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Abstract. This paper aims to explore the feasibility of neural archi-
tecture search (NAS) given only a pre-trained model without using any
original training data. This is an important circumstance for privacy pro-
tection, bias avoidance, etc., in real-world scenarios. To achieve this, we
start by synthesizing usable data through recovering the knowledge from
a pre-trained deep neural network. Then we use the synthesized data and
their predicted soft labels to guide NAS. We identify that the quality of
the synthesized data will substantially affect the NAS results. Partic-
ularly, we find NAS requires the synthesized images to possess enough
semantics, diversity, and a minimal domain gap from the natural im-
ages. To meet these requirements, we propose recursive label calibration
to encode more relative semantics in images, as well as regional update
strategy to enhance the diversity. Further, we use input and feature-level
regularization to mimic the original data distribution in latent space and
reduce the domain gap. We instantiate our proposed framework with
three popular NAS algorithms: DARTS, ProxylessNAS and SPOS. Sur-
prisingly, our results demonstrate that the architectures discovered by
searching with our synthetic data achieve accuracy that is comparable
to, or even higher than, architectures discovered by searching from the
original ones, for the first time, deriving the conclusion that NAS can
be done effectively with no need of access to the original or called natu-
ral data if the synthesis method is well designed. Code and models are
availabel at: https://github.com/liuzechun/Data-Free-NAS.

1 Introduction

Neural architecture search (NAS) has demonstrated substantial success in au-
tomating the design of neural networks [35,1,21,20,14,26,11]. A typical NAS algo-
rithm usually involves three core components: a search space, a search algorithm,
and a set of training data. The majority of researches in NAS focuses on search
space design [15,30] or exploring superior search algorithms [4,27]. While, in
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this study, we investigate the feasibility of performing neural architecture search
without accessing the original training data. We assume that we only have a
pre-trained model, and the original dataset is not accessible during the neural
architecture search process. This is a common and useful circumstance that is
needed to be solved urgently for privacy protection, bias avoidance, etc. We call
this data-free NAS, a practical task for application scenarios in which privacy or
logistical concerns restrict sharing of the original training data but permit shar-
ing of a model trained by such data for NAS. Also, models are usually smaller in
size than large-scale datasets, which makes them easier to exchange and store.

Conducting NAS without data is challenging. Traditional NAS relies on the
input images to train and rank different architectures. A natural image dataset
contains semantic patterns and inter-class relationships, which are helpful in
guiding architecture search. For scenarios where the original data is not accessi-
ble, we first need to synthesize an image dataset from the model pre-trained on
the original data, and use such a synthesized dataset for conducting architecture
search. This, however, raises a crucial question: how do we synthesize an image
dataset that has the important search-relevant attributes or properties of the
original data for effective NAS without using any of the original data?

Currently, data-free NAS is an under-explored task that requires unique un-
derstanding of the particular synthesized data. In this work, we empirically iden-
tify three attributes that NAS in data-free scenario requires the synthesized im-
ages to have: (i) rich semantic information, (ii) sufficient image diversity, and
(iii) a minimized domain gap with the original data. Rich semantic information
ensures the classification task on the synthesized images is as complex as that of
the original training images. High image diversity prevents the NAS algorithms
from overfitting to the synthesized data and producing trivial solutions. A mini-
mized domain gap makes certain that architectures found by searching over the
synthesized data also can perform well on the original data.

To fulfill these requirements, we propose a novel image synthesis method for
promoting the effectiveness of architecture search procedure. As shown in Fig. 1,
we synthesize the images using gradient descent with respect to class labels. We
observe that conducting NAS on data synthesized from one-hot labels leads to
overfitting and the models searched by the NAS algorithms fail to generalize to
the original training data. This issue is caused by one-hot labels’ limitation of be-
ing unable to capture the full set of semantic relationships between classes in the
original training data. For instance, the synthesized images will be confidently
classified as a single class (e.g., “coffee mug”) but with no trace of similarity
to other relevant classes (e.g., “cup”). To avoid this, we propose recursive label
calibration for finding semantically-significant soft labels.

