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Abstract. Recently, computer vision foundation models such as CLIP and ALI-
GN, have shown impressive generalization capabilities on various downstream
tasks. But their abilities to deal with the long-tailed data still remain to be proved.
In this work, we present a novel framework based on pre-trained visual-linguistic
models for long-tailed recognition (LTR), termed VL-LTR, and conduct empir-
ical studies on the benefits of introducing text modality for long-tailed recog-
nition tasks. Compared to existing approaches, the proposed VL-LTR has the
following merits. (1) Our method can not only learn visual representation from
images but also learn corresponding linguistic representation from noisy class-
level text descriptions collected from the Internet; (2) Our method can effectively
use the learned visual-linguistic representation to improve the visual recognition
performance, especially for classes with fewer image samples. We also conduct
extensive experiments and set the new state-of-the-art performance on widely-
used LTR benchmarks. Notably, our method achieves 77.2% overall accuracy
on ImageNet-LT, which significantly outperforms the previous best method by
over 17 points, and is close to the prevailing performance training on the full
ImageNet. Code is available at https://github.com/ChangyaoTian/
VL-LTR.
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1 Introduction

Real-world data always presents a long-tailed distribution, where only a few head classes
encompass most of the data, and most tail classes have very few samples. Such phe-
nomenon is not conducive to the practical application of deep-learning based models.
Because of this, a number of works have emerged and tried to alleviate the class imbal-
ance problem from different aspects, such as re-sampling the training data [3,5,41], re-
weighting the loss functions [22,8,28], or employing transfer learning methods [49,54,29]
(see Figure 1 (a)). Despite their great contributions, most of these works still restrict
themselves to only relying on the image modality for solving this problem.
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Fig. 1: Comparison of different long-tailed recognition (LTR) frameworks and dif-
ferent modalities. (a) Previous LTR methods [3,5,22,8,49,54] mainly focus on the
class imbalance problem on the image modality, while (b) our method addresses the
LTR task by combining the advantages of image and text modalities. (c) and (d) give
intuitive explanations for the correlations and differences between the image and text
modalities.

As illustrated in Figure 1 (c)(d), there are some inner connections between images
and text descriptions of the same class, especially when it comes to some visual con-
cepts and attributes. However, different from the image modality that usually presents
concrete low-level features (e.g., shape, color, texture) of the object or scene, the text
modality typically contains much high-level and abstract information. Furthermore, text
descriptions are prior knowledge that can be summarized by experts, which could be
useful when there are no sufficient images to learn general class-wise representation for
recognition.

Although there have been some visual-linguistic approachs [15,58,36] for visual
recognition, their performance is still not satisfactory, due to the gap between image and
text representation and the lack of robustness to noisy text. Recently, the rise of visual-
linguistic foundation models [37,42,19] has provided an effective way to learn power-
ful representation that can connect the image and text modalities. Motivated by this,
we present a visual-linguistic framework for long-tailed recognition, termed VL-LTR,
which can utilize the advantages of both visual and linguistic representation for visual
recognition tasks as shown in Figure 1 (b). Our method mainly consists of two key com-
ponents, which are (1) a class-wise visual-linguistic pre-training (CVLP) framework for
linking images and text descriptions at the class level, and (2) a language-guided recog-
nition (LGR) head designed to perform long-tailed recognition according to the learned
visual-linguistic representation.

Overall, the proposed VL-LTR possesses the following merits. (1) Compared to the
visual-linguistic pre-training [7,53,6,48,21], our method can learn visual-linguistic rep-
resentation at the class level, and take the advantages of class-wise linguistic representa-
tion to improve visual recognition performance, especially in the long-tailed scenario;
(2) Compared to previous visual-linguistic classifiers [15,58,36], our method can not
only effectively bridge the gap between visual and linguistic representation, but also be
more flexible and robust to noisy text descriptions.
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To verify the effectiveness of our method, we conduct extensive experiments on
three challenging long-tailed recognition (LTR) benchmarks, including ImageNet-LT [29],
Places-LT [29], and iNaturalist 2018 [46]. As shown in Figure 2, using ResNet-50 [14]
as backbone, our method achieves an overall accuracy of 70.1% on ImageNet-LT, which
is 10.1 points higher than the previous best method PaCo [7] (ResNeXt-101 [50]). For
tail classes, the medium and few-shot accuracy of our method reaches 67.0% and 50.8%
respectively, which significantly outperform that of the prior arts [7,53,6,48] as well.
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Fig. 2: Performance comparison on ImageNet-LT [29]. Our VL-LTR
(ResNet-50 [14]) significantly outperforms prior arts, including PaCo [7],
TADE [53], RIDE (4 Experts) [48], and ResLT [6], which use heavier
ResNeXt-50/101 [50] as backbone.

