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Appendices

A Experimental details

A.1 Detailed ingredients and hyper-parameters

Table 8: Summary of our training procedures with ImageNet-1k and ImageNet-21k. We
also provide DeiT [47], Wightman et al [56] and Steiner et al. [41] baselines for reference.
Adapt. means the hparams is adapted to the size of the model. For finetuning to higher
resolution with model pre-trained on ImageNet-1k only we use the finetuning procedure
from DeiT see section A.2 for more details.

Previous approaches Ours

Procedure → ViT Steiner DeiT Wightman ImNet-1k ImNet-21k
Reference [12] et al. [41] [47] et al. [56] Pretrain. Finetune.

Batch size 4096 4096 1024 2048 2048 2048 2048
Optimizer AdamW AdamW AdamW LAMB LAMB LAMB LAMB
LR 3.10−3 3.10−3 1.10−3 5.10−3 3.10−3 3.10−3 3.10−4

LR decay cosine cosine cosine cosine cosine cosine cosine
Weight decay 0.1 0.3 0.05 0.02 0.02 0.02 0.02
Warmup epochs 3.4 3.4 5 5 5 5 5

Label smoothing ε 0.1 0.1 0.1 ✗ ✗ 0.1 0.1
Dropout ✓ ✓ ✗ ✗ ✗ ✗ ✗

Stoch. Depth ✗ ✓ ✓ ✓ ✓ ✓ ✓

Repeated Aug ✗ ✗ ✓ ✓ ✓ ✗ ✗

Gradient Clip. 1.0 1.0 ✗ 1.0 1.0 1.0 1.0

H. flip ✓ ✓ ✓ ✓ ✓ ✓ ✓

RRC ✓ ✓ ✓ ✓ ✓ ✗ ✗

Rand Augment ✗ Adapt. 9/0.5 7/0.5 ✗ ✗ ✗

3 Augment (ours) ✗ ✗ ✗ ✗ ✓ ✓ ✓

LayerScale ✗ ✗ ✗ ✗ ✓ ✓ ✓

Mixup alpha ✗ Adapt. 0.8 0.2 0.8 ✗ ✗

Cutmix alpha ✗ ✗ 1.0 1.0 1.0 1.0 1.0
Erasing prob. ✗ ✗ 0.25 ✗ ✗ ✗ ✗

ColorJitter ✗ ✗ ✗ ✗ 0.3 0.3 0.3

Test crop ratio 0.875 0.875 0.875 0.95 1.0 1.0 1.0

Loss CE CE CE BCE BCE CE CE

A.2 Baselines and default settings

The main task that we consider in this paper for the evaluation of our training
procedure is image classification. We train on Imagenet1k-train and evaluate
on Imagenet1k-val, with results on ImageNet-V2 to control overfitting. We also
consider the case where we can pretrain on ImageNet-21k, Finally, we report
transfer learning results on 6 different datasets/benchmarks.
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Default setting. When training on ImageNet-1k only, by default we train during
400 epochs with a batch size 2048, following prior works [50,59]. Unless specified
otherwise, both the training and evaluation are carried out at resolution 224 ×
224 (even though we recommend to train at a lower resolution when targeting
224× 224 at inference time).

When pre-training on ImageNet-21k, we pre-train by default during 90 epochs
at resolution 224 × 224, followed by a finetuning of 50 epochs on ImageNet-1k.
In this context, we consider two fine-tuning resolutions: 224×224 and 384×384.

Fine-tuning at higher resolution. When pre-training on ImageNet-1k at
resolution 224 × 224 we fix the train-test resolution discrepancy by finetuning
at a higher resolution [52]. Our finetuning procedure is inspired by DeiT, except
that we adapt the stochastic depth rate according to the model size [50]. We fix
the learning reate to lr = 1 × 10−5 with batch-size=512 during 20 epochs with
a weight decay of 0.1 without repeated augmentation. Other hyper-parameters
are similar to those employed in DeiT fine-tuning.

Stochastic depth. We adapt the stochastic depth drop rate according to the
model size. We report stochastic depth drop rate values in Table 9.

Table 9: Stochastic depth drop-rate according to the model size. For 400 epochs training
on ImageNet-1k and 90 epochs training on ImageNet-21k. See section B for further
adaption with longer training.

