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Abstract. Learning from online data with noisy web labels is gaining
more attention due to the increasing cost of fully annotated datasets in
large-scale multi-label classification tasks. Partial (positive) annotated
data, as a particular case of data with noisy labels, are economically
accessible. And they serve as benchmarks to evaluate the learning ca-
pacity of state-of-the-art methods in real scenarios, though they con-
tain a large number of samples with false negative labels. Existing (par-
tial) multi-label methods are usually studied in the Euclidean space,
where the relationship between the label embeddings and image features
is not symmetrical and thus can be challenging to learn. To alleviate
this problem, we propose reformulating the task into a hyperspherical
space, where an angular margin can be incorporated into a hyperspher-
ical multi-label loss function. This margin allows us to effectively bal-
ance the impact of false negative and true positive labels. We further
design a mechanism to tune the angular margin and scale adaptively.
We investigate the effectiveness of our method under three multi-label
scenarios (single positive labels, partial positive labels and full labels)
on four datasets (VOC12, COCO, CUB-200 and NUS-WIDE). In the
single and partial positive labels scenarios, our method achieves state-of-
the-art performance. The robustness of our method is verified by com-
paring the performances at different proportions of partial positive la-
bels in the datasets. Our method also obtains more than 1% improve-
ment over the BCE loss even on the fully annotated scenario. Analysis
shows that the learned label embeddings potentially correspond to ac-
tual label correlation, since in hyperspherical space label embeddings and
image features are symmetrical and interchangeable. This further indi-
cates the geometric interpretability of our method. Code is available at
https://github.com/TencentYoutuResearch/MultiLabel-HML.

Keywords: Multi-Label Classification, Partial Labels, Label Correla-
tion

1 Introduction

Multi-label classification has a wide range of applications in generic scenarios,
including medical image processing [2], pedestrian attribute recognition [56] and

https://github.com/TencentYoutuResearch/MultiLabel-HML
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Fig. 1. The Overview of learning multi-label with Person and Car in 3D hyperspher-
ical space. In this case, the cosine similarity between multiple label embeddings and
image features is used as the metric for classification. With optimization, images with
the same labels are clustered together in a hypersphere. Best viewed in color.

image retrieval [53]. However, it is not easy to construct a large-scale multi-
label dataset by manual annotation. Human annotators need to learn about a
large number of nameable labels and assign positive labels accurately. Due to
the limitation of human knowledge and fatigue, human annotators tend to skip
some positive labels, causing false negatives to occur. In order to alleviate hu-
man labour, another effective strategy is to generate datasets from noisy web
labels [7]. In this way, the dataset is built by crawling web images by using the
labels as queries [26]. Therefore, only one correct label can be obtained for each
image; other unknown labels, whether they are actually present or not, are con-
sidered as negatives [12]. Those false negatives in annotations inevitably lead
to the degradation in the generalization capability of the network. To address
the problem of missing positive labels, our work focuses on studying false nega-
tive labels under three multi-label scenarios, consisting of single positive labels,
partial positive labels and full labels.

In full labels scenarios, the method on asymmetric loss [38] obtains gains on
performance by increasing the weights of hard samples. For noisy data, existing
approaches are more concerned with correcting inaccurate labels by pseudo-
labeling [36][45][1]. However, there is no unified perspective that can compre-
hensively handle different proportions of mislabeled samples in the multi-label
task. To further explore this issue, we propose to model the multi-label task in
the hyperspherical space, as shown in Fig. 1.

The motivation of this hyperspherical reformulation lies in two aspects. First,
the relationship between label embedding and image feature is expressed in terms
of the angle on the sphere, independent of the magnitude of label embedding or
image feature. In multi-label classification, the inter-class distribution is highly
imbalanced, which easily leads to poor generalization. With the metric of nor-
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malized embeddings and features, the contributions of each class are treated as
equal, thus avoiding overfitting [43]. Second, compared to the Euclidean space,
the similarity in hyperspherical space is bounded. It is convenient to use metric
learning to equalize the weights of samples in bounded space [9]. Especially in
noisy data, the weight of the false negatives is amplified during training. These
problems can be naturally addressed by incorporating an angular margin based
loss function in hyperspherical space. Comprehensively, our work proposes to
learn multi-label in hyperspherical space, which is proved to be valid for multi-
label datasets with different levels of noisy samples.

