
Acknowledging the Unknown for Multi-label
Learning with Single Positive Labels

(Supplementary Material)

Donghao Zhou1,2, Pengfei Chen3, Qiong Wang1, Guangyong Chen4(�), and
Pheng-Ann Heng1,5

1 Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality
Technology, Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, Shenzhen, China
dh.zhou@siat.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China
3 Tencent Technology, Shenzhen, China

4 Zhejiang Lab, Hangzhou, China
gychen@zhejianglab.com

5 The Chinese University of Hong Kong, Hong Kong, China

A Derivation of the Gradient Equations

In this section, we provide detailed derivation of the gradients of AN and EM loss
(i.e. Eq. 2 and Eq. 5). following the notations in the main paper, the gradients
of L+, L− and L∅ for the logit g are
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Fig. 7. Training losses of annotated positive labels (i.e. L+) on all four datasets from
the models trained with AN and EM loss, where α of EM loss is set to the corresponding
value shown in Table 5

Fig. 8. Absolute values of the logits for unannotated positive and negative labels,
produced by the model trained with EM loss on all four datasets

B Additional Empirical Evidence for EM Loss

In Sec. 3.2, we have claimed that the gradient regime of EM loss leads to three
behaviours beneficial to model training: 1) Learning from annotated labels pref-
erentially. 2) Mitigating the effect of label noise. 3) Maintaining confident positive
predictions. In this section, we provide more empirical evidence to further verify
these three advantages respectively, and thus further demonstrate the effective-
ness of EM loss. As done in the main paper, for empirical analysis, we consider
AN loss as the baseline of SPML, and adopt AN and EM loss in model training
respectively. Note that the experimental setup and the hyperparameters of each
method are the same as those in benchmark experiments.

B.1 Learning from Annotated Labels Preferentially

We have claimed that the model training would be dominated by assumed neg-
ative labels when adopting AN loss, whereas EM loss can lead the model to
preferentially learn from annotated positive labels. To verify this, we present the
training losses of annotated positive labels (i.e. L+) on VOC in the main paper,
where α of EM loss is set to 1. We are curious about if this improvement of
EM loss can perform well on all four datasets when α is set to a more proper
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Fig. 9. Predicted probabilities for annotated and unannotated positive labels, pro-
duced by the models trained with AN (left) and EM (right) loss on all four datasets

value. Thus, we provide more visualization of L+ for comparison, where α is set
to the corresponding value shown in Table 5. As shown in Fig. 7, on all four
datasets, L+ of AN loss would increase in early training, since the model trained
with AN loss preferentially focuses on fitting the numerous assumed negative
labels. However, L+ of EM loss can gradually decrease and is more stable, since
the gradients of EM loss for unannotated labels would be relatively low in early
training (see Fig. 2(a)). Moreover, we have also claimed that EM loss tends to
keep the predictions of unannotated labels ambiguous. To empirically observe
this, we visualize the absolute values of the logits produced by the model trained
with EM loss. In Fig. 8, it can be observed that EM loss would keep near-zero
logits for numerous unannotated negative labels, which results in small gradients
for them throughout training. As for the relatively large results of unannotated
positive labels, we would discuss them in Sec. B.3.

B.2 Mitigating the Effect of Label Noise

In Sec. 3.2, we have also claimed that the model trained with AN loss would suffer
from the false negative labels (i.e. unannotated positive labels which are assumed
as negative ones), whereas EM loss can mitigate the effect of label noise. Trained
with AN loss, the model would be confused by annotated and unannotated
positive labels, which results in unconfident and even incorrect predictions for
positive labels. To demonstrate this, we present the predicted probabilities for
annotated and unannotated positive labels, which are produced by the models
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trained with AN and EM loss. As shown in Fig. 9, the model trained with AN
loss would produce low predicted probabilities for positive labels, especially for
the unannotated ones. However, the model trained with EM loss can produce
relatively confident positive predictions for both unannotated and annotated
positive labels, since EM loss does not introduce any false negative labels and is
capable of encouraging the model to learn from annotated positive ones.

