
AutoMix 19

A Appendix

A.1 More Implementation Details

Dataset information. We briefly introduce image datasets used in Section
4. (1) Small scale classification benchmarks: CIFAR-10/100 [23] contains 50,000
training images and 10,000 test images in 32×32 resolutions, with 10 and 100
classes settings. (2) Large scale classification benchmarks: ImageNet-1k (IN-
1k) [24] contrains 1,281,167 training images and 50,000 validation images of
1000 classes. Tiny-ImageNet (Tiny) [5] is a rescale version of ImageNet-1k,
which has 10,000 training images and 10,000 validation images of 200 classes
in 64×64 resolutions. (3) Small-scale fine-grained classification scenarios: CUB-
200-2011 (CUB) [51] contains 11,788 images from 200 wild bird species for
fine-grained classification. FGVC-Aircraft (Aircraft) [34] contains 10,000 images
of 100 classes of aircrafts. (4) Large-scale fine-grained classification datasets
iNaturalist2017/2018 (iNat2017/2018) [20] contains a total of 5,089 categories
with 579,184 training images and 95,986 validation images. (5) Scenic classification
dataset Place205 [66] contains around 2,500,000 images from 205 common scene
categories. Notice that we use modified structures [17] of ResNet and ResNeXt
for CIFAR-10/100 and Tiny experiments, i.e., replacing the 7× 7 convolution
and MaxPooling by a 3× 3 convolution, while using normal structures.

Training settings. Detailed training settings of PyTorch [35], DeiT [47], and
RSB A2/A3 [54] on ImageNet-1k are provided in Table 10. Notice that we replace
the step learning rate decay by Cosine Scheduler [32] and remove ColorJitter
and PCA lighting in PyTorch training setting for better performances.

Reproduction settings. We adopt OpenMixup3 implemented in PyTorch [35]
as the open-source codebase, where we implement AutoMix and reproduce most
comparison methods (Mixup [64], CutMix [61], ManifoldMix [50], PuzzleMix [22],
SaliencyMix [48], FMix [15], and ResizeMix [37]). Notice that optimization-based
methods adopt a consistent α for all datasets, PuzzleMix adopts α = 1, Co-
Mixup and AutoMix adopts α = 2. Hand-crafted methods use dataset-specific
hyper-parameter settings as follows: For CIFAR-10/100, Mixup and ResizeMix
use α = 1, and CutMix, FMix and SaliencyMix use α = 0.2, and ManifoldMix
uses α = 2, respectively. For Tiny-ImageNet, ImageNet-1k, iNat2017/2018, and
Place205 using PyTorch-style training setting, ManifoldMix uses α = 0.2 and
the rest methods adopt α = 1 for median and large backbones (e.g., ResNet-50),
while all these methods use α = 0.2 for ResNet-18. For ImageNet-1k using DeiT
and RSB A2/A3 settings, all these methods use α = 0.2. For small-scale fine-
grained datasets (CUB-200 and Aircraft), SaliencyMix and FMix use α = 0.2,
and ManifoldMix uses α = 0.5, while the rest use α = 1. As for other methods,
we reproduce results of AugMix [19], Co-Mixup [21], and SuperMix [8] with their
official implementations.

3 https://github.com/Westlake-AI/openmixup

https://github.com/Westlake-AI/openmixup

20 Liu. et al.

Table 10. Ingredients and hyper-parameters used for ImageNet-1k training settings.

Procedure PyTorch DeiT RSB A2 RSB A3
Train Res 224 224 224 160
Test Res 224 224 224 224
Test crop ratio 0.875 0.875 0.95 0.95
Epochs 100/300 300 300 100
Batch size 256 1024 2048 2048
Optimizer SGD AdamW LAMB LAMB
LR 0.1 1× 10−3 5× 10−3 8× 10−3

LR decay cosine cosine cosine cosine
Weight decay 10−4 0.05 0.02 0.02
Warmup epochs ✗ 5 5 5
Label smoothing ϵ ✗ 0.1 ✗ ✗

Dropout ✗ ✗ ✗ ✗

Stoch. Depth ✗ 0.1 0.05 ✗

Repeated Aug ✗ ✓ ✓ ✗

Gradient Clip. ✗ 1.0 ✗ ✗

H. flip ✓ ✓ ✓ ✓

RRC ✓ ✓ ✓ ✓

Rand Augment ✗ 9/0.5 7/0.5 6/0.5
Auto Augment ✗ ✗ ✗ ✗

Mixup alpha ✗ 0.8 0.1 0.1
Cutmix alpha ✗ 1.0 1.0 1.0
Erasing prob. ✗ 0.25 ✗ ✗

ColorJitter ✗ ✗ ✗ ✗

EMA ✗ ✓ ✗ ✗

CE loss ✓ ✓ ✗ ✗

BCE loss ✗ ✗ ✓ ✓

Mixed precision ✗ ✗ ✓ ✓

A.2 More Experiments and Ablations

More Experiments. We evaluate AutoMix for various training epochs on CIFAR-
10/100 based on ResNet-18 (R-18) and ResNeXt-50 (RX-50), as shown in Table 13
and Table 14. It is worth noting that some methods converge fast while suffering
performance decay with longer train times, such as CutMix and SaliencyMix, and
some methods perform better when train longer, such as ManifoldMix training
1200 epochs. Unlike these methods, AutoMix steadily outperforms them by a
large margin regardless of the training time setting.