It is well known that significant improvement in multi-label classification can
be achieved by exploiting label correlations [21]. With the introduction of hy-
perspherical space, an additional benefit is that the model implicitly learns label
correlation. The cosine similarity between label embedding and image feature is
used to determine if the label is attached to the image. Since label embeddings
and image features are symmetrical and interchangeable in hyperspherical space,
the cosine similarity between label embeddings inherently illustrates the label
correlation.

In summary, the main contributions in this paper can be concluded as

– For the first time, the multi-label task is modelled in hyperspherical space,
which provides a new perspective for the field of multi-label learning.

– A novel angular margin based multi-label loss is presented to handle false
negatives in multi-label classification which cannot be dealt with in Eu-
clidean space due to unbounded distance.

– Our method is evaluated under the scenarios of single positive labels, partial
positive labels and full labels, demonstrating the effectiveness of the proposed
method.

– The geometric interpretability of the method is further explained by an anal-
ysis of label correlations.

2 Related Works

2.1 Learning from Noisy Labels

In multi-label tasks, incompletely labelled data will inevitably be used for train-
ing. To analyze the multi-label performance with noisy labels, previous works
propose a variety of scenarios [20][35][17]. One of the most commonly used is
weak label, which assumes the known labels are proper labels while unknown la-
bels are regarded as negatives [39][10][49]. In order to reduce the impact of false
negatives in weak label, unknown labels are not used for training in the partial
labels scenario [12][8][6][19]. In positive-unlabeled learning, only some positive
and unlabeled samples are accessed [27][13]. More strictly, Single positive labels
proposes the setup that only one single positive label is available for each im-
age at training time [7][51]. Our work mainly investigates learning multi-label
models with single and partial positive labels, which is the most practical and
economically accessible scenario of noise web labels, as web images are more
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likely to be published with incomplete correct labels than with completely cor-
rect labels or with incorrect labels. In the single positive labels scenario, the
performance gain of existing methods [7] is only seen on limited datasets, while
our proposed method consistently achieves the state-of-the-art performance on
multiple datasets, including VOC12 [14], COCO [28], CUB-200 [41] and NUS-
WIDE [5]. Our method also obtains significant improvement in the scenarios of
partial positive labels and full labels. Moreover, we compare with more noisy
single-label classification methods in supplementary material.

2.2 Hyperspherical Learning

Hyperspherical learning has made great progress in face recognition in recent
years [30][47]. NormFace [43] first introduces training embedding using normal-
ized features in face verification. Sphereface [29] proposes to learn embeddings
using large angular margin in open-set face recognition. CosFace [44], Additive
margin softmax [42] and ArcFace [9] further improves the form of angular mar-
gin to stabilize the training. Learning features in hyperspherical space is also
popular in person re-identification. A deep cosine similarity metric is firstly used
to achieve better generalization on the test set in person re-identification [48].
Another simple but strong baseline with normalized softmax is also proposed to
reduce the difficulty of optimization in person re-identification [32][33][15]. All
these works aim to learn representations on hyperspherical space and prove that
angular metric is crucial to the generalization in retrieval. Inspired by these ob-
servations, we propose to learn multi-label classification in hyperspherical space.
Our method differs from existing methods in two aspects. First, while existing
methods focus on learning features for retrieval tasks like face recognition and
person re-identification, our approach focuses on classification. Second, previous
approaches on hyperspherical learning are limited to single class tasks using nor-
malized softmax, while multi-label task, to the best of our knowledge, remains
unexplored in hyperspherical learning.