B.3 Maintaining Confident Positive Predictions

Different from AN loss, EM loss can maintain confident positive predictions for
unannotated labels due to its special gradient regime. This claim can be verified
by visualizing the logits for unannotated positive labels, since confident positive
predictions are always associated with large logits for unannotated positive la-
bels. For instance, a logit of 1 (resp. 2, 3) corresponds to a predicted probability
of 0.73 (resp. 0.88, 0.95). As shown in Fig. 8, compared to the logits of annotated
negative labels, the model trained with EM loss would produce relatively large
logits for unannotated positive labels, since EM loss would not over-suppress
confident positive predictions by providing large gradients for them. This differ-
ence between the logits of unannotated positive and negative labels shows that
EM loss can indeed maintain confident positive predictions, instead of keeping
near-zero logits for all unannotated labels without distinction.

C Details of the Experimental Setup

In this section, we provide more details of the experimental setup, including
dataset descriptions and hyperparameter tuning and selection, to ensure the
fairness and reproducibility of our experiments.

C.1 Datasets

The following large-scale multi-label datasets are used in our experiments: PAS-
CAL VOC 2012 (VOC) [3], MS-COCO 2014 (COCO) [6], NUS-WIDE (NUS)
[1], and CUB-200-2011 (CUB) [8]. VOC consists of 5,717 training images and 20
classes, and we report test results on its official validation set with 5,823 images.
COCO contains 82,081 training images and 80 classes, and we also report test
results on its official validation set with 40,137 images. NUS consists of 81 classes
and contains 150,000 training images and 60,260 testing images collected from
Flickr. Instead of re-crawling the NUS images as done in [2], we use the official
version of NUS in our experiments, which has less manual intervention and thus
is fairer. CUB is divided into 5,994 training images and 5,794 test images, con-
sisting of 312 classes (i.e. binary attributes of birds). For reference purposes, we
summarize the statistics of the datasets in Table 4, which shows the diversity of
these four popular multi-label datasets.
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Table 4. Statistics of the datasets, including the number of classes, the number of
images on the split datasets, and the number of ground-truth positive and negative
labels per image on the training sets

Statistics VOC COCO NUS CUB

# Classes 20 80 81 312

# Images

Training 4574 65665 120000 4795
Validation 1143 16416 30000 1199

Test 5823 40137 60260 5794

# Labels Per Training Image
Positive 1.46 2.94 1.89 31.4
Negative 18.54 77.06 79.11 280.6

C.2 Comparing Methods

We compare our method with the following methods: 1) AN loss (Eq. 1): The
widely recognized baseline of SPML, which assumes all unannotated labels are
negative. 2) EntMin [4]: A widely adopted method of semi-supervised learning,
i.e. entropy minimization regularization, which aims to minimize the entropy
of predicted probabilities for unannotated labels. 3) Focal loss [5]: An efficient
method to handle label imbalance. 4) ASL [7]: One of the state-of-the-art meth-
ods of multi-label classification, which can mitigate the effect of mislabeled sam-
ples. 5) ROLE [2]: the state-of-the-art method of SPML, which adopts a label
estimator and exploits the average number of positive labels to perform regu-
larization. 6) ROLE+LI [2]: ROLE is combined with the “LinearInit” training
fashion, i.e. firstly training the model with the backbone being frozen before
end-to-end training. Note that unannotated labels are also assumed as negative
ones in Focal loss and ASL. Besides, we also compare our method to the baseline
of SPML with the following improvement: 1) DW: Down-weighting L− of Eq. 1.
2) L1R/L2R: adopting l1/l2 regularization. 3) LS: Label smoothing for all labels.
4) N-LS: Label smoothing for only assumed negative labels.

C.3 Hyperparameters

For each method, method-specific hyperparameters are tuned on all four datasets
respectively, and the hyperparameters with the best mAP on validation sets
are selected for the final evaluation. The detailed hyperparameter tuning and
selection of our experiments are as follows:

1. DW: A hyperparameter tuned in {0.01, 0.02, 0.1, 0.2, 0.4, 0.9} is used to down-
weight L− of Eq. 1. Finally, 0.1 is selected for VOC, COCO, and NUS, and
0.02 is selected for CUB.