As shown in Fig. 1 (a), we use logits derived from the pre-trained model as
the class labels during the image synthesis process. Starting from a hard label,
i.e., one-hot distribution, we recursively apply this labeling process to successive
batches of images to amplify the representation of classes which are semantically
related to the original target class while only weakly presented in the initial image
synthesis. We show that images synthesized using recursive label calibration are
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Fig. 1. The proposed data-free NAS framework consists of two stages: (a) image syn-
thesis using recursive label calibration, and regional update; (b) running an architecture
search using the synthesized images. Specifically, the image synthesis stage consists of
an Inner Loop and an Outer Loop. The Inner Loop starts with a random noise
input, which is then updated with the gradient computed from the cross-entropy loss
(CE-loss). The inner loop ends when random noise converges to a batch of synthesized
images. Then in the Outer Loop, we infer the predictions of the synthesized images
using the pre-trained model and use these predictions as the soft labels for synthesizing
the next batch of images. See section 3 for details.

more diverse and can better capture semantic relationships that exist in the
original training data. In order to further improve the diversity, we propose a
novel regional gradient updating scheme on synthesized images to match the
random crop augmentation in training NAS.

We show that, the architecture accuracy rankings on the data synthesized
with the proposed method produce more consistent correlation with the rankings
on the original data. In turn, NAS on our synthesized data discovers the searched
architecture with much higher accuracy. We demonstrate the feasibility of our
data-free NAS conversion on three prevalent NAS algorithms: a reinforcement-
learning-based algorithm (ProxylessNAS [4]), an evolution-based algorithm (Sin-
gle Path One-Shot [8]) and a gradient-based algorithm (DARTS [15]).

We make four major contributions in this paper:
• We reveal, for the first time, that it is feasible to search architectures without
relying on the original training data and propose a framework for data-free NAS.
• We identify properties of synthesized images that NAS requires, and propose a
data synthesis method that uses recursive label calibration and regional update
to generate images with sufficiently high diversity from the information stored
in a pre-trained model for effective NAS.
• We validate the generalization ability of data-free NAS by integrating it with
three different NAS algorithms and demonstrating competitive results.
• We further extend the scope of our data synthesis method and demonstrate
that it also outperforms prior approaches for the data-free pruning and knowl-
edge transfer tasks.
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2 Related Work

Generative adversarial networks (GAN) [2,33] can generate images with
high fidelity, but still need real images as a reference while training the generator,
which is not fully data-free. Recently, Chen et al. [5] and Xu et al. [28] proposed
to use a generator to synthesize images from a pre-trained model and simul-
taneously train the student network. Further, Yin et al. [29] proposed to syn-
thesize images from the pre-trained teacher network using regularization terms
and Jensen-Shannon divergence loss. However, such method is a general design
without explicitly considering the requirements for architecture search and also
ignoring the crucial factors like the semantic diversity in the latent feature and
image spaces. In this work, we propose recursive label calibration and regional
update to generate more diverse and semantically meaningful images to fulfill
the demand of neural architecture search.
Neural Architecture Search (NAS) is a tool for automatic discovery of
optimized neural network architectures under various practical constraints. To
conduct NAS, it normally requires a search space, a search algorithm and a set
of training data. Current NAS research mainly focuses on improving the search
algorithms [20,34,1,35], designing the search space [21,7,30], reducing the search
cost [3,11,19,4,15] and integrating direct metrics with the search process [27,8].
To our best knowledge, there is no previous literature directly studying the prob-
lem of data-free NAS. Thus, our work has many practical and useful guidelines
on this problem for future research. One prior work [13] may be the closest one
to ours, it proposed to conduct NAS without human-annotated labels. In our
study, we take one step further and attempt to answer the question of whether
NAS can be conducted even without the original data at all.

