Discrete-Constrained Regression for Local Counting Models —Supplementary Materials

Haipeng Xiong^[0000-0002-8858-3807] and Angela Yao^[0000-0001-7418-6141]

National University of Singapore, Singapore {haipeng,ayao}@comp.nus.edu.sg

1 Architecture of Local Count Networks

For our local count models, we adopted all the convolutional layers in VGG16 [2] to extract feature maps, then we used a regression head consisting of two 3×3 convolutional layers (512 and 1 output channels, respectively) to map local features to local counts, as shown in Fig. 1. The size of the local patch is 32×32 .

Fig. 1. Architecture of local count models. "VGG16" denotes all of the convolutional layers in VGG16 [2], "regressor" is consisted of two 3×3 convolutional layers with 512 and 1 output channels, respectively. In this example, H = W = 128 and $H_c = W_c = 4$.

2 Additional Experiment on Real-World Datasets

2.1 Analysis of Global Count Loss $L_{\rm gc}$

Fig. 2 presents an example of error matrix E of local count, S^a and S^m . Since the error of the image is 3.8 (> 0), S^a selects the the local image patches with E(j,k) > 0. S^m further selects the patches with error 1.50 and 2.3, the sum of which is equal to the global error 3.8.

2 Xiong et al.

Ε			S ^a			S^m		
-0.10	-0.10	-0.10	0	0	0	0	0	0
-0.10	0.10	0.20	0	1	1	0	0	0
0.10	1.50	2.30	1	1	1	0	1	1

Fig. 2. An example of S_i^a of L_{bias}^0 and S_i^m of L_{bias}^λ . *E* denotes the error of local counts.

Fig. 3. Visualization of S^a of L^0_{bias} (left) and S^m of $L^{\lambda}_{\text{bias}}$ (right) during training. S = 0/1 denotes the sample with prediction inside/outside the interval range. $S^m = k | S = j$ denotes the proportion of samples among S = j which satisfies $S^m = k$.

We further compare S^a , S^m during the training phase in Fig. 3. At the beginning of training phase, L_{bias}^0 considers nearly half of the local counts C_i^{pre} within the class intervals, which harms the discrete constraints; while $L_{\text{bias}}^{\lambda}$ considers a small portion of the samples predicted within the class intervals, which mainly contribute to the error of global counts. In this way, $L_{\text{bias}}^{\lambda}$ does not harm the discrete regression loss L_{dc} during training, and is helpful to reduce discretization error when most samples are predicted within class intervals at late epochs.

3 DC-regression With Various Backbones

In the paper, we adopt VGG16 [2] as backbone for dc-regression for fair comparison with other methods. Here we evaluate dc-regression with more backbones, including SWIN [1] and efficient network [4].

Table 1. Comparison Different Network Backbone on JHU dataset [3].

Backbone	MAE	MSE
VGG16 [2]	64.8	282.6
SWIN-T $[1]$	62.2	242.2
SWIN-L [1]	61.5	259.1
effnet-b 4 $\left[4\right]$	65.5	251.1

References

- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022 (2021)
- 2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)
- 3. Sindagi, V.A., Yasarla, R., Patel, V.M.: Jhu-crowd++: Large-scale crowd counting dataset and a benchmark method. Technical Report (2020)
- Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: International conference on machine learning. pp. 6105–6114. PMLR (2019)