quality on the synthesis for In-D. We also try a non-masking strategy, shuffling,
but it further break the continuity of the image. Finally, we identify that the
most effective strategy is randomly masking. As can be seen, both the quality for
synthesis in Fig. 1 and overall performance in Table 5 outperform other strategies.
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Table 3: Conditional Binary Classifier Performance on Cifar-10 benchmarks. All
the values are in percentages. ↑/↓ indicates higher/lower value is better. The best
results are in bold. Cb and Cb(Tiny-ImageNet) indicates the proposed model
trained without/with external unlabeled Tiny-ImageNet data, respectively.

Anomalous
Scoring Model OOD

FPR@
TPR95%

↓

AUROC
↑

AUPR
In
↑

AUPR
Out
↑

Cb

Svhn 48.01 86.85 75.20 94.34
Cifar-100 42.80 89.13 88.58 89.85

Tiny-ImageNet 40.54 89.78 89.27 90.42
Texture 42.54 87.47 91.33 83.85

Lsun 43.76 90.15 90.18 90.17
Places365 43.49 89.40 72.82 96.65

Mean 43.52 88.80 84.56 90.88

Cb (Tiny-ImageNet)

Svhn 39.47 91.49 83.58 96.23
Cifar-100 37.43 91.31 91.02 91.73

Tiny-ImageNet 31.92 93.10 93.01 93.34
Texture 25.74 94.25 96.17 91.89

Lsun 32.74 93.55 93.83 93.40
Places365 34.45 92.78 81.48 97.71

Mean 33.63 92.75 89.85 94.05

Cb+

Cb (Tiny-ImageNet)

Svhn 39.44 91.50 83.60 96.25
Cifar-100 36.64 91.40 91.15 91.85

Tiny-ImageNet 31.86 93.12 93.04 93.38
Texture 25.37 94.34 96.24 92.00

Lsun 32.67 93.55 93.84 93.41
Places365 34.42 92.79 81.51 97.72

Mean 33.40 92.78 89.90 94.10

B.5 Experiments on Advanced Classifier architectures

We empower UDG with wider (WRN28) and deeper (DenseNet) classifier. Table 6
shows the comparison results with Cifar-100 as In-D samples using WRN28
and DenseNet architecture.

As can be observed from the table, while UDG performs better on these
architectures when compared to ResNet18, it still lags far behind our results.

C Qualitative Results

In this section, we demonstrate several batches of visual examples of MoodCat
including both In-D and OOD cases.

In-D samples with their syntheses. Fig. 2 visualizes In-D samples and their
corresponding syntheses from Cifar-10 and Cifar-100, respectively. Note that
we expect the syntheses to resemble the input images for In-D samples with
correct labels.

OOD samples with their syntheses. Fig. 3 visualizes OOD samples from
six datasets, which are employed in the Cifar-10 benchmarks, along with their
corresponding masked images and the syntheses generated by our MoodCat.
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Table 4: Conditional Binary Classifier Performance on Cifar-100 benchmarks. All
the values are in percentages. ↑/↓ indicates higher/lower value is better. The best
results are in bold. Cb and Cb(Tiny-ImageNet) indicates the proposed model
trained without/with external unlabeled Tiny-ImageNet data, respectively.

Anomalous
Scoring Model

OOD
FPR@

TPR95%
↓

AUROC
↑

AUPR
In
↑

AUPR
Out
↑

Cb

Svhn 65.18 81.32 65.61 91.35
Cifar-10 55.11 85.75 85.78 85.99

Tiny-ImageNet 54.69 86.27 86.26 86.43
Texture 56.63 83.30 88.40 77.17

Lsun 54.77 86.96 87.20 86.83
Places365 54.18 86.36 67.60 95.54

Mean 56.76 84.99 80.14 87.22

Cb (Tiny-ImageNet)

Svhn 54.61 86.30 74.30 93.80
Cifar-10 49.82 87.57 87.74 87.69

Tiny-ImageNet 45.86 89.38 89.48 89.43
Texture 48.24 87.16 91.55 81.83

Lsun 44.43 90.07 90.25 90.00
Places365 46.89 88.93 72.99 96.41

Mean 48.31 88.24 84.39 89.86

Cb+

Cb (Tiny-ImageNet)

Svhn 54.31 86.30 74.30 93.81
Cifar-10 49.62 87.60 87.77 87.77

Tiny-ImageNet 45.46 89.39 89.48 89.48
Texture 47.18 87.37 91.71 82.17

Lsun 44.01 90.08 90.26 90.04
Places365 46.73 88.95 73.02 96.43

Mean 47.89 88.28 84.42 89.95

In Fig. 4, the In-D dataset changes to Cifar-100. We employed OOD samples
sourced from the same six OOD datasets as that of Cifar-100 benchmarks in
Fig. 4. Note that, when OOD is fed to MoodCat, we prefer to have a clear
distinction between the synthesis generated by MoodCat and the input image.