3 Our Method

In data-free neural architecture search, as we have no access to the original data
X ∈ Rw×h , we aim to use synthesized data X̂ ∈ Rw×h to search for the high-
performing architecture A∗ in the search space of S, with the NAS algorithm
minimizing the loss:

A∗ = argmin
A∈S

L(A|X̂). (1)

In this way, we target at finding an architecture that achieves high performance
when evaluated on the target data X :

A∗ ≈ argmax
A∈S

Acceval(A|X). (2)

This requires the synthesized images to be semantically meaningful, diverse, and
have a minimum domain gap with target data (i.e., X̂ ∼ X) to ensure that the
architecture rankings on the synthesized images align well with the rankings on
original data. Such that we can conduct data-free NAS by integrating the syn-
thesized data and their corresponding soft labels with existing NAS algorithms.
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3.1 Data Synthesis

We optimize the classification (cross-entropy) loss between the pre-trained model’s

prediction Mpretrained(X̂) on the synthesized data and the target label y:

min
X̂

LCE(Mpretrained(X̂),y), (3)

where LCE denotes the classification loss (i.e., cross-entropy loss) and X̂ denotes
input “image”.

Specifically, since one-hot label y is unable to capture the underlying class
relationship, we propose recursive label calibration to automatically learn the
semantically-related soft labels ŷ and use ŷ for image synthesis. Furthermore,
we propose a novel regional update scheme to improve the diversity of generated
images.

Regularization (i) Input-level Regularization:
As a natural image taken from a real scene is unlikely to sharply vary in

value between adjacent pixels, following [17], we impose a regularization term
Linput to penalize the overall variance in the synthesized data:

Linput =
∑
i,j

((X̂(i+1,j) − X̂(i,j))
2 + (X̂(i,j+1) − X̂(i,j))

2) (4)

where i, j denotes the index of each pixel in the image.
(ii) Feature-level Regularization:

Further, we impose a regularization term to align the high-level feature map
statistics with the target images by enforcing the synthesized images to produce
similar statistics in the feature maps as statistics calculated and stored in each
BN layer of the pre-trained model, as [29].

Lfeat =
∑
l

(||El(X̂)−El(X)||2 + ||Varl(X̂)−Varl(X)||2) (5)

Here, El(X̂) and Varl(X̂) denote the mean and variance of the feature map of
synthesized images in the lth convolutional layer, El(X) and Varl(X) denote
the historical mean and variance of target images, which are stored in Batch-
Norm [10] of the pre-trained model.

Recursive Label Calibration Importantly, we observe that the pre-trained
model’s prediction on a natural image will spread as a distribution of logits, with
the maximum value being the target class and other several peaks landing at
similar classes, shown in Fig. 2 (a).

Thus, for encouraging synthesized images to model higher-level class corre-
lation and to capture more subtle semantic information, we want the targets of
synthesized images to be a distribution of semantically-related classes. Consider-
ing no original images are available, we cannot obtain the relationship between
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Fig. 2. The pre-trained model’s prediction on the input image. (a) Natural image in
the category “coffee mug”. Its prediction contains a peak at “coffee mug” and another
peak value in the related class “cup”. (b) The image synthesized w.r.t. the “coffee mug”
class as a one-hot hard label. The pre-trained model only strongly predicts this image as
“coffee mug”. Meanwhile, there is a pattern on the surface of the mug that resembles
coffee. (c) The image synthesized using recursive label calibration. It automatically
identifies “cup” as a related class for the image synthesized w.r.t. the “coffee mug”
category. The image looks more natural as well.

classes directly. However, we make an important observation that the pre-trained
model’s prediction on the image synthesized with respect to the hard label also
has fractional logits spread between semantically similar classes. But these logits
are too weak to be reflected in the synthetic images. Thus, we propose recursive
label calibration to amplify this distribution, which utilizes the soft prediction
of the previously synthesized image as the new targets,

ŷt−1 = Mpretrained(X̂t−1), (6)

replacing the hard label y in Eq. 3 to guide the image synthesizing process:

X̂∗
t = min

X̂
LCE(Mpretrained(X̂t), ŷt−1) (7)

as also illustrated in Fig. 3.
After visualizing the images synthesized with recursive label calibration, we

confirm that these images do learn the semantic relationships among classes.
As shown in Fig. 2 (b), the image synthesized without label calibration is over-
confident at the prediction of the “coffee mug” class. While in Fig. 2 (c), the
prediction of the image synthesized with recursive label calibration automat-
ically learns that “coffee mug” and “cup” are two related classes. Recursive
label calibration encourages the synthesized images to learn class relationships
as natural images instead of over-fitting to a single class, which in turn allows
the synthesized images to encode more semantic information.
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Fig. 3. An illustration of the proposed regional update scheme and recursive label
calibration for image synthesis. In every iteration of the generation process, a 224×224
region is randomly cropped from the 256×256 input and we update the selected region
using gradients calculated w.r.t. Eq. 3. After an image is synthesized, we use the pre-
trained model’s prediction on the synthesized image as the soft label for computing
the cross-entropy loss with the output logits of the next image batch.