Model
# Params FLOPs Stochastic depth drop-rate

(×106) (×109) ImageNet-1k ImageNet-21k

ViT-T 5.7 1.3 0.0 0.0
ViT-S 22.0 4.6 0.0 0.0
ViT-B 86.6 17.5 0.1 0.1
ViT-L 304.4 61.6 0.4 0.3
ViT-H 632.1 167.4 0.5 0.5

For transfer learning experiments we evaluate our models pre-trained at
resolution 224 × 224 on ImageNet-1k only on 6 transfer learning datasets. We
give the details of these datasets in Table 10 below.

B Additional details and Ablations

Number of training epochs In Table 11 we provide an ablation on the num-
ber of training epochs on ImageNet-1k. We do not observe a saturation when
the increase of the number of training epochs, as observed with BerT like ap-
proaches [1,19]. For longer training we increase the weight decay from 0.02 to
0.05 and we increase the stochastic depth drop-rate by 0.05 every 200 epochs to
prevent overfitting.
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Table 10: Datasets used for our different transfer-learning tasks.

Dataset Train size Test size #classes

iNaturalist 2018 [23] 437,513 24,426 8,142
iNaturalist 2019 [22] 265,240 3,003 1,010
Flowers-102 [35] 2,040 6,149 102
Stanford Cars [26] 8,144 8,041 196
CIFAR-100 [28] 50,000 10,000 100
CIFAR-10 [28] 50,000 10,000 10

RRC SRC

Fig. 7: Example of crops selected by Random Resized Crop and Simple Random Crop.

Impact of training resolution In Table 12 we report the evolution of the
performance according to the training resolution. We observe that we benefit
from the FixRes [52] effect. By training at resolution 192×192 (or 160×160) we
get a better performance at 224 after a slight fine-tuning than when training
from scratch at 224×224.

We observe that the resolution has a regularization effect. While it is known
that it is best to use a smaller resolution at training time [52], we also observe in
the training curves that this show reduces the overfitting of the larger models.
This is also illustrated by our results Table 12 with ViT-H and ViT-L. This
is especially important with longer training, where models overfit without a
stronger regularisation. This smaller resolution implies that there are less patches
to be processed, and therefore it reduces the training cost and increases the
performance. In that respect it effect is comparable to that of MAE [19]. We also
report results with ViT-H 52 layers and ViT-H 26 layers parallel [49] models with
1B parameters. With lower resolution training it is easier to train these models.

Detailed Tables for Image classification In Table 13 we compare ViT ar-
chitectures trained with our training recipes on ImageNet-1k with other archi-
tectures. In Table 14 we compare ViT architecture pre-trained on ImageNet-21k
with our training recipe then finetuned on ImageNet-1k.
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Model epochs
ImageNet top1 acc.
val real v2

ViT-S

300 79.9 86.1 68.8
400 80.4 86.1 69.7
600 80.8 86.7 69.9
800 81.4 87.0 70.5

ViT-B

300 82.8 87.6 72.1
400 83.1 87.7 72.6
600 83.2 87.8 73.3
800 83.7 88.1 73.1

ViT-L

300 84.1 88.5 74.1
400 84.2 88.6 74.3
600 84.4 88.6 74.6
800 84.5 88.8 75.0

ViT-H
300 84.6 89.0 74.9
400 84.8 89.1 75.3

Table 11: Impact on the performance of the number of training epochs on ImageNet-1k.

Training with others architectures In Table 15 we measure the top-1 accu-
racy on ImageNet-val, ImageNet-real and ImageNet-v2 with different architec-
ture train with our training procedure at resolution 224 × 224 on ImageNet-1k
only. We can observe that for some architectures like PiT or CaiT our training
method will improve the performance. For some others like TNT our approach
is neutral and for architectures like Swin it decreases the performance. This is
consistent with the findings of Wightman et al. [56] and illustrates the need to
improve the training procedure in conjunction to the architecture to obtain ro-
bust conclusions. Indeed, adjusting these architectures while keeping the training
procedure fixed can probably have the same effect as keeping the architecture
fixed and adjusting the training procedure. That means that with a fixed training
procedure we can have an overfitting of an architecture for a given training pro-
cedure. In order to take overfitting into account we perform our measurements
on the ImageNet val and ImageNet-v2 to quantify the amount of overfitting.