In summary, our main contri-
butions are three-fold.

(1) We provide a detailed
analysis on the connection and
differences between image and
text modalities, and point out that
class descriptions can serve as
a supplement to images, which
is conducive to long-tailed visual
recognition.

(2) We present a new visual-
linguistic framework for long-
tailed visual recognition (VL-
LTR), which contains two tai-
lored components, including a
class-wise text-image pre-training
(CVLP) to bridge the class-level
images and text descriptions, and a language-guided recognition (LGR) head to perform
classification based on the learned visual-linguistic representation.

(3) The proposed VL-LTR has achieved state-of-the-art performance on prevailing
ImageNet-LT, Places-LT, and iNaturalist 2018 datasets. Notably, our method gets the
best overall accuracy of 77.2% on ImageNet-LT, outperforming the old record by 17.2
points, and even approaching the performance training on the full ImageNet [9].

2 Related Work

2.1 Long-Tailed Visual Recognition

Class re-balanced strategy [13,22,2,11,49,18] has been comprehensively studied for
long-tailed visual recognition. One type of the class re-balanced strategy is Data Re-
sampling [11,1,3,13,5,41], which generates class-balanced data by adjusting the sam-
pling rate of tail classes and head classes, yet they might take the risk of over-fitting on
data-scarced classes. Besides that, some recent methods [5,23] augment tail class sam-
ples with head classes ones, to alleviate the over-fitting problem. Another kind of class
re-balanced strategy is to design re-weighting loss functions, where tail classes would
be emphasized by using large weights or margins [8,22,16,49,2], or ignoring negative
gradients for tail classes [44].

In addition, researchers also address the long-tailed recognition task from the as-
pect of transfer learning [29,57,51,21,56]. Liu et al. [29] and Zhu et al. [57] transfer
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knowledge from head classes’s features to tail classes by maintaining memory bank
and modeling intra-class variance, respectively. After that, Samuel et al. [39] proposes
a late-fusion framework for long-tail learning with class descriptors. Some decoupling
methods [56,21] also can be regarded as transferring head classes frozen feature to tail
classes when fine-tuning classifiers. Recently, some studies [20,47,7,40,53] also trans-
fer the representation learned by contrastive learning or self-supervised learning for
long-tailed problems.

The aforementioned methods mainly focus on addressing the class imbalance prob-
lem based on image modalities, while rarely exploring the possibility of integrating text
modalities on this problem.

2.2 Visual-linguistic Model

In this section, we mainly discuss visual-linguistic pre-training and classification related
to our work.

Visual-linguistic pre-training [32,43,4,27,52,25,12,24,33,37] have achieved great
success on a number of downstream vision tasks. Zhang et al. [52] show the impor-
tance of visual features in visual-linguistic pre-training and obtain more strong visual
representations from large object detectors. Li et al. [27] find that a larger transformer
visual-linguistic model can learn more powerful representation from a larger visual-
linguistic corpus. In addition, Huang et al. [17,42] proposed a visual-linguistic pre-
training model by extracting patch features from the convolutional layers without the
proposal computation. Recently, CLIP [37] and ALIGN [19] learns powerful visual-
linguistic representation via contrastive learning on large-scale image-text pairs.

Prior to these works, there have been some visual-linguistic approaches [15,58,36]
designed for tasks related to image classification. He et al. [15] propose a two-stream
model, which directly combines visual and linguistic representation for fine-grained
image classification. Mu et al. [36] present a few-shot visual recognition model that is
regularized with text descriptions during training. Similar to He et al. [15], Zhuang et
al. [58] design a multi-modal model for automatic fish classification, with a CNN en-
coder for images and a RNN encoder for class text. However, these methods (1) cannot
effectively model the connection between images and text, leading to a considerable
gap between visual and linguistic representation; and (2) require high-quality text an-
notations, which is usually expensive and thus limits their practical application.