2. L1R/L2R: A hyperparameter tuned in {1e− 9, 1e− 8, 1e− 7, 1e− 6, 1e− 5}
is used to control the strength of l1/l2 regularization. In L1R, we select 1e−6
(resp. 1e− 7, 1e− 7, 1e− 9) for VOC (resp. COCO, NUS, CUB). In L2R, we
select 1e−6 (resp. 1e−7, 1e−6, 1e−8) for VOC (resp. COCO, NUS, CUB).
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Table 5. Hyperparameters of our method on all four datasets in our experiments

hyperparameters VOC COCO NUS CUB

Batch Size 8 16 16 8
Learning Rate 1e− 5 1e− 5 1e− 5 1e− 4

α 0.2 0.1 0.1 0.01
β 0.02 0.9 0.2 0.4
θ% 90% 90% 90% 90%
Tw 5 5 4 3

3. LS/N-LS: Label smoothing coefficient is tuned in {0.1, 0.2, 0.3}. In LS, we
select 0.1 for all four datasets. In N-LS, we select 0.3 for VOC, and select 0.1
for the other datasets.

4. EntMin [4]: A hyperparameter tuned in {0.01, 0.02, 0.1, 0.2, 0.4, 0.9} is used
to control the strength of entropy minimization regularization. Finally, we
select 0.01 (resp. 0.9, 0.4, 0.4) for VOC (resp. COCO, NUS, CUB).

5. Focal loss [5]: There are a focusing parameter γ and a balance parameter α in
Focal loss. As recommended in [7], we set γ = 2, and tune α ∈ {0.25, 0.5, 0.75}.
Finally, we select α = 0.75 for all four datasets.

6. ASL [7]: There are two hyperparameters (i.e. γ+ and γ−) used to control the
focusing levels of positive and negative labels respectively, and a hyperparam-
eter (i.e. m) used to act as the proposed probability margin in ASL. As done
in [7], we set γ+ = 0, and tune γ− ∈ {1, 2} and m ∈ {0, 0.05, 0.2} with a grid
search. Finally, we select γ− = 2, m = 0.2 for VOC, COCO, and NUS, and
select γ− = 1, m = 0 for CUB.

7. ROLE/ROLE+LI [2]: The experimental results are reproduced by reimple-
menting the methods exactly following the hyperparameters in [2].

8. EM loss/APL: For our method, we tune α, β ∈ {0.01, 0.02, 0.1, 0.2, 0.4, 0.9}.
Moreover, we set θ% = 90% for all datasets and empirically select Tw for each
dataset. For convenience, the final hyperparameters of our method are shown
in Table 5, including the selected batch sizes and learning rates.

D Detailed Analysis for APL

As an extension to the ablation study of APL in Sec. 4.3, we provide detailed
analysis for it in this section to further demonstrate the contribution of the
components adopted in APL. We focus on answering the following key questions:

Question 1: Is a high sample proportion necessary for generating negative
pseudo-labels?
Answer 1: In Table 3, it can be observed that generating negative pseudo-
labeling with a low sample proportion just leads to a tiny mAP increment.
As shown in Fig. 3(b), generating negative pseudo-labeling with a low sample
proportion gradually reduces performance as pseudo-labeling goes on, since
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Table 6. Precision (averaged in 3 runs) of positive pseudo-labels generated by the
similar positive pseudo-labeling on four multi-label datasets. Note that the sample
proportion for positive pseudo-labeling is set to 10%

VOC COCO NUS CUB

Precision 15.66% 15.29% 9.18% 19.34%

the model may be overfitting to few negative pseudo-labels. Thus, adopting a
high-tolerance strategy is necessary for generating negative pseudo-labels.
Question 2: Is assigning hard labels also able to boost performance?
Answer 2: As shown in Table 3, when assigning hard labels instead of soft
ones, pseudo-labeling would not significantly boost performance, since label
noise may be contained in the generated negative pseudo-labels. As a solution,
soft labels can mitigate this damaging impact and make negative pseudo-labels
participate in model training in a more appropriate way, which is beneficial to
better performance (see Table 3).
Question 3: Does down-weighting contribute to performance improvement?
Answer 3: As shown in Fig. 3(b), pseudo-labeling without down-weighting
(i.e. β of Eq. 8 is set to 1) can still achieve stable training, whereas properly
performing down-weighting for the loss of pseudo-labels can lead to further
performance improvement (see Table 3).
Question 4: What is the effect of performing positive pseudo-labeling?
Answer 4: As shown in Table 3, it is worth noting that performing similar
positive pseudo-labeling would cause a performance drop. Since positive labels
are the tiny minority of multi-label annotations, positive pseudo-labeling would
introduce a large amount of label noise, even with a small sample proportion.
To empirically observe this, we present the precision of positive pseudo-labels
in Table 6, which shows that performing positive pseudo-labeling can only gen-
erate positive pseudo-labels with very low precision due to the positive-negative
label imbalance of unannotated labels. Therefore, considering this imbalance,
we choose to adopt an extreme low-tolerance strategy for positive pseudo-labels,
aiming to avoid introducing any noisy positive pseudo-labels for more stable
training (see Fig. 3(b)).