Semantic segmentation details The ADE20k dataset [62] consists of 20k
training and 5k validation images with labels over 150 categories. For the train-
ing, we adopt the same schedule as in Swin: 160k iterations with UperNet [58].
Our UperNet implementation is based on the XCiT [15] repository. By default
the UperNet head uses an embedding dimension of 512. In order to save com-
pute, for small and tiny models we set it to the size of their working dimension,
i.e. 384 for small and 192 for tiny. We keep the 512 by default as it is done in
XCiT for other models.
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Model
epochs Resolution ImageNet top-1 acc

Train. FT Train. FT val real v2

ViT-B

400
20

128× 128

224× 224

83.2 88.1 73.2
160× 160 83.3 88.0 73.4

192× 192 83.5 88.0 72.8
224× 224 83.1 87.7 72.6

800
20

128× 128

224× 224

83.5 88.3 73.4
160× 160 83.6 88.2 73.5
192× 192 83.8 88.2 73.6

224× 224 83.7 88.1 73.1

ViT-L

400
20

128× 128

224× 224

83.9 88.8 74.3
160× 160 84.4 88.8 74.3
192× 192 84.5 88.8 75.1

224× 224 84.2 88.6 74.3

800
20

128× 128

224× 224

84.5 88.9 74.7
160× 160 84.7 88.9 75.2

192× 192 84.9 88.7 75.1
224× 224 84.5 88.8 75.0

ViT-H

400
20

126× 126

224× 224

84.7 89.2 75.2
154× 154 85.1 89.3 75.3
182× 182 85.1 89.2 75.4

224× 224 84.8 89.1 75.3

800
20

126× 126

224× 224

85.1 89.2 75.6
154× 154 85.2 89.2 75.9

182× 182 85.1 88.9 75.9

224× 224 84.9 89.1 75.6

ViT-H-52 400 20 126× 126 224× 224 84.9 89.2 75.6

ViT-H-26×2 400 20 126× 126 224× 224 84.9 89.1 75.3

Table 12: We compare ViT architectures pre-trained on ImageNet-1k only with different
training resolution followed by a fine-tuning at resolution 224 × 224. We benefit from
the FixRes effect [52] and get better performance with a lower training resolution (e.g
resolution 160× 160 with patch size 16 represent 100 tokens vs 196 for 224× 224. This
represents a reduction of 50% of the number of tokens).
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Table 13: Classification with ImageNet-1k training. We compare architectures
with comparable FLOPs and number of parameters. All models are trained on
ImageNet-1k only without distillation nor self-supervised pre-training. We report Top-1
accuracy on the validation set of ImageNet1k and ImageNet-V2 with different measure
of complexity: throughput, FLOPs, number of parameters and peak memory usage.
The throughput and peak memory are measured on a single V100-32GB GPU with
batch size fixed to 256 and mixed precision. For ResNet [20] and RegNet [37] we report
the improved results from Wightman et al. [56]. Note that different models may have
received a different optimization effort. ↑R indicates that the model is fine-tuned at
the resolution R and -R indicates that the model is trained at resolution R.

Architecture nb params throughput FLOPs Peak Mem Top-1 V2
(×106) (im/s) (×109) (MB) Acc. Acc.

“Traditional” ConvNets

ResNet-50 [20,56] 25.6 2587 4.1 2182 80.4 68.7
ResNet-101 [20,56] 44.5 1586 7.9 2269 81.5 70.3
ResNet-152 [20,56] 60.2 1122 11.6 2359 82.0 70.6

RegNetY-4GF [37,56] 20.6 1779 4.0 3041 81.5 70.7
RegNetY-8GF [37,56] 39.2 1158 8.0 3939 82.2 71.1
RegNetY-16GF [37,47] 83.6 714 16.0 5204 82.9 72.4

EfficientNet-B4 [43] 19.0 573 4.2 10006 82.9 72.3
EfficientNet-B5 [43] 30.0 268 9.9 11046 83.6 73.6

