
Supplementary Materials: Sliced Recursive
Transformer

Zhiqiang Shen1,2,3, Zechun Liu2,4, and Eric Xing1,3

1 Carnegie Mellon University, Pittsburgh, USA
2 Hong Kong University of Science and Technology, Hong Kong, China

3 Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
4 Reality Labs, Meta Inc.

zhiqiangshen@cse.ust.hk,zechunliu@fb.com,epxing@cs.cmu.edu

Appendix

In this appendix, we provide details omitted in the main text, including:

• Section 1: Proof for equivalency of global self-attention and sliced group self-
attention with recursive operation on FLOPs. (Sec. 4 “Approximating Global
Self-Attention via Permutation of Group/Local Self-Attentions” of the main
paper.)

• Section 2: Results of SReT on ImageNet ReaL [2] and ImageNetV2 [11]
datasets. (Sec. 5 “Experiments and Analysis” of the main paper.)

• Section 3: More ablation results on different permutation designs and
numbers of groups when approximating global self-attention on ImageNet-1K.
(Sec. 5.3 “Ablation Studies” of the main paper.)

• Section 4: Pseudocode for implementing sliced group self-attention. (Sec. 4
“Approximating Global Self-Attention via Permutation of Group/Local Self-
Attentions” of the main paper.)

• Section 5: Implementation details of training on ImageNet-1K. (Sec. 5.1
“Datasets and Experimental Settings” of the main paper.)

• Section 6: Hyper-parameters setting for training language models onWMT14
En-De and IWSLT14 De-En datasets. (Sec. 5.1 “Datasets and Experimental Set-
tings” and Sec. 5.6 “Neural Machine Translation” of the main paper.)

• Section 7: Details of our SReT-T, SReT-TL, SReT-S and SReT-B architec-
tures. (Sec. 3 “Recursive Transformer” and Sec. 5.3. “Ablation Studies” of the
main paper.)

• Section 8: Details of All-MLP structure. (Sec. 5.5 “All-MLP Architecture”
of the main paper.)

• Section 9: Ablation study on different LRC designs. (Sec. 3 “Recursive
Transformer” and Sec. 5.8 “Analysis and Understanding” of the main paper.)

• Section 10: Observations of Response Maps. (Sec. 5.8 “Analysis and Un-
derstanding” of the main paper.)

• Section 11: More evolution visualization of LRC coefficients on ImageNet-
1K dataset. (Sec. 5.8 “Analysis and Understanding” of the main paper.)



2 Zhiqiang Shen et al.

• Section 12: Evolution visualization of LRC coefficients in language model
on WMT14 En-De dataset. (Sec. 5.6 “Neural Machine Translation” and Sec. 5.8
“Analysis and Understanding” of the main paper.)

• Section 13: More ablation results on directly expanding the depth of base-
line DeiT model on ImageNet-1K dataset. (Sec. 5.8 “Analysis and Understand-
ing” of the main paper.)

• Section 14: More definitions and explanations of difference to prior arts.
(Sec. 2 “Related Work” of the main paper.)

1 FLOPs Analysis

One of the key benefits of our SReT is to control the complexity of a recursive
network. We analyze the FLOPs of global (i.e., original) and sliced group self-
attentions and compare them with different circumstances of groups in a vision
transformer. In this section, we provide a proof to Theorem 1 which we restate
below.

Theorem 1. (Equivalency of global self-attention and group self-
attention with recursive operation on FLOPs.) Let {Nℓ,Gℓ} ∈ R1, when
Nℓ = Gℓ, FLOPs(1 V-SA) = FLOPs(Nℓ× Recursive with Gℓ× G-SAs).
The complexity of regular and group self-attentions can be calculated as: (For
simplicity, here we assume #groups and vector dimensions in each recursive
operation are the same.)

CG-SA =
Nℓ

Gℓ
×CV-SA (1)

where Nℓ is the number of recursive operation and Gℓ is the number of group
self-attentions in layer ℓ, i.e., ℓ-th recursive block. V-SA and G-SA represent
the vanilla and group self-attentions, respectively.

Proof. (Theorem 1) The complexity C of regular self-attention can be calculated
as:

CV-SA = O(L2
ℓ ×Dℓ) (2)

where Lℓ is the sequence length and Dℓ is the dimensionality of the latent
representations.