D Further Discussion

D.1 Computational Cost Analysis

MoodCat is designed as an auxiliary model, which works in parallel with the
classifier. This auxiliary architecture ensures MoodCat a plug-and-play model
without compromising classifier’s accuracy. Meanwhile, MoodCat can satisfy
high performance requirements in the context of OOD detection. However, as
an auxiliary model, MoodCat inevitably introduces extra computation and
memory costs.

Table 7 summarizes the computational cost of MoodCat, and that of ODIN,
i.e., ResNet18, and that of widely adopted classifier architectures, ResNet18,
WResNet28, WResNet101 in terms of number of multiply-add operations (MAC),
and number of model’s parameters (Params). As can be observed, the cost of basic
version of MoodCat, i.e. Cb, E, D, is relatively small, Params 4.552M, MACs
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In-D image
(CIFAR10)

In-D Synthesis

Without Mask Fixed High Ratio Fixed Low Ratio RandomlyPatched Shuffling

OOD image
(CIFAR100) 

OOD Synthesis

Fig. 1: Visualization of different masking styles and their impacts on synthesized
images. The semantic label is assigned as “car” for both the In-D image and
the OOD image. We set the masking ratio as 0.3 for “Fixed High Ratio” and
“Patched”, 0.1 for “Fixed Low Ratio”, and that of “Randomly” varies from 0.1 to
0.3. MoodCat employs the Randomly masking style.

Table 5: Ablation studies on different masking styles. The results are obtained by
setting Cifar-10 as In-D, Cifar-100 as OOD, with MoodCat trained on extra
Tiny-ImageNet acting as OOD. The bolded values are the highest performance.
All the values are in percentages. ↑/↓ indicates higher/lower value is better.

Mask Style FPR@TPR95% ↓ AUROC ↑ AUPR-In ↑ AUPR-Out ↑
Without Masking 40.53 91.26 91.25 91.55
Fixed Low Ratio 40.20 91.33 91.32 91.59
Fixed High Ratio 39.57 91.56 91.48 91.87

Patched 39.81 91.34 91.33 91.64
Shuffling 44.14 88.73 88.15 89.18

Randomly 39.48 91.66 91.65 91.95
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Masked
sample

Masked
sample

In-D
(CIFAR10)

In-D
(CIFAR10)

Synthesis
for groundtruth

Synthesis
for groundtruth

Masked
sample

In-D
(CIFAR100)

Synthesis
for groundtruth

Masked
sample

In-D
(CIFAR100)

Synthesis
for groundtruth

Fig. 2: Visualization results of MoodCat with Cifar-10/ Cifar-100 as In-D. We
exemplify several In-D samples in each panel’s first row, following the intermediate
masked version, and the last row presents their corresponding synthetic version
generated by MoodCat with the groundtruth labels.
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CIFAR100LSUNTinyImageNet Texture SVHN Places365

OOD

Masked
sample

Synthesis
for automobile

OOD

Masked
sample

Synthesis
for automobile

OOD

Masked
sample

Synthesis
for frog

Fig. 3: OOD visualization results of MoodCat trained on Cifar-10. In each panel,
we exemplify OOD samples across six OOD datasets in the first row, following
is the intermediate masked version, the last row presents their corresponding
synthetic version generated by MoodCat with the given semantic label, the
same below.
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Table 6: Experiments on advanced model architectures. Performance comparison
with UDG on Cifar-100 benchmarks. For our method, we use the results in
the main paper with a ResNet18 classifier. We give advantage to UDG, which is
reimplemented with deeper/wider WideResNet-28, DenseNet, while MoodCat’s
parameter number is equivalent to ResNet18. Bold are the best.