EfficientNetV2-S [44] 21.5 874 8.5 4515 83.9 74.0
EfficientNetV2-M [44] 54.1 312 25.0 7127 85.1 75.5
EfficientNetV2-L [44] 118.5 179 53.0 9540 85.7 76.3

Vision Transformers derivative

PiT-S-224 [21] 23.5 1809 2.9 3293 80.9
PiT-B-224 [21] 73.8 615 12.5 7564 82.0
Swin-T-224 [31] 28.3 1109 4.5 3345 81.3 69.5
Swin-S-224 [31] 49.6 718 8.7 3470 83.0 71.8
Swin-B-224 [31] 87.8 532 15.4 4695 83.5
Swin-B-384 [31] 87.9 160 47.2 19385 84.5

Vision MLP & Patch-based ConvNets

Mixer-B/16 [45] 59.9 993 12.6 1448 76.4 63.2
ResMLP-B24 [46] 116.0 1120 23.0 930 81.0 69.0
PatchConvNet-S60-224 [48] 25.2 1125 4.0 1321 82.1 71.0
PatchConvNet-B60-224 [48] 99.4 541 15.8 2790 83.5 72.6
PatchConvNet-B120-224 [48] 188.6 280 29.9 3314 84.1 73.9
ConvNeXt-B-224 [32] 88.6 563 15.4 3029 83.8 73.4
ConvNeXt-B-384 [32] 88.6 190 45.0 7851 85.1 74.7
ConvNeXt-L-224 [32] 197.8 344 34.4 4865 84.3 74.0
ConvNeXt-L-384 [32] 197.8 115 101.0 11938 85.5 75.3

Our Vanilla Vision Transformers

ViT-S 22.0 1891 4.6 987 81.4 70.5
ViT-S↑384 22.0 424 15.5 4569 83.4 73.1
ViT-B 86.6 831 17.5 2078 83.8 73.6
ViT-B↑384 86.9 190 55.5 8956 85.0 74.8
ViT-L 304.4 277 61.6 3789 84.9 75.1
ViT-L↑384 304.8 67 191.2 12866 85.8 76.7
ViT-H 632.1 112 167.4 6984 85.2 75.9



Revenge of the ViT 25

Table 14: Classification with Imagenet-21k training. We compare architec-
tures with comparable FLOPs and number of parameters. All models are trained on
ImageNet-21k without distillation nor self-supervised pre-training. We report Top-1 ac-
curacy on the validation set of ImageNet-1k and ImageNet-V2 with different measure
of complexity: throughput, FLOPs, number of parameters and peak memory usage.
The throughput and peak memory are measured on a single V100-32GB GPU with
batch size fixed to 256 and mixed precision. For Swin-L we decrease the batch size to
128 in order to avoid out of memory error and re-estimate the memory consumption.
↑R indicates that the model is fine-tuned at the resolution R.

Architecture nb params throughput FLOPs Peak Mem Top-1 V2
(×106) (im/s) (×109) (MB) Acc. Acc.

“Traditional” ConvNets

R-101x3↑384 [25] 388 204.6 84.4
R-152x4↑480 [25] 937 840.5 85.4

EfficientNetV2-S↑384 [44] 21.5 874 8.5 4515 84.9 74.5
EfficientNetV2-M↑480 [44] 54.1 312 25.0 7127 86.2 75.9
EfficientNetV2-L↑480 [44] 118.5 179 53.0 9540 86.8 76.9
EfficientNetV2-XL↑512 [44] 208.1 94.0 87.3 77.0

Patch-based ConvNets

ConvNeXt-B [32] 88.6 563 15.4 3029 85.8 75.6
ConvNeXt-B↑384 [32] 88.6 190 45.1 7851 86.8 76.6
ConvNeXt-L [32] 197.8 344 34.4 4865 86.6 76.6
ConvNeXt-L↑384 [32] 197.8 115 101 11938 87.5 77.7
ConvNeXt-XL [32] 350.2 241 60.9 6951 87.0 77.0
ConvNeXt-XL↑384 [32] 350.2 80 179.0 16260 87.8 77.7

Vision Transformers derivative

Swin-B [31] 87.8 532 15.4 4695 85.2 74.6
Swin-B↑384 [31] 87.9 160 47.0 19385 86.4 76.3
Swin-L [31] 196.5 337 34.5 7350 86.3 76.3
Swin-L↑384 [31] 196.7 100 103.9 33456 87.3 77.0