The complexity of simple recursive operation without group will be:

Crecursive = O(Nℓ × L2
ℓ ×Dℓ) (3)

where Nℓ is the number of recursive operation.
The complexity of sliced group self-attentions with a recursive block can be

calculated as:

CG-SA = O(

Nℓ∑
i

(giℓ × (
Lℓ

giℓ
)2 × di

ℓ))

= O(

Nℓ∑
i

(
L2
ℓ

giℓ
× di

ℓ))

(4)



Sliced Recursive Transformer 3

where giℓ ∈ {Gℓ}, di
ℓ ∈ {Dℓ}, i = 1, . . . ,Nℓ.

Consider the condition of #groups giℓ and vector dimension di
ℓ in each re-

cursive operation are the same. The complexity of group self-attentions can be
re-formulated as:

CG-SA = O(Nℓ ×
L2
ℓ

Gℓ
×Dℓ) =

Nℓ

Gℓ
×CV-SA (5)

whereGℓ is the number of group self-attentions. WhenNℓ = Gℓ,CV-SA = CG-SA

and if Nℓ<Gℓ, CG-SA<CV-SA.

2 More Results and Comparisons on ImageNet ReaL [2]
and ImageNetV2 [11] Datasets

In this section, we provide results on ImageNet ReaL [2] and ImageNetV2 [11]
datasets. On ImageNetV2 [11], we verify our SReT models on three metrics “Top-
Images”, “Matched Frequency”, and “Threshold 0.7”. The results are shown
in Table 1, we achieve consistent improvement over DeiT on various network
architectures.

Table 1. More Comparison of SReT on ReaL [2] and ImageNetV2 [11] datasets.

Method Network #Parames FLOPs ImageNet ReaL
ImageNetV2 ImageNetV2 ImageNetV2
Top-images Matched-frequency Threshold-0.7

DeiT [17] Tiny 5.7 1.3 72.2 80.1 74.4 59.9 68.5
SReT Tiny 4.8 1.1 76.0 83.1 77.9 64.0 72.8

DeiT [17] Tiny+Distill 5.7 1.3 74.5 82.1 77.0 62.3 71.1
SReT Tiny+Distill 4.8 1.1 77.6 84.4 79.6 65.7 74.2

DeiT [17] Small 22.1 4.6 79.8 85.7 81.0 68.1 76.4
SReT Small 20.9 4.2 81.9 86.7 82.8 70.3 78.1

DeiT [17] Small+Distill 22.1 4.6 81.2 86.8 82.5 69.7 77.5
SReT Small+Distill 20.9 4.2 82.7 88.1 84.0 72.3 79.9

3 Ablation Results on Different Permutation Designs and
Groups Numbers

In this section, we explore the different permutation designs and the principle of
choosing group numbers for the best accuracy-FLOPs trade-off. We propose to
insert an inverse permutation layer to preserve the input order information after
the sliced group self-attention operation. The formulation of this operation is
shown in Fig. 1 and the ablation results for this design are given in Table 2 of the
first group. In the table, “P” represents the permutation layer, “I” represents the
inverse permutation layer and “L” indicates that we did not involve permutation
and inverse permutation in the last stage of models when the number of groups
equals 1. We use SReT-T and SReT-TL as the base structures for the ablation of



4 Zhiqiang Shen et al.

Permutation

…

1 2 3 4 5 6 7 8 9

6 23 1 7 9 48 5

6 23 1 7 9 48 5

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Inverse permutation

Recursive

Fig. 1. Details of group self-attention with permutation designs.

different groups. In the Groups column of the table, we applied two loops of
recursion in each recursive block according to the ablation study in Table 1 of our
main text. In each pair of the square brackets, the values denote the number of
groups for each recursion, and each pair of square brackets represents one stage
of blocks in the spatial pyramid based backbone network. We use [8,2][4,1][1,1]
as our final SReT structure design since it has the best trade-off on accuracy and
computational cost.

Table 2. Ablation results of SReT-T and SReT-TL with different group designs.