3 Methodology

3.1 Overall Architecture

In order to make effective use of the linguistic modality in the visual recognition task,
we propose a two-stage framework, as depicted in Figure 3. (1) The first stage is class-
wise visual-linguistic pre-training (CVLP), which is used to link the images and text de-
scriptions of the same class via contrastive learning. (2) In the second stage, a language-
guided recognition (LGR) head is designed to collect the overall linguistic representa-
tion of each class to guide the image recognition. As a result, the proposed VL-LTR



VL-LTR 5

... ......

...
...

...

Class 1

Class 2

Class C

Some of these normally gray
or silver species...

The fingers and toes themse-
lves, as well as the limbs...

The breeding male has a red
face with black markings...

...

Class 1 Class 2 Class C...

Li
ng

ui
st

ic
En

co
d

er
ℰ !
"#
(#
)

Visual Encoder
ℰ$"%(#)

Stage 1: Class-wise Visual-Linguistic Pretraining Stage 2: Language-Guided Recognition

ℒ&'(

?

ClassSe
le

ct
A

nc
ho

r
Se

nt
en

ce

FC

FC

FC
×

2

Visual Encoder
ℰ$"%(#)

Query Image

ℒ'()

Image Embedding

Text Embedding

Weight Transferring

Forward

Backward

Dot Product

Element-wise Add

Q

V

K

Fig. 3: Overall architecture of VL-LTR. The entire model has two stages. In the first
stage, class-wise visual-linguistic pre-training (CVLP) takes both the images and text of
each class as inputs, learning to connect the representation of the two modalities through
class-wise contrastive learning. In the second stage, the language-guided recognition
(LGR) head uses the learned visual-linguistic representation to perform image classifi-
cation.

is able to combine the advantages of visual and linguistic representation and achieve
impressive long-tailed recognition performance.

When training VL-LTR models, we first pre-train the visual and linguistic encoders
by class-wise visual-linguistic contrastive learning and the pre-training loss Lpre. Dur-
ing pre-training, an image and a sentence from the same class would be regarded as
a positive pair, and otherwise is a negative pair. After pre-training, the weights of the
linguistic encoder are frozen, and the anchor sentences of each class are then selected
by filtering out the low-scored sentences in text descriptions. The visual encoder and
LGR head are fine-tuned by the recognition loss Lrec. Details of the aforementioned
loss functions will be introduced in the later sections.

In the inference phase, given a query image and pre-populated text embeddings of
anchor sentences, we first feed the image to the visual encoder and obtain an image em-
bedding. Then, the image embedding passes through the LGR head and is categorized
into a class according to the image embedding itself as well as the text embeddings of
anchor sentences.

3.2 Class-wise Visual-Linguistic Pre-training

The goal of this stage is to learn the visual-linguistic representation of images and
text descriptions at the class level. To this end, we design a class-wise visual-linguistic
pre-training (CVLP) framework. Unlike previous works [37,19] that use instance-wise



6 Tian et al.

image-text pairs for pre-training, our framework is expected to fuse the class-wise lin-
guistic information into the visual space.

During pre-training, as shown in Figure 3, we first randomly sample a batch of
images I = {Ii}Ni=1, and the corresponding text sentences T = {Ti}Ni=1, where N
denotes the batch size. Then, the images I and texts T are fed to the visual encoder
Evis(·) and linguistic encoder Elin(·) respectively, yielding image and text embeddings
as Eqn. 1:

EI
i = Evis(Ii), ET

i = Elin(Ti), (1)

where both EI
i and ET

i are of D dimensions. After that, a class-wise contrastive learn-
ing (CCL) loss is used to optimize the visual and linguistic encoders. Let us denote the
cosine similarity of EI

i and ET
j as Si,j , and then the CCL loss can be formulated as:

Lccl =Lvis + Llin

=− 1

|T +
i |

∑
Tj∈T +

i

log
exp(Si,j/τ)∑

Tk∈T exp(Si,k/τ)

− 1

|I+
i |

∑
Ij∈I+

i

log
exp(Sj,i/τ)∑

Ik∈I exp(Sk,i/τ)
,

(2)

where Lvis and Llin denote the loss of visual and linguistic side respectively, while T +
i

denotes a subset of T , in which each text shares the same class with the image Ii.
Correspondingly, all images in I+

i share the same class with the text Ti. τ is a learnable
parameter with an initial value of 0.07.