Vanilla Vision Transformers

ViT-B/16 [41] 86.6 831 17.6 2078 84.0
ViT-B/16↑384 [41] 86.7 190 55.5 8956 85.5
ViT-L/16 [41] 304.4 277 61.6 3789 84.0
ViT-L/16↑384 [41] 304.8 67 191.1 12866 85.5

Our Vanilla Vision Transformers

ViT-S 22.0 1891 4.6 987 83.1 73.8
ViT-B 86.6 831 17.6 2078 85.7 76.5
ViT-B↑384 86.9 190 55.5 8956 86.7 77.9
ViT-L 304.4 277 61.6 3789 87.0 78.6
ViT-L↑384 304.8 67 191.2 12866 87.7 79.1
ViT-H 632.1 112 167.4 6984 87.2 79.2
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Model
Params Flops ImageNet-1k
(×106) (×109) orig. val real v2

ViT-S [47] 22.0 4.6 79.8 80.4 86.1 69.7
ViT-B [12,47] 86.6 17.6 81.8 83.1 87.7 72.6

PiT-S [21] 23.5 2.9 80.9 80.4 86.1 69.2
PiT-B [21] 73.8 12.5 82.0 82.4 86.8 72.0

TNT-S [18] 23.8 5.2 81.5 81.4 87.2 70.6
TNT-B [18] 65.6 14.1 82.9 82.9 87.6 72.2

ConViT-S [7] 27.8 5.8 81.3 81.3 87.0 70.3
ConViT-B [7] 86.5 17.5 82.4 82.0 86.7 71.3

Swin-S [31] 49.6 8.7 83.0 82.1 86.9 70.7
Swin-B [31] 87.8 15.4 83.5 82.2 86.7 70.7

CaiT-B12 [50] 100.0 18.2 83.3 87.7 73.3

Table 15: We report the performance reached with our training recipe with 400 epochs
at resolution 224×224 for other transformers architectures. We have not performed an
extensive grid search to adapt the hyper-parameters to each architecture. Our results
are overall similar to the ones achieved in the papers where these architectures were
originally published (reported in column ’orig.’), except for Swin Transformers, for
which we observe a drop on ImageNet-val.

Crop. LS Mixup
Aug. #Imnet21k finetuning Imagenet-1k val top-1 Imagenet-1k v2 top-1
policy epochs resolution ViT-S ViT-B ViT-L ViT-S ViT-B ViT-L

RRC ✗ 0.8 RA 90 2242 81.6 84.6 86.0 70.7 74.7 76.4
SRC ✗ 0.8 RA 90 2242 82.1 84.8 86.3 71.8 75.0 76.7
SRC ✓ 0.8 RA 90 2242 82.4 85.0 86.4 72.4 75.7 77.4
SRC ✓ ✗ RA 90 2242 82.3 85.1 86.5 72.4 75.6 77.2
SRC ✓ ✗ 3A 90 2242 82.6 85.2 86.8 72.6 76.1 78.3
SRC ✓ ✗ 3A 240 2242 83.1 85.7 87.0 73.8 76.5 78.6

SRC ✓ ✗ 3A 240 3842 84.8 86.7 87.7 75.1 77.9 79.1

Table 16: Ablation path: augmentation and regularization with ImageNet-21k pre-
training (at resolution 224×224) and ImageNet-1k fine-tuning. We measure the impact
of changing Random Resize Crop (RRC) to Simple Random Crop (SRC), adding Lay-
erScale (LS), removing Mixup, replacing RandAugment (RA) by 3-Augment (3A),
and finally employing a longer number of epochs during the pre-training phase on
ImageNet-21k. All experiments are done with Seed 0 with fixed hparams except the
drop-path rate of stochastic depth, which depends on the model and is increased by
0.05 for the longer pre-training. We report 2 digits top-1 accuracy but note that the
standard standard deviation is around 0.1 on our ViT-B baseline. Note that all these
changes are neutral w.r.t. complexity except in the last row, where the fine-tuning at
resolution 384×384 significantly increases the complexity.