2.3 Label Correlation

It is well known that exploiting label correlations is crucial for multi-label classifi-
cation [21]. Some existing approaches assume that label correlation is shared only
in a local group of instances [18], while others deal with missing labels by exploit-
ing both global and local label correlations [57][52]. Graph convolution network
(GCN) is naturally suitable to build label correlation, and thus has gained much
attention in multi-label tasks [46][25][34]. ML-GCN [4] utilizes graphs to propa-
gate prior label representations, such as word embeddings, in learning classifiers.
ADD-GCN [50] learns content-aware category representations without using an
external word embedding for graph construction. Recently, vision transformer
has gained popularity in the field of image recognition [11][40][31][37][3]. Trans-
formers are also used to construct complementary relationships in multi-label
classification by exploring structural relation graph and semantic relation graph
[54]. M3TR [55] presents a linguistic guided enhancement method to enhance
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the high-level semantics. These works demonstrate the potential of transform-
ers for building label correlation [24]. Our approach provides an alternative way
to implicitly learn label correlation in multi-label classification by applying con-
straints in hyperspherical space, where the label embedding should maximize the
similarity with corresponding image features and minimize the similarity with
other labels if existing label conflicts.

3 Method

In this section, we thoroughly introduce multi-label classification into hyper-
spherical feature space. In Sec. 3.1, the preliminary study demonstrates the
multi-label classification in Euclidean space. In Sec. 3.2, normalized sigmoid
function is proposed to learn multi-label in hyperspherical space. In Sec. 3.3, a
modified variant, named margin based sigmoid function, is proposed to handle
false negatives in noisy data. In Sec. 3.4, we enable the hyperparameters to be
adaptive to a wide variety of datasets. In Sec. 3.5, label correlation is illustrated
in hyperspherical space.

3.1 Preliminaries

In multi-label classification, each image needs to be determined whether it be-
longs to the labels in given sets. Unlike single-label image classification in Ima-
geNet [23], the number of output labels in the multi-label setting may be one,
many, or none. The most common practice is to use multiple binary classifiers.
Each classifier determines whether the corresponding label exists in the image.
Assume that we need to optimize a multi-label classifier with N labels. The
multi-label problem could be optimized with binary cross-entropy loss with sig-
moid activation σ(z) = 1/(1 + e−z).

LBCE(p,Y) = −(

N∑
i∈Y

log(pi) +

N∑
i/∈Y

log(1− pi)) (1)

where Y is the set of the true labels in corresponding image, p are the prob-
abilities for the N labels. In Euclidean space, the probabilities are expressed as
pe,

pe(W, b, x) = σ(Wx+ b) (2)

where W are learnable weights of N binary classifiers with the shape of (N,
L), b are learnable biases with the shape of (N,) and x is the L-dimension feature
of the image. In Eq. 2, logits are expressed as the inner product of weights
and features in Euclidean space. The sigmoid function then maps the logits
into per-class probabilities within the range of [0, 1]. With larger probability
pei , the sample is more likely to belong to the i class, and vice versa. As pe =
σ(∥W∥ ∥x∥ cos∠(W,x) + b), the logits are not only related to the angle between
classifier weights and features, but also affected by the weights norm and bias of
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classifiers. We have concerns about learning in Euclidean space in two aspects.
First, we suspect that over-optimization of weights norm leads to imbalanced
learning between labels. Second, the angle is the better measure of similarity
between weights and features compared to the norm. The objective function
focusing on the angle is proposed in Sec. 3.2.

3.2 Learning in Hyperspherical Space

First, We utilize cosine similarity between the feature and classifier weights to
minimize the binary cross-entropy loss. To simplify Eq. 2, we remove the modules
that are not cross-correlated between W and x, such as bias b, weight norm ∥W∥
and feature norm ∥x∥, and thus propose normalized sigmoid function,

pn(W,x) = σ(s ∗ Wx

∥W∥ ∥x∥
) (3)

In Eq. 3, s is the scale factor of the cosine similarity. Different from the norms
implicitly used in Eq. 2, the scale s is irrelevant to features x and weights W.
It is used to rescale the cosine similarity to reach the saturation zone of sigmoid
activation. We can treat the weights W as a collection of label embeddings in
the perspective of the hypersphere. The similarity value ranges from −1 to 1
indicating the confidence of regarding the corresponding label in the given im-
age. The overall loss function minimizes the angle between the feature and the
corresponding positive label embedding and maximizes that between the feature
and its negative label embedding.