In addition to CCL, we also distill the knowledge from the CLIP [37] pre-trained
model, to reduce the risk of over-fitting caused by limited text corpus in the pre-training
stage. The distillation loss Ldis can be written as Eqn. 3:

Ldis=−
exp(S′

i,i/τ)∑
Tj∈T exp(S′

i,j/τ)
log

exp(Si,i/τ)∑
Tk∈T exp(Si,k/τ)

−
exp(S′

i,i/τ)∑
Ij∈I exp(S′

j,i/τ)
log

exp(Si,i/τ)∑
Ik∈I exp(Sk,i/τ)

.

(3)

Here, S′ is the cosine similarity matrix produced by the frozen CLIP model.
Our pre-training framework has two merits as follows: (1) It is convenient to add

new training samples for image or text modality in our framework, since the image and
text description for a specific class is independent of each other, which greatly reduces
the cost of data collection; (2) The text description of each image sample is different in
each iteration, which serves as an additional regularization to prevent the model from
learning some fixed trivial correlation within a certain image-text pair, and thus our
framework is robust to the noisy text from the Internet.



VL-LTR 7

3.3 Language-Guided Recognition

In this stage, we design (1) an anchor sentence selection strategy to filter out noise
texts, and (2) a language-guided recognition head to effectively use visual and linguistic
representation learned in the pre-training stage.
Anchor Sentence Selection. Most text descriptions in our corpus are crawled from the
Internet, which are noisy and might degrade the recognition performance. To address
this problem, we propose an anchor sentence selection (AnSS) strategy to find the most
discriminative sentences for each class. Specifically, we first construct a “special” image
batch I ′, which contains at most 50 images (if any) of each class. Then, for each text
sentence Ti, we score each sentence Ti by computing the Llin between the sentence and
the image batch I ′. Finally, we select M text sentences with the smallest Llin as the
anchor sentences for the follow-up visual recognition.
Language-Guided Recognition Head. After obtaining the anchor sentences of each
class, we design a language-guided recognition (LGR) head, to adjust the weights of
these sentences based on the attention scores with the input image. In this way, visual
and linguistic features can be flexibly and dynamically combined according to the query
image.

As shown in Figure 3, given an image embedding EI ∈ RD, as well as the embed-
dings of all classes’ anchor sentences ET ∈ RC×M×D, where C is the class number,
and M is the maximum number of sentences for each class. Then the LGR head can be
formulated as:

Q = Linear(LayerNorm(EI)), (4)

K = Linear(LayerNorm(ET )), V = ET , (5)

G = σ(
QKT

√
D

)V, (6)

P = P I + PT = σ(MLP(EI)) + σ(
〈
EI , G

〉
/τ). (7)

Here, Q ∈ RD, K ∈ RC×M×D, and V ∈ RC×M×D are query, key and value of the
attention operation. G ∈ RC×D is the gather of the M anchor sentence embeddings of
each class. σ(·) denotes Softmax function. MLP(·) denotes two linear layers sandwich a
ReLU in the middle.

〈
EI , G

〉
is the cosine similarity of EI and G. P is the classification

probability of the image Iq , P I and PT are the classification probabilities based on
visual and linguistic representation, respectively.