Groups Net Layers Params (M) #FLOPs (B) Top-1 (%)

[8,8][4,4][1,1] P 20 4.99 1.08 75.41

[8,8][4,4][1,1] P+I 20 4.99 1.08 75.94

[8,8][4,4][1,1] P+I-L 20 4.99 1.08 76.06

[1,1][1,1][1,1] SReT-⋇T 20 4.76 1.38 76.07

[8,8][4,4][1,1] SReT-T 20 4.76 1.03 75.73

[16,2][4,2][1,1] SReT-T 20 4.76 1.01 75.79

[8,2][4,1][1,1] SReT-T 20 4.76 1.12 75.97

[1,1][1,1][1,1] SReT-⋇TL 20 4.99 1.43 76.78

[8,8][4,4][1,1] SReT-TL 20 4.99 1.08 76.06

[8,4][4,2][1,1] SReT-TL 20 4.99 1.14 76.16

[8,2][4,1][1,1] SReT-TL 20 4.99 1.18 76.65

[8,1][4,1][1,1] SReT-TL 20 4.99 1.25 76.72

[16,1][14,1][1,1] SReT-TL 20 4.99 1.24 76.56

[49,1][28,1][1,1] SReT-TL 20 4.99 1.23 76.30



Sliced Recursive Transformer 5

Table 3. Hyper-parameter details of
conventional training.

Method SReT-T SReT-TL SReT-S
Epoch 300 300 300
Batch size 1024 1024 512
Optimizer AdamW AdamW AdamW
Learning rate 0.001 0.001 0.001
Weight decay 0.05 0.05 0.05
Warmup epochs 5 5 5
Label smoothing 0.1 0.1 0.1
Stoch. Depth 0.1 0.1 0.2

Table 4. Hyper-parameter details of soft
distillation training.

Method DeiT SReT
Label one-hot+hard distillation soft distillation
Epoch 300 300
Batch size 1024 1024
Optimizer AdamW AdamW
Learning rate 0.001 0.001

Table 5. Hyper-parameter details of
higher-resolution finetuning.

Method DeiT SReT
Resolution 384 384
Weight decay 1e-8 0.0
Learning rate 5e-6 5e-6

4 Pseudocode for Sliced Group Self-attention

The PyTorch pseudocode for implementation of our sliced group self-attention
is shown in Algorithm 1.

5 Training Details on ImageNet-1K

On ImageNet-1K, we conduct experiments on three training schemes: (1) con-
ventional training with one-hot labels; (2) distillation with soft labels from a
pre-trained teacher; (3) finetuning from distilled parameters with higher resolu-
tion. Our training settings and hyper-parameters mainly follow the designs of
DeiT [17]. A detailed introduction of these settings is shown in Table 3, 4 and 5
with an item-by-item comparison.
Conventional Training from Scratch with One-hot Label. As shown in
Table 3, we use batch-sizes of 512/1024 for training our models and the default
initial learning rate is 1e-3, while from our experiments, larger initial lr of 2e-
3 with more warmup epochs of 30 can favorably improve the accuracy. Other
settings are following [17].

(2)(1) (3)

Fig. 2. A comprehensive ablation study on different design factors.

Distillation Strategy. Knowledge distillation [6] is a popular way to boost the
performance of a student network. Recently, many promising results [9,15,19]



6 Zhiqiang Shen et al.

have been achieved using this technique. On vision transformer, DeiT [17] pro-
posed to distill tokens together with hard predictions from the teacher, and it
claimed that using one-hot label with hard distillation can achieve the best ac-
curacy. This seems counterintuitive since soft labels can provide more subtle
differences and fine-grained information of the input. In this work, through a
proper distillation scheme, our soft label based distillation framework (one-hot
label is not used) consistently obtained better performance than DeiT. Our loss
is a soft version of cross-entropy between teacher and student’s outputs as used
in [12,1,13]:

LCE(SW) = − 1

N

N∑
i=1

PTW
(z) logPSW

(z) (6)

where PTW
and PSW

are the outputs of teacher and student, respectively.

Distillation from Scratch. As shown in Table 4, we use soft predictions solely
from RegNetY-16GF [10] as a teacher instead of one-hot label + hard distillation
used in [17]. The ablation study on this point is provided in Fig. 2 (1) with
SReT-T.

Global Average Pooling

Fully-connected

…

class token

distillation token

class loss

distill loss

M
HSA
FFN

M
HSA
FFN

Fig. 3. Our modifications by remov-
ing class token and distillation token.