There are two other advantages to learning multi-label in hyperspherical
space. First, from the perspective of the hypersphere, we can efficiently conduct
metric learning to handle noisy samples in multi-label classification, which is
introduced in Sec. 3.3. Second, the correlation value between different label em-
beddings could be used to estimate the label correlation, which is illustrated in
Sec. 3.5.

3.3 Learning from Single Positive Labels

To study the impact of noisy samples in multi-label classification, we analyze its
simplest form, that is, the single positive labels scenario. In this problem, only
one single positive label is known in each image; thus, unknown labels may be
positive or negative in fact. A straightforward way is regarding all known labels
as positive and all unknown labels as negative during training. We conventionally
refer to samples with positive labels as postives and samples with negative labels
as negatives. In this setting, the negatives are composed of true negatives and
false negatives according to the ground truth.

We start with an experiment of full labels on VOC12, as shown in the left
column of Fig. 2. In this experiment, no noisy labels are added to the train-
ing data; thus, all negatives are true negatives. Fig. 2 (a) illustrates the cosine
similarity distribution of positives and negatives. The result shows less overlap
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Fig. 2. The cosine similarity density (top rows) and the corresponding gradient dis-
tribution (bottom rows). The scenarios include normalized sigmoid in full labels (left
column), normalized sigmoid in single positive labels (middle column), margin based
sigmoid in single positive labels (right column). For the cosine similarity density, the
color bar in the Y-axis represents the density in the corresponding similarity (X-axis).
For the gradient distribution, the gradient magnitude is attached to the X-axis, while
the color bar in the Y-axis represents the density. The actual labels of samples are
distinguished by color.

between the distribution of positives and negatives and suggests that positives
and negatives are easier to distinguish in the absence of noisy samples.

The middle column of Fig. 2 presents the experiment in single positive la-
bels. The similarity distribution is close to that in full labels except for false
negatives, which are partially overlapped with positives and true negatives in
distribution, as shown in Fig. 2 (b). There is a conflict for false negatives. On
the one hand, these mislabeled samples have visually similar patterns or textures
to the positives. However, on the other, these samples are assigned to be nega-
tive, making them harder to distinguish. The gradient analysis on single positive
labels is illustrated in Fig. 2 (e). Compared to the case of full labels in Fig. 2 (d),
the gradients of false negatives still remain at high intensity when the training
has converged. These incorrect gradients can mislead the network to converge to
a non-optimal solution. We conclude that these hard false negatives cause the
generalization gap between the fully-labeled dataset and the dataset with single
positive labels.

The impact of those false negatives should be suppressed while keeping the
contribution of the positives. To this end, we introduce angular margin on co-
sine similarity in our multi-label formulation, also named margin based sigmoid
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Fig. 3. The experiments with fixed margins in the VOC12 dataset. Orange line illus-
trates the best mAP in different margin. Blue line illustrates the absolute value of the
accumulated gradient difference between the positives and negatives.

function,

pm(W,x) = σ(s ∗ cos(arccos( Wx

∥W∥ ∥x∥
) +m)) (4)

In Eq. 4, the margin m is added to the angle between classifier weights and
features. The dotted lines in Fig. 2 show the variants of margin based sigmoid
functions that map the cosine similarity to the probability. We further increase
the margin from 0 to 0.1, as shown in the third column in Fig. 2. Observe that
the activation function has been shifted to the right by 0.1. From the gradient
analysis in Fig. 2 (f), the gradient of positives is enhanced while the gradient of
negatives is weakened comparing to Fig. 2 (e). On the one hand, the harmful
gradients from the false negatives are partially inhibited. On the other hand, the
positives are activated to maximize the cosine similarity between class weights
and their features. In multi-label classification, the classifier is the crucial part
of both training and testing. To keep the consistency, we use the same activation
function as Eq. 4 during training and testing.