In addition, the prediction of the most related classes differs between syn-
thetic image batches due to stochasticity in the synthesis process. Since each
synthesis target is now a weighted combination of related classes rather than
a single class, the number of distinct targets is greatly increased. More targets
lead to more diversity in the images synthesized from these targets and produce
a synthesized dataset that better resembles the natural training set. We show
that higher similarity between synthetic and natural dataset leads to consistency
in evaluation accuracy between architectures trained on original data and the
synthetic data.

Regional Update Scheme To further enhance synthesized image diversity,
we propose a regional update scheme for synthesis process. The regional update
is formulated as:

GX̂=∇X̂LCE(Mpretrained(X̂w,h∈Rselected
),y), (8)

Instead of generating the images with the size required for forward computation
in the neural network, e.g., 224× 224 for ImageNet dataset, we enlarge the size
of the input tensor X̂, e.g., 256×256 for ImageNet dataset. In every iteration,
we randomly select a sub-region Rselected, e.g., 224×224 as the input to the
pre-trained model and calculate the gradients GX̂. We only update the selected
region, leaving the pixels outside of that region unchanged, as also shown in
Fig. 3. This proposed regional update during image synthesis reflects the random
crop data augmentation during training, which greatly increases the amount of
trainable data and enhances the image diversity. Additionally, it can encourage
the translation-invariance in the synthesized images.



8 Zechun Liu et al.

INPUT

CONV
3x3

CONV
5x5 Identity POOL

3x3…

α β σ … δ

1 0 0 … 0

OUTPUT

Images

…

Logits

?

?

?
? ?

?

Images…
…

Logits

Pre-trained
model

Neural Architecture
Search Algorithm

Soft Label Logits
KL-Divergence Loss

Synthesized
Images

ProxylessNAS

DARTS

Choice Block

Choice Block

Choice Block

Choice1 Choice2 Choice3

Images…
…

Logits

SPOS

…

Fig. 4. The proposed data-free neural architecture search framework using the synthe-
sized images. We replace the original ones with the synthesized images and use the soft
labels to compute the KL-divergence loss with the output logits of NAS.

3.2 Architecture Search

After extracting the classification-relevant information from the pre-trained model
by constructing a synthetic dataset, we use that dataset to conduct neural ar-
chitecture search. Fig. 4 illustrates the proposed data-free neural architecture
search framework: data-free NAS can be applied to an existing NAS algorithm
by replacing the natural training data with synthetic data, and the classification
labels with soft labels from pre-trained model. We instantiate data-free NAS with
three prevalent NAS algorithms: ProxylessNAS [4], DARTS [15] and SPOS [8],
which are reinforcement-learning-based, gradient-based and evolution-based re-
spectively:

The gradient-based neural architecture search jointly learn the architecture
parameter α and the SuperNet weights W, aiming to find α∗ that minimizes the
validation loss Lval, with weights W∗ in the SuperNet obtained by minimizing
the training loss Ltrain [15].

min
α

Lval(W
∗(α),α) (9)

s.t. W∗(α) = argmin
W

Ltrain(W,α) (10)

The reinforcement-learning-based method use the policy gradient to update the
architecture parameters g to maximize the reward R [4].

L(α) = Eg∼α[R(Ag)], (11)

∇αL(α) = Eg∼α[R(Ag)∇α log(p(g))], (12)



Data-Free NAS 9

where g denotes the binary gates of choosing certain masks with probability p.

