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1 Architecture of Local Count Networks

For our local count models, we adopted all the convolutional layers in VGG16 [2]
to extract feature maps, then we used a regression head consisting of two 3 ×
3 convolutional layers (512 and 1 output channels, respectively) to map local
features to local counts, as shown in Fig. 1. The size of the local patch is 32×32.

Fig. 1. Architecture of local count models. “VGG16” denotes all of the convolutional
layers in VGG16 [2], “regressor” is consisted of two 3× 3 convolutional layers with 512
and 1 output channels, respectively. In this example, H = W = 128 and Hc = Wc = 4.

2 Additional Experiment on Real-World Datasets

2.1 Analysis of Global Count Loss Lgc

Fig. 2 presents an example of error matrix E of local count, Sa and Sm. Since
the error of the image is 3.8 (> 0), Sa selects the the local image patches with
E(j, k) > 0. Sm further selects the patches with error 1.50 and 2.3, the sum of
which is equal to the global error 3.8.



2 Xiong et al.

Fig. 2. An example of Sa
i of L0

bias and Sm
i of Lλ

bias. E denotes the error of local counts.

Fig. 3. Visualization of Sa of L0
bias (left) and Sm of Lλ

bias (right) during training. S =
0/1 denotes the sample with prediction inside/outside the interval range. Sm = k|S = j
denotes the proportion of samples among S = j which satisfies Sm = k.

We further compare Sa, Sm during the training phase in Fig. 3. At the begin-
ning of training phase, L0

bias considers nearly half of the local counts Cpre
i within

the class intervals, which harms the discrete constraints; while Lλ
bias considers a

small portion of the samples predicted within the class intervals, which mainly
contribute to the error of global counts. In this way, Lλ

bias does not harm the dis-
crete regression loss Ldc during training, and is helpful to reduce discretization
error when most samples are predicted within class intervals at late epochs.

3 DC-regression With Various Backbones

In the paper, we adopt VGG16 [2] as backbone for dc-regression for fair compar-
ison with other methods. Here we evaluate dc-regression with more backbones,
including SWIN [1] and efficient network [4].

Table 1. Comparison Different Network Backbone on JHU dataset [3].

Backbone MAE MSE

VGG16 [2] 64.8 282.6
SWIN-T [1] 62.2 242.2
SWIN-L [1] 61.5 259.1
effnet-b4 [4] 65.5 251.1
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