3.4 Adaptive Learning

As discussed in Sec. 3.3, margin m optimizes the training by adjusting the ratio
of positive and negative gradients. The smaller margin would produce a large
number of gradients for negatives. Thus the absolute value of the accumulated
gradient difference between the positives and negatives is significant as shown
in Fig. 3. This imbalance of gradients results in poor performance. A similar
degradation also happens when training with a large margin, where the accu-
mulated gradients for positives are more extensive than those for negatives. It
is vital to choose the appropriate margin to make the gradients of positives and
negatives balanced. From Fig. 3, it can be seen that the appropriate margin in
the VOC12 dataset is approximately between 0.2 and 0.4. However, it is tedious



Hyperspherical Learning in Multi-Label Classification 9

to select the scale and margin through a large number of experiments with other
datasets. Based on these observations, we further propose a gradient balanced
loss function to learn adaptive scale and margin during training.

Loverall(p,Y) = LBCE(p,Y) + Ladpt(p,Y) (5)

A constraint on balancing gradients Ladpt works with binary cross-entropy
loss in Eq. 5.

Ladpt(p,Y) =

∥∥∥∥∥
N∑

i∈Y
(1− pi)−

N∑
i/∈Y

pi

∥∥∥∥∥ (6)

We aim to minimize the difference of the accumulated gradients between
positives and negatives in a mini-batch, as in Eq. 6. Where

∑N
i∈Y(1− pi) is the

accumulated gradients for positives and the
∑N

i/∈Y pi is the accumulated gradients
for negatives. Note that the probability pa used in the adaptive loss is slightly
different from pm in BCE loss. In the adaptive loss, the gradients to weights and
features are blocked, while the scale s∗ and margin m∗ are learnable parameters,
as shown in Eq. 7.

pa(W,x) = σ(s∗ ∗ cos(arccos(B( Wx

∥W∥ ∥x∥ )) +m∗)) (7)

Where B is the gradient blocking function. The adaptive loss focuses on bal-
ancing the gradient by learning the appropriate scale s∗ and margin m∗ without
affecting the model weights W . The benefits of adaptive learning are in two
aspects. First, adaptive learning removes manual hyperparameters searching on
new datasets, such as COCO and NUS. Second, gradient equilibrium provides
a better prior for model optimization and thus can boost the performance by
adaptive learning.

3.5 Label Correlation

As in Fig. 1, the image features with label person is around the label embedding
of person in 3D spherical space. The label embedding could be seen as the
cluster center for samples with the same labels. Since label embeddings and
image features are symmetrical and interchangeable in hyperspherical space,
we could also replace the image features with label embeddings to compute
correlation. Similar to Eq. 4, the relation between different label embeddings is
formulated as Eq. 8, which could be used to estimate the label correlation.

Corr(i, j) = σ(s ∗ cos(arccos( wiwj

∥wi∥ ∥wj∥
) +m)) (8)

Where wi and wj are the label embeddings of the ith label and jth label,
respectively. The higher the value, the higher the correlation.
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Table 1. Statistics of datasets.

Datasets #Class #Pos/Img #Train Imgs #Test Imgs

VOC12 20 1.44 5,717 5,823
COCO 80 2.92 82,081 40,137
CUB 312 31.47 5,994 5,794
NUS 81 1.89 150,000 60,260

Table 2. Experiments on single positive
labels in mAP metric.

Method VOC12 COCO CUB NUS

AN [7] 85.1 64.1 19.1 42.0
LS [7] 86.7 66.9 17.9 44.9
WAN [7] 86.5 64.8 20.3 46.3
EPR [7] 85.5 63.3 20.0 46.0
ROLE [7] 87.9 66.3 15.0 43.1

HML (Ours) 89.1 70.7 21.1 46.7

Table 3. Experiments on full labels in
mAP metric.

Method VOC12 COCO CUB NUS

BCE [7] 89.1 75.8 32.1 52.6
LS [7] 90.0 76.8 32.6 53.5

HML (Ours) 91.3 78.6 33.6 54.1

4 Experiments

4.1 Settings

Datasets. We conduct experiments on four datasets on multi-label classifica-
tion, including VOC12 [14], COCO [28], CUB-200 (CUB) [41] and NUS-WIDE
(NUS) [5]. VOC12 is a commonly used dataset on general objects. COCO con-
tains a large number of small objects. CUB focuses on the fine-grained attribute
identification of birds. NUS is a large-scale multi-label dataset. The details of
datasets are listed in Table 1. For the single positive label setting, we use the
same sampled labels from the original dataset as in [7].