Spatial Pyramid (SP) Design. Pyra-
mids [7,4] are an effective design in conven-
tional vision tasks. The resolution of the
shallow stage in a network is usually large,
SP can help to redistribute the computa-
tion from shallow to deep stages of a net-
work according to their representation abil-
ity. Here, we follow the construction princi-
ples [5] but replacing the first patch embed-
ding layer with a Stem block (i.e., a stack
of three 3×3 convolution layers with stride
= 2) following [14].

Other Small Modifications. Considering the unique properties of vision modal-
ity compared to the language, we further apply some minor modifications on our
network design, some of them have been proven useful on CNNs in the vision
domain, including: (i) We remove the class token and replace with a global aver-
age pooling (GAP) on the last output together with a fully-connected layer; (ii)
We also remove the distillation token if the training process involves KD, which
means we use the same feature embedding for both the ground-truth labels in
standard training, and distillation with soft labels from the teacher. (iii) When
fine-tuning from low resolution (224×224) to high resolution (384×384) [17],
following the perspective of [15] that to increase the capacity of a model, we
do not apply weight decay (set it as 0) during fine-tuning. Generally, the above
modifications can slightly save parameters, boost the performance and signifi-
cantly improve the simplicity of the whole framework. The illustration of these
modifications is shown in Fig. 3.



Sliced Recursive Transformer 7

(1) WMT14 De-En

(2) IWSLT14 De-En

Fig. 4. Comparison of BLEU, training loss and val loss on WMT14 En-De (top) and
IWSLT14 De-En datasets (bottom). The red dashed box indicates that LRC makes
training more stable.

6 Hyper-parameter Settings of Language Models

We test our proposed method on two public language datasets: IWSLT14 De-
En and WMT14 En-De translation tasks. We describe experimental settings in
detail in Table 6.

Network Configurations.We use the Transformer [18] implemented in Fairseq [3]
that shares the decoder input and output embedding as the basic NMT model.

7 Details of Our SReT Architectures

The details of our SReT-T, SReT-TL, SReT-S and SReT-B architectures are shown
in Table 7. In each recursive transformer block [[.]×A]×B, A is the number of
blocks with self-contained (non-shared) parameters, B is the number of recursive
operations for each block. For C×FFN andD×NLL, C andD are the dimensions
(ratios) of hidden features between the two fully-connected layers.

8 All-MLP Structure

We use B/16 in Mixer architectures [16] as our backbone network. In particular,
it contains 12 layers, the patch resolution is 16 × 16, the hidden size C is 768,
the sequence length S is 196, the MLP dimension DC and DS are 3072 and 384,
respectively.



8 Zhiqiang Shen et al.

Table 6. Training details of our language models. The architectures we used are in
Fairseq [3].

Method IWSLT14 De-En WMT14 En-De

arch transformer iwslt de en transformer wmt en de
share decoder input output embed True True

optimizer Adam Adam
adam-betas (0.9, 0.98) (0.9, 0.98)
clip-norm 0.0 0.0

learning rate 5e-4 5e-4
lr scheduler inverse sqrt inverse sqrt
warmup updates 4K 4K
dropout 0.3 0.3
weight decay 0.0001 0.0001

criterion label smoothed cross-entropy label smoothed cross-entropy
label smoothing 0.1 0.1
max tokens 4096 4096

addition

"

L-Norm

Self-Att

Drop-path

×learnable #

addition

L-Norm

MLP

×learnable %

Drop-path

addition

"

L-Norm

Self-Att

Drop-path

×learnable # × learnable $

addition

L-Norm

MLP

×learnable % × learnable &

Drop-path

addition

"

L-Norm

Self-Att

Drop-path

× learnable $

addition

L-Norm

MLP

× learnable &

Drop-path

(1) (2) (3)

Fig. 5. Ablation study on different LRC designs.

9 Ablation Study on Different LRC Designs

In this section, we verify the effectiveness of different LRC designs as shown
in Fig. 5, including: (1) learnable coefficients on the identity mapping branch;
(2) learnable coefficients on the main self-attention/MLP branch; (3) our used
design in the main text, i.e., including learnable coefficients on both branches.

The quantitative results of different LRC designs are shown in Table 8, we
can observe that strategy (1) is slightly better than (2), while, (3) can achieve
consistent improvement over (1) and (2), and it is applied in our main text.
We further visualize more evolution visualizations on various layers/depths of
our SReT-TL architecture. The results are shown in Fig. 6 and the analysis is
provided in Sec. 11.