E Evaluation with Other Metrics

In multi-label learning, mAP is the primary metric to evaluate model perfor-
mance. To further verify the effectiveness of our method, we perform an addi-
tional evaluation with two metrics (i.e. micro-F1 and macro-F1). Specifically, we
compare EM loss with AN loss in the SPML setting, and report the performance
of BCE loss on the fully labeled datasets. As commonly done, the thresholds for
micro-F1 and macro-F1 are set to 0.5 for BCE and AN loss. Since EM loss tends
to keep ambiguous predictions for unannotated labels, the predicted probabili-
ties for negative labels produced by the model trained with EM loss would be
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Table 7. Experimental results of BCE loss, AN loss, and EM loss on four SPML bench-
marks with two additional metrics (i.e. micro-F1 and macro-F1). Note that the model
trained with BCE loss adopts full annotations for training and the best performance
of the methods in the SPML setting is marked in bold

Datasets VOC COCO NUS CUB

Methods Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

BCE loss 85.18 82.84 76.01 71.84 68.97 50.59 47.54 22.15

AN loss 73.24 71.66 38.03 41.85 28.24 21.36 0 0

EM loss 85.36 82.78 71.58 66.74 66.83 45.47 43.85 20.38

Fig. 10. Proportions of unannotated positive and negative labels of each class on the
other datasets

near 0.5 (see Fig. 11). Therefore, for fair comparison, we set the thresholds to
0.75 for EM loss. As shown in Table 7, AN loss achieves poor performance on all
four datasets, especially on CUB (both micro-F1 and macro-F1 are 0). However,
our EM loss can still perform well in the evaluation with these two metrics. For
instance, EM loss can achieve 85.36% micro-F1 on VOC, which even exceeds the
results of being trained with full annotations.

F More Illustrative Examples

In this section, we provide more illustrative examples to support our observations
in the main paper, including the positive-negative label imbalance of unanno-
tated labels and the distinguishability of model predictions.

F.1 Positive-Negative Label Imbalance of Unannotated Labels

As an extension to Fig. 2(c), we present the proportions of unannotated positive
and negative labels of each class on the other datasets in Fig. 10, which shows
that the positive-negative labels imbalance of unannotated labels is an inherent
property of SPML. As shown in Fig. 10, it is worth noting that the proportions
of unannotated negative labels on some classes are lower than the predefined
sample proportion for negative pseudo-labeling (i.e. 90%). Fortunately, with a
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self-paced procedure, it is not often that APL would generate negative pseudo-
labels with a sample proportion of 90% before early stopping, which does not
damage the high precision of pseudo-labels generated by APL (see Table 2).

F.2 Distinguishability of Model Predictions

In Fig. 11, we visualize the predicted probabilities for positive and negative
labels on more classes of COCO, aiming to further compare the effect of AN and
EM loss on the distinguishability of model predictions. It can be observed that
the model trained with EM loss can produce more distinguishable predictions
for positive and negative labels. Moreover, we also present the class name and
the percentage of mAP increment in the caption of each subfigure in Fig. 11,
which shows that distinguishability improvement indeed contributes to model
performance as we expect. Especially, as shown in Fig. 11(g), the model trained
with EM loss can produce more distinguishable predictions on the “knife” class,
even though they are rare and small objects in the images of COCO.
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Fig. 11. Densities of the predicted probabilities for training and test images on more
classes of COCO, produced by the models trained with AN (top) and EM (bottom)
loss. Note that we only visualize the unannotated labels of training images. The caption
of each subfigure contains the class name and the percentage of mAP increment. For
clear comparison, we limit the y-axis to the same scale as Fig. 4(b).
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