Table 11 and Table 12 report results on more practical training settings: RSB
and DeiT denote randomly combining Mixup and CutMix which produces com-

AutoMix 21

Table 11. Top-1 accuracy (%)↑ on ImageNet-1k
based on various ConvNets using RSB A2/A3
training settings.

R-50 EfficientNet B0 MobileNet.V2
Methods A3 A2 A3 A2 A3
RSB 78.08 77.26 74.02 72.87 69.86
MixUp 77.66 77.19 73.87 72.78 70.17
CutMix 77.62 77.24 73.46 72.23 69.62
ManifoldMix 77.78 77.22 73.83 72.34 70.05
SaliencyMix 77.93 77.67 73.42 72.07 69.69
FMix∗ 77.76 77.33 73.71 72.79 70.10
PuzzleMix 78.02 77.35 74.10 72.85 70.04
ResizeMix∗ 77.85 77.27 73.67 72.50 69.94
AutoMix 78.44 77.58 74.61 73.19 71.16
Gain +0.36 +0.23 +0.51 +0.32 +0.99

Table 12. Top-1 accuracy (%)↑ on
ImageNet-1k based on ViTs and Con-
vNeXt using DeiT training settings.

Methods DeiT-S Swin-T ConvNeXt-T
DeiT 79.80 81.28 82.10
MixUp 79.65 80.71 80.71
CutMix 79.78 80.83 81.38
AttentiveMix 77.63 77.27 78.19
SaliencyMix 79.32 80.68 80.94
FMix∗ 79.41 80.37 80.17
PuzzleMix 79.84 81.03 81.48
ResizeMix∗ 79.93 80.94 81.42
TransMix† 80.70 81.80 -
AutoMix 80.78 81.80 82.28
Gain +0.08 +0.00 +0.18

petitive performs as previous state-of-the-art methods (e.g., PuzzleMix), while
AutoMix still brings significantly gains over the original RSB (+0.32∼1.30%) and
DeiT (+0.18∼0.98%). It worth notice that previous mixup variants yield little
performance gain when training with light ConvNets (e.g., R-18 in Table 2, Effi-
cientNet B0 and MobileNet.V2 (1×) in Table 11), while AutoMix achieves stable
performance gains on these backbones. Moreover, AutoMix achieves competi-
tive performances than the recently proposed Transformer-based mixup method,
TransMix.

Hyperparameters for AutoMix. We further analyze the hyper-parameter
setting for AutoMix with extra ablation studies conducted on Tiny-ImageNet
and ImageNet-1k with various network architectures. As the same conclusion we
provided in main body of experiment, the result in Figure 10 also recommends
the choice of l = 3, which reflects the hyper-parameter robustness of AutoMix.

Table 13. Top-1 accuracy (%)↑ on CIFAR-10 based on ResNet-18 and ResNeXt-50
(32x4d) trained with various epochs. ∗ denotes unpublished open-source work on arxiv.

Backbone R-18 RX-50
Epoch 200ep 400ep 800ep 1200ep 200ep 400ep 800ep 1200ep
Vanilla 94.87 95.10 95.50 95.59 95.92 95.81 96.23 96.26
MixUp 95.70 96.55 96.62 96.84 96.88 97.19 97.30 97.33
CutMix 96.11 96.13 96.68 96.56 96.78 96.54 96.60 96.35
ManifoldMix 96.04 96.57 96.71 97.02 96.97 97.39 97.33 97.36
SaliencyMix 96.05 96.42 96.20 96.18 96.65 96.89 96.70 96.60
FMix∗ 96.17 96.53 96.18 96.01 96.72 96.76 96.76 96.10
PuzzleMix 96.42 96.87 97.10 97.03 97.05 97.24 97.27 97.34
ResizeMix∗ 96.16 96.91 96.76 97.04 97.02 97.38 97.21 97.36
AutoMix 96.59 97.08 97.34 97.30 97.19 97.42 97.65 97.51
Gain +0.17 +0.17 +0.24 +0.26 +0.14 +0.04 +0.32 +0.15

22 Liu. et al.

none 1 2 3 4
CIFAR-10

97.0

97.2

97.4

97.6

97.8

98.0

To
p-

1
ac

cu
ra

cy
(%

)

ResNet-18
ResNeXt-50

none 1 2 3 4
CIFAR-100

80.0

80.5

81.0

81.5

82.0

82.5

83.0

83.5

ResNet-18
ResNeXt-50

none 1 2 3 4
Tiny-ImageNet

66

67

68

69

70

71

ResNet-18
ResNeXt-50

none 1 2 3 4
ImageNet

75

76

77

78

79

ResNet-34
ResNet-50

Fig. 10. Top-1 accuracy ablation study on feature layer l.