The evolution-based search in SPOS disentangled SuperNet training and ar-
chitectural parameter optimization. Specifically for SuperNet training:

W∗(α) = argmin
W

,Eα∼Γ (A)Ltrain(W,α), (13)

where W denotes the SuperNet weights, α denotes the architecture parameters
and Γ (A) is the probability distribution of architecture sampling. After the
supernet is trained, the weights can be used for evolutionary search in the second
separate step.

In the search phase, data-free NAS explores the pre-defined search space us-
ing the same search algorithm as the NAS algorithm it integrates. Instead of
using the original data for ranking different architectures, we show that data-
free NAS can reliably estimate the ranking with synthetic data generated with
the proposed method. Further, we show that these architectural rankings are
consistent with rankings on the original data, meaning that data-free NAS algo-
rithms can discover architectures that achieve high accuracy when evaluated on
the target data.

4 Experiments

To verify the effectiveness of our proposed data synthesis method for NAS, we
first conduct consistency experiments, showing that with the proposed data syn-
thesis method, the synthesized dataset possesses high correlation with the orig-
inal data. Then, with these synthetic data, we demonstrate the feasibility of
data-free NAS in discovering the architectures that perform competitively when
evaluated on the target data. Further, we show that our synthesized data is also
helpful in enhancing the accuracy of other tasks like data-free pruning and knowl-
edge transfer and outperforms previous works. Lastly, we visualize the synthetic
data in Sec. Visualization, and find that the proposed recursive label calibration
and regional update scheme can largely improve the semantic diversity of the
synthetic data and helps capture the underlying class relationships.

4.1 Consistency Exploration

We conduct the consistency experiments on two search spaces: the DARTS search
space [15], and the Single Path One-Shot (SPOS) search space [8]. The term
consistency refers to the accuracy correlation between the architectures trained
on the synthetic data and the original data.

DARTS Search Space on CIFAR-10 Dataset For DARTS search space,
we randomly sample 100 architectures, and train each architecture from scratch
using original CIFAR-10 data, synthetic data, or random noise separately and
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Fig. 5. Correlation between the accuracy of the architectures sampled from the
DARTS [15] search space on the original CIFAR-10 data and different sources of syn-
thetic data (including random noise). Here, ρ denotes Spearman’s rank correlation.

(a) (b) (d)(c)(a) (b) (c) (d)

Fig. 6. Accuracy correlation on the SPOS [8] search space between original ImageNet
vs. random noise as well as data synthesized with different methods. ρ denotes Spear-
man’s rank correlation.

report the architecture’s accuracy when evaluated on original CIFAR-10 vali-
dation dataset. Fig. 5 shows the correlation between the accuracy of architec-
tures trained on synthetic data and the original data. Spearman’s Rank Cor-
relation [25], denoted as “ρ”, is calculated in order to quantify the correlations
between accuracy on synthesized and original data. From Fig. 5 (a) we can see
that the overall accuracy of the network trained on the random noise is lower
than 50% and the ranking is highly noisy, the random noise can hardly guide
NAS for finding a high-quality architecture. In contrast, synthesized data im-
proves the correlation compared to random noise and recursive label calibration
further enhances the correlation. This correlation supports our belief that a NAS
algorithm applied on the good synthetic data is likely to discover architectures
that perform well on the original data.

SPOS Search Space on ImageNet dataset We use the SPOS [8] search
space to explore the more challenging task of architecture search on the large-
scale ImageNet dataset. We randomly sample 1000 architectures from the SPOS
search space, then evaluate their accuracy. As shown in Fig. 6 (a), for the large-
scale ImageNet, simply using the random noise results in a totally uncorrelated
accuracy between original and the “noise data”, the images synthesized with
the regularization term produce an improved correlation compared to random
noise, which, however, is still not sufficient for performing architecture search, as
shown in Fig. 6 (b). The proposed recursive label calibration and regional update
scheme further improve the correlation with ρ increasing from 0.87 to 0.96,
in Fig. 6 (d), showing that the images synthesized with the proposed method
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Table 1. Comparison between data-free DARTS and other NAS algorithms on CIFAR-
10. † denotes using cutout.