Architecture OOD dataset FPR@TPR95 ↓ AUROC ↑ AUPR In ↑ AUPR Out ↑

W
id

eR
es

N
et

28
U

D
G

Svhn 66.76 85.29 76.14 92.33
Cifar-10 82.35 76.67 78.52 72.63

Tiny-ImageNet 78.91 79.04 87.00 65.06
Texture 73.62 79.01 85.53 67.08

Lsun 77.04 79.79 87.49 66.93
Places365 72.25 81.49 66.72 90.65
Mean±Std 75.16±5.49 80.22±2.93 80.23±8.11 75.78±12.44

D
en

se
N

et
U

D
G

Svhn 80.67 75.54 75.65 70.99
Cifar-10 85.87 74.06 77.16 68.90

Tiny-ImageNet 82.36 76.81 85.76 61.56
Texture 76.32 78.93 63.79 89.02

Lsun 79.12 78.91 66.83 88.23
Places365 73.59 76.27 82.76 65.20
Mean±Std 79.66±4.36 76.75±1.92 75.33±8.64 73.98±11.79

M
o
o
d
C

at
(O

u
rs

,
R

es
18

) Svhn 51.6 88.99 80.89 94.81
Cifar-10 50.17 87.76 88.18 87.79

Tiny-ImageNet 46.07 89.42 89.73 89.28
Texture 42.22 90.56 94.43 85.13

Lsun 47.85 89.96 90.33 89.23
Places365 47.72 89.3 74.83 96.48
Mean±Std 47.61±3.29 89.33±9.95 86.4±7.19 90.45±4.33

0.408G, when compared to that of ResNet18 (Params 11.174M, MAC 0.556G) and
other widely adopted classifier architectures, e.g., WResNet28 (Params 36.479M,
MACs 5.248G). Note that the performance of basic MoodCat, whose anomalous
scoring model only contains Cb, is still acceptable as shown in Table 3 and Table 4.
Thus, if the computational cost is a real concern in the practice, the deployer
can adopt MoodCat with Cb alone as the anomalous scorer. For the MoodCat
supported by IQA models, e.g., LPIPS, DISTS, the total computational cost
is comparable to that of WResNet28 or WResNet101, yet slightly larger than
ResNet18. Thus, if the detection ability is put at the first place, one can explore to
enhance the anomalous scoring model by employing extra IQA models. Actually,
there is a trade-off between the OOD detection performance and computational
cost of MoodCat, and our anomalous scoring model leaves design space for the
deployer to explore according to the real-world application.

Table 7: Computational and memory costs of MoodCat and its components.

Model E D Cb
MoodCat

basic
LPIP

/DISTS
MoodCat

ResNet
18

WResNet
28

WResNet
101

Params (M) 0.460 3.821 0.271 4.552 14.715 33.982 11.174 36.479 126.89
MACs (G) 0.0049 0.297 0.105 0.408 0.630 1.718 0.556 5.248 22.84
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CIFAR10LSUNTinyImageNet Texture SVHN Places365

OOD

Masked
sample

Synthesis
for apple

OOD

Masked
sample

Synthesis
for fish

OOD

Masked
sample

Synthesis
for orange

Fig. 4: OOD visualization results of MoodCat trained on Cifar-100.

D.2 Failure Cases

Fig. 5 demonstrates some of MoodCat’s failure cases. In Fig. 5 (a), the OOD
samples sourcing from Cifar-100, are falsely distinguished as In-D samples
(Cifar-10). As can be seen, OODs and their synthetic images resemble to each
other for same degree. For example, the first column’s “cattle” partly contains
some features such as legs and the tail, which match the given semantic label
“horse” well, resulting in the synthesis having high image quality while resembling
to the input image, therefore leading to the final misjudgement.

Fig. 5 (b) presents several False Negative samples, i.e., samples sourcing from
In-D are wrongly predicted as OOD samples. As can be observed, the In-D
sample with rare characteristics, e.g. a blue fog, an ostrich with its head down,
are more likely to be misclassified as OOD. In addition, if the mask happens
to cover the object completely, MoodCat can hardly recover the input image
without necessary features, as the cases shown in the third and fourth columns of
Fig. 5 (b). Moreover, an poor semantic meaning in the In-D sample itself can lead
to the final misclassification. For example, in the last column of Fig. 5 (b), even
humans can hardly tell what is depicted in the input image, let alone MoodCat.



12 Y. Yang et al.

fog dog ship shiphorse

OOD
(CIFAR100)

Masked
sample

Synthesis

(a) False Positive

In-D
(CIFAR10)

Masked
sample

Synthesis

fog bird ship dog airplane
(b) False Negative

Fig. 5: Failure cases of MoodCat. We exemplify both False Positive and False
Negative failure cases in (a) and (b), respectively. (a) False Positive failure cases,
where samples come from OOD dataset (Cifar-100) are falsely identified as
In-D samples (Cifar-10). (b) False Negative failure cases, where samples belong
to In-D are wrongly flagged as OOD samples. The predicted label for each input
sample are provided under the corresponding synthetic image.
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