Sliced Recursive Transformer 9

Table 7. SReT architectures (Input size is 3×224 × 224, sliced group self-attention is
not included for simplicity.)

Layers Output Size SReT-T SReT-TL

Stem

Conv-BN-ReLU 32×112×112 3×3 conv, stride 2 3×3 conv, stride 2

Conv-BN-ReLU 64×56×56 3×3 conv, stride 2 3×3 conv, stride 2

Conv-BN-ReLU 64×28×28 3×3 conv, stride 2 3×3 conv, stride 2

Recursive T Block

(1)
64×28×28

[[
64-dim MHSA

3.6×FFN/1.0×NLL

]
× 2

]
× 2

[[
64-dim MHSA

4.0×FFN/1.0×NLL

]
× 2

]
× 2

Conv-Pooling Layer (1) 128×14×14 3×3 conv, stride 2, group 64 3×3 conv, stride 2, group 64

Recursive T Block

(2)
128×14×14

[[
128-dim MHSA

3.6×FFN/1.0×NLL

]
× 5

]
× 2

[[
128-dim MHSA

4.0×FFN/1.0×NLL

]
× 5

]
× 2

Conv-Pooling Layer (2) 256×7×7 3×3 conv, stride 2, group 128 3×3 conv, stride 2, group 128

Recursive T Block

(3)
256×7×7

[[
256-dim MHSA

3.6×FFN/1.0×NLL

]
× 3

]
× 2

[[
256-dim MHSA

4.0×FFN/1.0×NLL

]
× 3

]
× 2

Global Average Pooling 256×1×1 AdaptiveAvgPool AdaptiveAvgPool

Linear Layer 1000

#Params (M) 4.8 M 5.0 M

Accuracy (%) 76.1 76.8

Distilled Accuracy (%) 77.7 77.9

Finetuning Accuracy ↑384 (%) 79.7 80.0

Layers Output Size SReT-S Output Size SReT-B

Stem

Conv-BN-ReLU 63×112×112 3×3 conv, stride 2 96×112×112 3×3 conv, stride 2

Conv-BN-ReLU 126×56×56 3×3 conv, stride 2 168×56×56 3×3 conv, stride 2

Conv-BN-ReLU 126×28×28 3×3 conv, stride 2 336×28×28 3×3 conv, stride 2

Recursive T Block

(1)
126×28×28

[[
126-dim MHSA

3.0×FFN/2.0×NLL

]
× 2

]
× 2 336×28×28

[[
336-dim MHSA

3.0×FFN/2.0×NLL

]
× 2

]
× 2

Conv-Pooling Layer (1) 252×14×14 3×3 conv, stride 2, group 126 672×14×14 3×3 conv, stride 2, group 336

Recursive T Block

(2)
252×14×14

[[
252-dim MHSA

3.0×FFN/2.0×NLL

]
× 5

]
× 2 672×14×14

[[
672-dim MHSA

3.0×FFN/2.0×NLL

]
× 5

]
× 2

Conv-Pooling Layer (2) 504×7×7 3×3 conv, stride 2, group 252 1344×7×7 3×3 conv, stride 2, group 672

Recursive T Block

(3)
504×7×7

[[
504-dim MHSA

3.0×FFN/2.0×NLL

]
× 3

]
× 2 1344×7×7

[[
1344-dim MHSA

3.0×FFN/2.0×NLL

]
× 3

]
× 2

Global Average Pooling 504×1×1 AdaptiveAvgPool 1344×1×1 AdaptiveAvgPool

Linear Layer 1000

#Params (M) 20.9 M 71.2 M

Accuracy (%) 82.0 82.7

Distilled Accuracy (%) 82.8 83.7

Finetuning Accuracy ↑384 (%) 83.8 84.8

10 Observations of Response Maps

We have a few interesting observations on the visualizations of Fig. 8 (main text):
(1) In the uniform size of transformer DeiT, information in the shallow layers is
basically vague, blurry and lacks details. In contrast, the high-level layers contain
stronger semantic information and are more aligned with the input. However,
our model has a completely different behavior: first, in the same block but with
different recursive operations, we can observe that the features are hierarchical
(in Fig. 8 of main text (2)). Taken as a whole, shallow layers can capture more
details like edges, shapes and contours and deep layers focus on the high-level
semantic information, which is similar to CNNs. We emphasize such hierarchical
representation enabled by recursion and spatial pyramid is critical for vision
modality like images.