Methods Top-1 Err (%) Params (M) Data for NAS

NASNet-A† [35] 2.65 3.3 CIFAR-10
BlockQNN [32] 3.54 39.8 CIFAR-10

AmoebaNet-A† [20] 3.12 3.1 CIFAR-10
PNAS [14] 3.41± 0.09 3.2 CIFAR-10

ENAS† [19] 2.89 4.6 CIFAR-10

Random search† [15] 3.29± 0.15 3.2 CIFAR-10

DARTS† [15] 2.76± 0.09 3.3 CIFAR-10

Data-free DARTS 2.68 ± 0.09 3.3 Synthesized data

Table 2. Generalization of architecture searched with data-free DARTS [15] from
CIFAR-10 to ImageNet.

Methods Top-1 Err (%) Params (M) Data for NAS

DARTS [15] 26.7 4.7 ImageNet

Data-free DARTS 26.4 4.7 Synthesized data

produce a more correlated architecture ranking, which better guarantees the
architecture searched on the synthesized dataset will achieve high accuracy on
the target dataset.

4.2 Search Results

We investigate the effectiveness and generality of our data-free neural archi-
tecture search framework by testing it with three prevalent neural architecture
search algorithms: DARTS [15], SPOS [8] and ProxylessNAS [4].
Implementation Details
Our experiments on DARTS are targeted at classification over CIFAR-10 [12]
dataset and our experiments on SPOS and ProxylessNAS are targeted at clas-
sification over ImageNet [22] dataset. More experimental details can be referred
to our Appendix.
Instantiations
Data-free DARTS: The architecture found by using DARTS with the data
synthesized with the proposed method achieves 2.68% test error. As shown in
Table 1, this is comparable to the architecture found when using DARTS with
the original CIFAR-10 data. The search result of using data synthesized without
label calibration is comparable to random search. This shows that the proposed
synthesis method generates data with high correlation to the original CIFAR-
10 data, which provides a basis for searching architectures on synthetic data
that achieve high performance when evaluated on the original data. Further,
the architecture discovered from the data synthesized with label calibration also
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Table 3. Comparison between data-free SPOS, original SPOS [8] as well as other
baseline results. “All choice” refers to the baseline algorithm where the same operation
is chosen for all layers. “All Choice 3, 5, 7” denotes choosing only a ShuffleNet [31]
block with 3 × 3, 5 × 5, or 7 × 7 convolution, respectively. “Choice x” denotes using
the Xception block [6].

Methods Top-1 Err (%) FLOPs (M) Data for NAS

all choice 3 26.6 324 ImageNet
all choice 5 26.5 321 ImageNet
all choice 7 26.4 327 ImageNet
all choice x 26.5 326 ImageNet

Random Select ∼ 26.3 ∼ 320 ImageNet
Random Search 26.2 323 ImageNet

SPOS [8] 25.7 319 ImageNet

Data-free SPOS 25.8 316 Synthesized data

Table 4. Comparison between RL-based ProxylessNAS integrated with our data-free
NAS framework and the original ProxylessNAS. We choose the targeting metrics as
FLOPs.

Methods Top-1 Err (%) FLOPs(M) Data for NAS

ProxylessNAS [4] 24.4 467 ImageNet

Data-free ProxylessNAS 24.2 465 Synthesized data

generalizes well to the ImageNet dataset and achieves slightly higher accuracy
than original DARTS, shown in Table 2.
Data-free Single Path One-Shot: As shown in Table 3, compared to data
synthesized without label calibration, the data synthesized with label calibration
provides better guidance and results in higher final accuracy. The architecture
discovered using synthesized data with label calibration achieves 74.2% top-1
accuracy. This accuracy is comparable to the results obtained by the SPOS
search on the original ImageNet. This result also far exceeds random search
as well as the baseline method of choosing the same operation for all layers,
demonstrating the feasibility of using synthetic images for data-free NAS on a
large-scale dataset.
Data-free ProxylessNAS: We adopt the RL-based ProxylessNAS targeting at
the FLOPs constraint. Table 4 shows that ProxylessNAS, when integrated with
our data-free framework, also achieves accuracy comparable to ProxylessNAS
searching on the original data.