Implementation details. We follow the same schedules in [7]. 20% data
from the training set is collected for validation. We use ResNet-50 [16] as our
backbones in all experiments. For each experiment, the model is trained for
10 epochs with Adam optimizer [22]. We do grid search on learning rates in
{10−2, 10−3, 10−4, 10−5} and batch sizes in {8, 16}. The best model is selected
by validation sets and used to compare with other methods. We integrated the
proposed methods, including hyperspherical learning and adaptive learning, into
our model, named hyperspherical multi-label classification (HML). The model
is thoroughly evaluated in three scenarios (single positive labels, partial positive
labels and full labels).

4.2 Single Positive Labels

In Table 2, we evaluate the proposed method in the single positive labels sce-
nario. Our method comprehensively outperforms the methods proposed in [7].
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Fig. 4. Experiments on partial positive labels. The mAP is reported in different pro-
portions of positive labels.

Especially for the COCO dataset, our method has an improvement of 3.8% com-
pared to the WAN [7]. Previous methods do not consistently improve on all the
datasets. By comparison, our method exhibits strong generalization on diverse
datasets. These experiments verify the effectiveness of suppressing false negatives
in single positive labels.

4.3 Partial Positive Labels

In order to further study the impact of false negatives, we conduct experiments
on partial positive labels as shown in Fig. 4. In this scenario, impacts of dif-
ferent proportions of positive labels are evaluated. It is not surprising that the
performance decreases significantly in very few positives. For general binary
cross-entropy loss, the performance drops 40% in the VOC12 dataset with 10%
positive labels. Compared to BCE, our method performs better with any pro-
portion of positive labels. Also, the smaller the number of positives, the more
significant the improvement. This result illustrates that our method can handle
false negatives more effectively than the baseline method.

4.4 Full Labels

We also evaluate our method in full labels scenario in Table 3. Label smoothing
(LS) [7] is a strong baseline in the full labels scenario compared to BCE, while
our method surpasses LS by 1-2%. It shows that our method not only improves
performance in datasets with single positive labels, but also generalizes well to
datasets with full labels. In hyperspherical space, we could focus on learning
positives and suppress the excessive contribution of false negatives.
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Table 4. Ablation study on hyperspherical learning (HL) and adaptive learning (AL)
in mAP metric.

Single Positive Labels Full Labels

HL AL VOC12 COCO CUB NUS VOC12 COCO CUB NUS

× × 86.9 66.2 19.1 42.8 90.2 77.6 32.1 52.6
✓ × 89.1 70.4 20.6 46.5 91.3 78.4 33.5 53.6
✓ ✓ 89.1 70.7 21.1 46.7 91.3 78.6 33.6 54.1
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Fig. 5. Ablation study on scale and margin for VOC12 dataset in mAP metric.

4.5 Ablation Study

Learning in Hyperspherical Space. We study the impact of hyperspherical
learning in scenarios of single positive labels and full labels in Table 4. In single
positive labels scenario, our method significantly improves (up to 4.2%) over
the baseline method. Even in the full-labeled dataset, our method has a con-
sistent gain in performance (about 1%) across multiple datasets. It illustrates
the strength of our approach in two ways. First, optimizing the cosine similar-
ity facilitates multi-label learning. Second, hyperspherical learning is superior at
suppressing the effects of noisy data.

Adaptive Learning. The adaptive variant of our method performs slightly
better than the fixed variant as shown in Table 4. In the single positive labels
scenario, the adaptive variant, in particular, outperforms 0.5 % in the CUB
dataset. The CUB dataset is more challenging because more than 95% positive
labels are discarded in this scenario. The adaptive variant effectively balances
the impact of negatives and positives from the perspective of gradients, which
makes the optimization easier.