Table 14. Top-1 accuracy (%)↑ on CIFAR-100 based on ResNet-18 and ResNeXt-50
(32x4d) trained with various epochs.

Backbone R-18 RX-50
Epoch 200ep 400ep 800ep 1200ep 200ep 400ep 800ep 1200ep
Vanilla 76.42 77.73 78.04 78.55 79.37 80.24 81.09 81.32
MixUp 78.52 79.34 79.12 79.24 81.18 82.54 82.10 81.77
CutMix 79.45 79.58 78.17 78.29 81.52 78.52 78.32 77.17
ManifoldMix 79.18 80.18 80.35 80.21 81.59 82.56 82.88 83.28
SaliencyMix 79.75 79.64 79.12 77.66 80.72 78.63 78.77 77.51
FMix∗ 78.91 79.91 79.69 79.50 79.87 78.99 79.02 78.24
PuzzleMix 79.96 80.82 81.13 81.10 81.69 82.84 82.85 82.93
Co-Mixup 80.01 80.87 81.17 81.18 81.73 82.88 82.91 82.97
ResizeMix∗ 79.56 79.19 80.01 79.23 79.56 79.78 80.35 79.73
AutoMix 80.12 81.78 82.04 81.95 82.84 83.32 83.64 83.80
Gain +0.11 +0.91 +0.87 +0.77 +1.11 +0.44 +0.76 +0.52

A.3 Architecture of AutoMix

Pseudo
Mask

Momentum
Encoder

Mix
Block

Encoder

Stop-gradient

Upsample

Fig. 11. The network architecture of Au-
toMix. The parameters in blue modules (ac-
tive) are updated by backpropagation while
the green (freeze) using momentum update
in Equation 12.

The detailed structure of AutoMix is
illustrated in Figure 11. Similar to the
flow chart in the method, the mod-
ule colored as blue can be updated by
backpropagation but not green. Fur-
thermore, the dotted line means stop-
gradient. Notice that we use the en-
coder k for inference and dropMϕ af-
ter training. The training process con-
tains three steps: (1) using the momen-
tum encoder k to generate the feature
maps z forMϕ; (2) generating Xq

mix

and Xk
mix based on two mixing fac-

tors λq and λk and the feature maps;
(3) training the active encoder q with
mixed samples Xq

mix and optimizing
Mϕ with Xk

mix separately.

AutoMix 23

A.4 Algorithm of AutoMix

We provide the pseudo code of Au-
toMix in Pytorch style:

Algorithm 1 Pseudocode AutoMix in Pytorch style.

f_q, f_k, M: encoder networks and MixBlock
lam_q, lam_k: sampled from Beta distribution
idx_q, idx_k: rearrange index
m: momentum coefficientt

f_k.params = f_q.params # initialize
for x, y in loader: # load a minibatch

two different permutations of data pairs
x_q, x_k = x[index_q],x[index_k]
y_q, y_k = y[index_q],y[index_k]
lat_f = f_k(x) # hidden representation and logits: NxCxWxH

generate mixing sample, no gradient to q
m_q, m_k = M(x,[lam_q, lam_k],[idx_q, idx_k],lat_f)
logits_mix_k = f_k(m_k) # mixed logits: NxC
logits_cls_q, logits_mix_q = f_q(x),f_q(m_q) # one-hot logits: NxC

mixup cross-entropy losses for q and M
loss_cls = ClassificationLoss(lam_q,logits_mix_q,y) # including one-hot CE loss
loss_gen = GenerationLoss(lam_k,logits_mix_k,y) # including loss_lambda
loss = loss_cls + loss_gen

loss.backward()
update(f_q.params, M.params) # SGD update (q and M)
f_k_params = m*f_k+(1-m)*f_q.params # momentum update

24 Liu. et al.

G
ra

du
al

 c
ha

ng
e

of

Fig. 12. Visualization of mixed samples on ImageNet-1k. The upper part presents the
plot of mixed samples from AutoMix (l = 3) for λ = 0.5; the lower shows the mixed
samples when different λ values are taken.

AutoMix 25

G
ra

du
al

 c
ha

ng
e

of

Fig. 13. Visualization of mixed samples on ImageNet-1k. The upper part presents the
plot of mixed samples from AutoMix (l = 3) for λ = 0.5; the lower offers the mixed
samples when different λ values are taken.