10 Zhiqiang Shen et al.

Table 8. Ablation study on different LRC designs.

Method #Params (M) Top-1 Acc. (%)

Baseline (SReT-TL w/o LRC) 5.0 74.7

on x branch (1) 5.0 75.0

on f branch (2) 5.0 74.9

on both (3) 5.0 75.2

11 More Evolution Visualization of LRC Coefficients on
ImageNet-1K Dataset

The visualizations of coefficients evolution at different recursive blocks and layers
are shown in Fig. 5. Intriguingly, we can observe in the deep layers of recursive
blocks, α tends to be one stably during the whole training. Other coefficients on
the identity mapping (γ and ζ) are holding fixed values that are also close to
one during the training. This phenomenon indicates that the identity mapping
branch tends to pass the original signal with small scaling. Moreover, it seems the
contributions of the two branches have a particular proportion for the particular
depth of layers.

12 Evolution Visualization of LRC Coefficients on
Language Model

The visualization of coefficients evolution on the language model is shown in
Fig. 7. Different from the evolution in vision transformer models, the coefficients
in language model are more stable during training with small variance. Also,
they are symmetrical with value one.

13 More Ablation Results on Directly Enlarging Depth
of Baseline DeiT Model

In this section, we provide the results by directly expanding the depth of baseline
DeiT model, as shown in Table 9. We can see deeper näıve DeiT could not bring
additional gain on performance since the deeper and heavier network is usually
more difficult to learn meaningful and diverse intermediate features, while our
recursive operation through sharing/reusing parameters is an effective way to
enlarge the depth of a transformer, meanwhile, obtaining extra improvement.

14 More Explanations and Definitions

Difference to Prior Arts: On CNNs, ShuffleNet [20] uses inerratic shuffle for
efficient design while it is not truly random. Thus, there is no inverse opera-
tion involved. In contrast, our permutation is entirely stochastic and inverse is



Sliced Recursive Transformer 11
Table 9. More ablation results on directly expanding depth of baseline DeiT model.
* indicates that the total number layers of our network is 20 (recursive transformer
blocks) + 10 (NLL) + 3 (image patch embeddings). Permutation and inverse permu-
tation layers are not included.

Method #Layers #Params (M) Top-1 Acc. (%)

DeiT-Tiny [17] 12 5.7 72.20

+ extend depth 24 11.55 77.35

+ extend depth 36 16.39 77.18

+ extend depth 48 21.73 75.89

Ours (SReT-S) 33* 20.90 81.90

crucial since self-attention is sensitive to tokens’ order. The näıve group self-
attention only has interaction within the window, Swin [8] addresses this us-
ing shifted windows across different layers. While, we solve it by integrating
“slice+permutation+recursion” on the same layer’s parameters, so each layer
enables to interact with all other windows, not across layers as Swin.
Feed-forward Networks, Recurrent Neural Networks and Recursive
Neural Networks. To clarify the definition of proposed recursive operation,
we distinct recursive neural networks from feed-forward networks and recurrent
neural networks. Feed-forward networks, such as CNNs and transformers, are
directed acyclic graphs (DAG). The information path in the feed-forward pro-
cessing is unidirectional, making the feed-forward networks hard to tackle the
structured data with long-span correlations. Recurrent networks (RNNs) are
usually developed to process the time-series and other sequential data. They
output predictions based on the current input and past memory, so they are ca-
pable of processing data that contains long-term interdependent compounds like
language. Recursive network is a less frequently used term compared to other
two counterparts. Recursive refers to repeating or reusing a certain piece of a
network. Different from RNNs that repeat the same block throughout the whole
network, recursive neural network selectively repeats critical blocks for particu-
lar purposes. The recursive transformer iteratively refines its representations for
all image patches in the sequence.



12 Zhiqiang Shen et al.

Algorithm 1 PyTorch-like Code for Sliced Group MHSA with 2× Recursion.