Scale and Margin. The scale and margin are crucial hyperparameters in learn-
ing multi-label classification in hyperspherical space. An experimental study on
ablation of the scale and margin is shown in Fig. 5. With no margin, the per-
formance gradually converges with the increase of scale. It is because that small
scale leads to large gradients even when cosine similarity equals 1. In order to
comprehensively investigate the influence of margin, we conduct experiments on
scale=20 and scale=40. With the increase of angular margin, the gain of per-
formance is firstly strengthened and then weakened. The best performance is
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Table 5. Ablation study on positives and negatives for VOC12 dataset in mAP metric.

Setting mAP

No Margin 88.0
Only Positives 83.4
Only Negatives 88.2
Positives & Negatives 89.1

reached at mAP=89.1 with scale=20, margin=0.3. As analyzed in Fig. 3, the
balance of gradients between positives and negatives is closely related to the
choice of margin. The smaller margin could make the optimization of positives
insufficient, while larger margin down weights contribution of negatives. It should
be noted that this grid search of scale and margin is only conducted in single
positive labels of the VOC12 dataset. The best hyperparameters above with
scale=20 and margin=0.3 would also be used in other datasets’ experiments for
a fair comparison.

Margin on Positives and Negatives. The margin is only applied in positives
in face verification during training. In our method, the margin is also added to
negatives. To explore this difference, we experiment on the four settings of margin
on positives and negatives shown in Table 5.

No Margin. It is the baseline with no margin on positives and negatives.
Only Positives. In this setting, the margin is only added on positives. Since

annotations are unknown during testing, there is an inconsistency that the train-
ing uses the margin while the testing does not. In testing, the drop of margin
reduces the probability of positives, making it difficult to distinguish positives
from negatives. As a result, the Only Positives is 4.6% worse than No Margin.
This inconsistency on positives leads to poor generalization.

Only Negatives. In this setting, the margin is only added to the negatives.
On the one hand, the margin helps to reduce the impact of false negatives. On
the other, the reduced probability would not degrade the ability to classify. The
Only Negatives is slightly better than No Margin. It shows the importance of
suppressing false negatives.

Positives & Negatives. In this setting, the margin is added on all sam-
ples and keeps the consistency of training and testing. The margin on positives
helps to improve the cosine similarity between the feature and its corresponding
positive label embedding, while the margin on negatives suppresses the impact
of false negatives. Positives & Negatives exceeds No Margin 1.1% in mAP. It
indicates the necessity to add the margin on both positives and negatives in
optimizing multi-label classification in hyperspherical space.

4.6 Label Correlation

As discussed in Sec. 3.5, we estimate the label correlation in COCO dataset
in Fig. 6. The higher is the correlation value, the stronger is the correlation
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Fig. 6. Label correlation in COCO dataset. The labels with correlation value larger
than 0.95 with other labels are shown.

between the corresponding two labels. We could see some labels sets with strong
correlations: {baseball bat, baseball glove}, {fork, knife, spoon, bowl, dinning
table}, {apple, orange}, {chair, dinning table}, {laptop, mouse, keyboard} and
{microwave, oven}. All these combinations have a higher probability of appearing
in the same scene. But the correlations between {apple} and {baseball bat,
baseball glove} are weak. It is consistent with the rareness of their co-occurrence
in the same scene.

5 Conclusion

In this paper, we present a novel perspective for learning multi-label classifica-
tion in hyperspherical space. We thoroughly explore the impact of false positives
in noisy multi-label tasks and propose the margin based sigmoid function for
multi-label classification. To reduce manual hyperparameters searching, adap-
tive learning is incorporated into model optimization. Experiments show that
our approach significantly improves performance in various scenarios, ranging
from single and partial positive labels to full labels. In future work, we intend
further to explore the problem of multi-label classification, as it is expected to
be extended to the multi-label image retrieval task in hyperspherical space.



Hyperspherical Learning in Multi-Label Classification 15

References

1. Akbarnejad, A.H., Baghshah, M.S.: An efficient semi-supervised multi-label classi-
fier capable of handling missing labels. IEEE Transactions on Knowledge and Data
Engineering 31(2), 229–242 (2018)

2. Bustos, A., Pertusa, A., Salinas, J.M., de la Iglesia-Vayá, M.: Padchest: A large
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