4.3 Extension Tasks

Data-free Pruning: We show that the proposed data-free NAS can be applied
to pruning tasks via integrating with a search-based pruning method, MetaPrun-



Data-Free NAS 13

Table 5. Comparison for data-free pruning on ResNet-50 structure.

Methods Data Type Top-1 Err (%) FLOPs (G)

ImageNet Original 23.4 4.1

BigGAN [2] GAN synthesized 37.0 ∼1.2
DI [29] Synthesized 44.1 ∼1.2
ADI [29] Synthesized 39.3 ∼1.2

Ours Synthesized 36.5 1.0

Table 6. The top-1 error of data-free knowledge transfer using ResNet-34 as the pre-
trained teacher model for synthesize images and train a ResNet-18 student model from
scratch for CIFAR-10.

Methods Noise DeepDream [17] DAFL [5] ADI [29] Ours

Top-1 Err (%) 86.39 70.02 7.78 6.74 5.97

ing [16]. We use synthesized ImageNet images to guide MetaPruning for finding
the best pruning ratio in each layer and train the searched pruned network from
scratch also with the synthesized images. Results in Table 5 show that our data-
free pruning achieves much higher accuracy than the previous state-of-the-art
data-free pruning [29]. It further surpasses pruning using GAN-synthesized im-
ages. See the appendix for full training details.

Data-free Knowledge Transfer: The synthesized images can also serve as
a foundation for knowledge transfer from a pre-trained teacher to the student
network through training the student network from scratch with knowledge dis-
tillation [9,24,18,23] on the synthesized images. Compared to the previous state-
of-the-art data-free learning methods [29,5], we achieve higher knowledge transfer
accuracy when the target dataset is CIFAR-10 or ImageNet, as shown in Table 6
and 7. Full training details are included in the appendix.

4.4 Visualization

In Fig. 7, we can observe that images synthesized with regularization terms only
have homogeneous color palettes and similar backgrounds, but when using the
proposed label calibration and regional update scheme for synthesis, the im-
ages exhibit more diverse feature and look more realistic. Fig. 8 further shows
a promising finding that the images synthesized with recursive label calibra-
tion do capture the underlining class relationships in a similar manner to the
natural images. These attributes produce a good accuracy correlation between
architectures trained on synthesized images and natural images which in turn
contributes to the success of data-free NAS.
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Table 7. Data-free knowledge transfer on ImageNet from pre-trained ResNet-50 to the
same network initialized from scratch.

Methods Data Type Data Amount Epochs Top-1 Err (%)

ImageNet Original 1.3M 250 23.4

BigGAN [2] GAN synthesized 215K 90 36.0
ADI [29] Synthesized 140K 250 26.2

Ours Synthesized 140K 250 25.9
Ours Synthesized 140K 500 24.8
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Synthesized data
with regularization

Synthesized data
with proposed methods

Synthesized data
with regularization

Synthesized data
with proposed methods

Synthesized data
with regularization

Synthesized data
with proposed methods

Fig. 7. Synthesized 256×256 images with ResNet-50
optimized on ImageNet as the pre-trained network.
We visualize three classes (“blublu”,“schooner” and
“seashore”) with different data synthesis methods.

American chameleon
African chameleon

Schooner

Yawl

Parachute
Balloon

Dunlin
Snowbird

Running shoe

Sandal

Fig. 8. Recursive label cali-
bration automatically learns
semantically-related labels
for the synthetic images.

5 Conclusion

We have presented a novel framework that can conduct neural architecture search
(NAS) without access to the original data. In order to perform data-free NAS, we
developed a new recursive label calibration method and regional update strategy
which automatically discover and encode the relationships between classes in
soft labels and generate images w.r.t. these soft labels, while preserving the
diversity of generated images. We demonstrate the effectiveness of our proposed
method with three typical NAS algorithms. Our experimental results show that
using the recovered data from a pre-trained model, NAS algorithms using our
data synthesis method can obtain performance comparable to NAS algorithms
using the original training data. This verifies that it is feasible to conduct NAS
without original data if the synthesis method is well designed. In addition, we
demonstrate that our synthetic data can produce state-of-the-art results for data-
free pruning as well as knowledge transfer.
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