# num_groups1 and num_groups2: numbers of groups in different
recursions

# recursion: recursive indicator

class SG_Attention(nn.Module):
def __init__(self, dim, num_groups1=8, num_groups2=4, num_heads=8,

qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
# numbers of groups in different recursions
self.num_groups1 = num_groups1
self.num_groups2 = num_groups2
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5

self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)

def forward(self, x, recursion):
B, N, C = x.shape
if recursion == False:
num_groups = self.num_groups1
else:
num_groups = self.num_groups2
# we will not do permutation and inverse permutation if #group=1
if num_groups != 1:
idx = torch.randperm(N)
# perform permutation
x = x[:,idx,:]
# prepare for inverse permutation
inverse = torch.argsort(idx)

qkv = self.qkv(x).reshape(B, num_groups, N // num_groups, 3, self.
num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)

q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use
tensor as tuple)

attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)

x = (attn @ v).transpose(2, 3).reshape(B, num_groups, N // num_groups,
C)

x = x.permute(0, 3, 1, 2).reshape(B, C, N).transpose(1, 2)
if recursion == True and num_groups != 1:
# perform inverse permutation
x = x[:,inverse,:]
x = self.proj(x)
x = self.proj_drop(x)
return x
...



Sliced Recursive Transformer 13

Layer_1 Layer_2Recursive 1

Layer_3 Layer_4Recursive 2

Layer_17 Layer_18Recursive 9

Layer_19 Layer_20
Recursive 10

Fig. 6. Evolution of coefficients at different recursive blocks and layers.

1 21 41 61 81
Epoch

0.5

1.0

1.5

Va
lu

e

Evolution of coefficients in LRC

Fig. 7. Evolution of coefficients on language of WMT14 En-De dataset.



14 Zhiqiang Shen et al.

References

1. Bagherinezhad, H., Horton, M., Rastegari, M., Farhadi, A.: Label refinery:
Improving imagenet classification through label progression. arXiv preprint
arXiv:1805.02641 (2018) 6

2. Beyer, L., Hénaff, O.J., Kolesnikov, A., Zhai, X., Oord, A.v.d.: Are we done with
imagenet? arXiv preprint arXiv:2006.07159 (2020) 1, 3

3. FAIR: https://github.com/pytorch/fairseq 7, 8
4. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional

networks for visual recognition. IEEE transactions on pattern analysis and machine
intelligence 37(9), 1904–1916 (2015) 6

5. Heo, B., Yun, S., Han, D., Chun, S., Choe, J., Oh, S.J.: Rethinking spatial dimen-
sions of vision transformers. arXiv preprint arXiv:2103.16302 (2021) 6

6. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015) 5

7. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In: 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06). vol. 2, pp.
2169–2178 (2006) 6

8. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030 (2021) 11

9. Pham, H., Dai, Z., Xie, Q., Luong, M.T., Le, Q.V.: Meta pseudo labels. arXiv
preprint arXiv:2003.10580 (2020) 5

10. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network
design spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 10428–10436 (2020) 6

11. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do imagenet classifiers generalize
to imagenet? In: International Conference on Machine Learning. pp. 5389–5400.
PMLR (2019) 1, 3

12. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets:
Hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014) 6

13. Shen, Z., Liu, Z., Xu, D., Chen, Z., Cheng, K.T., Savvides, M.: Is label smoothing
truly incompatible with knowledge distillation: An empirical study. In: Interna-
tional Conference on Learning Representations (2021) 6

14. Shen, Z., Liu, Z., Li, J., Jiang, Y.G., Chen, Y., Xue, X.: Dsod: Learning deeply
supervised object detectors from scratch. In: Proceedings of the IEEE international
conference on computer vision. pp. 1919–1927 (2017) 6

15. Shen, Z., Savvides, M.: Meal v2: Boosting vanilla resnet-50 to 80%+ top-1 accuracy
on imagenet without tricks. In: NeurIPS Workshop (2020) 5, 6

16. Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T.,
Yung, J., Keysers, D., Uszkoreit, J., Lucic, M., Dosovitskiy, A.: Mlp-mixer: An
all-mlp architecture for vision. arXiv preprint arXiv:2105.01601 (2021) 7

17. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. arXiv preprint
arXiv:2012.12877 (2020) 3, 5, 6, 11

18. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NIPS (2017) 7

19. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves
imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 10687–10698 (2020) 5

https://github.com/pytorch/fairseq


Sliced Recursive Transformer 15

20. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 6848–6856 (2018) 10