3.4 Loss Function

As mentioned in Section 3.1, the training process of our method has two stages, namely
pre-training and fine-tuning respectively. In the pre-training stage, the visual encoder
and linguistic encoder are jointly optimized by the CCL loss Lccl and distillation loss
Ldis. So the overall pre-training loss can be written as:

Lpre = λLccl + (1− λ)Ldis, (8)

where λ ∈ [0, 1] is a hyperparameter to balance Lccl and Ldis.
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In the fine-tuning stage, after computing the classification probabilities P I and PT ,
we simply calculate their corresponding CrossEntropy loss LCE with the ground truth
label y as Eqn. 9:

Lrec = LCE(P
I ,y) + LCE(P

T ,y). (9)

4 Experiments

4.1 Datasets

We perform extensive experiments on three challenging long-tailed visual recognition
benchmarks, namely ImageNet-LT [29], Places-LT [29], and iNaturalist 2018 [46].
Among these benchmarks, ImageNet-LT is constructed from ImageNet-2012 [9] by
sampling a subset following the Pareto distribution with the power value α = 6, which
contains 1,000 classes. The training set has 115.8K images, and the number of im-
ages per class ranges from 1,280 to 5 images. Both the validation set and the test
set are balanced, containing 20K and 50K images respectively. We select the hyper-
parameters on the validation set and report numerical results on the test set. Similar to
ImageNet-LT, Places-LT is a long-tailed version of the large-scale scene classification
dataset Places [55]. It consists of 62.5K images from 365 categories with class cardi-
nality ranging from 5 to 4,980. iNaturalist 2018 is a real-world, naturally long-tailed
dataset, which is composed of 8,142 fine-grained species. The training set contains
437.5K images, and its imbalance factor is equal to 500. We use the official validation
set to test our approach, which has 3 images per class.

We also collect the class-level text descriptions for the three datasets. The text de-
scriptions mainly come from Wikipedia1, an open-source online encyclopedia that con-
tains millions of articles for free. We first use the original class name as an initial query
to get the best matching entry on Wikipedia. After cleaning and filtering out some ob-
viously irrelevant sections such as “references” or “external links” of these entries, we
split the left into sentences to form the original text candidate set for each class. Not-
ing that some classes have relatively much fewer sentences than others, we also add 80
additional prompt sentences for each class to alleviate the data scarcity problem. These
sentences, which are in the form of ‘a photo of a {label}’, are auto-generated
based on the prompt templates provided in [37].

4.2 Evaluation Protocol

Following common practices [29,56,7], we evaluate our proposed models on the corre-
sponding balanced validation/test set and report the overall top-1 accuracy. To diagnose
the source of improvement, we also report the top-1 accuracy of the three subsets split
by the number of training samples in each class, namely many-shot (≥100 samples),
medium-shot (20∼100 samples), and few-shot (≤20 samples).

1 https://en.wikipedia.org/

https://en.wikipedia.org/
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4.3 Experiments on ImageNet-LT

Settings. To verify the effectiveness of our method, we conduct extensive experiments
on ImageNet-LT [29]. We use ResNet-50 [14] or ViT-Base/16[10] as the visual encoder,
and a 12-layer Transformer [38] as the linguistic encoder. All models are optimized
by AdamW [31] with a momentum of 0.9 and a weight decay of 5 × 10−2. We use
the same data augmentation as [45] (w/o distillation). In the pre-training phase, the
maximum length of text tokens is set to 77 (including [SOS] and [EOS] tokens),
and the pre-trained weights of CLIP [37] is loaded. The initial learning rate is set to
5× 10−5 and decays following the cosine schedule [30]. During this phase, models are
pre-trained for 50 epochs, with a mini-batch size of 256. In the fine-tuning phase, we
select 64 sentences for each class and fine-tune models with the mini-batch size of 128
for another 50 epochs. We set the initial learning rate to 1 × 10−3 and still decrease it
with the cosine schedule. In both stages, we adopt the input size of 224 × 224 and the
square-root data sampling strategy [34,35] unless specifically mentioned.

Fig. 4: Absolute accuracy score of our method over the baseline using
ViT-Base/16 [10] as the backbone on ImageNet-LT [29]. Our method
enjoys more performance gains on classes with fewer image samples.

For a fair comparison, we
also build a baseline that is only
based on visual modality while
keeping other settings exactly the
same as our proposed method,
except that the baseline models
are directly initialized with CLIP
pre-trained weights and fine-
tuned for 100 epochs. In addi-
tion, we re-implement and report
the performance of some repre-
sentative methods as well, such
as τ -normalized, cRT, NCM, and
LWS [21], which are all ini-
tialized with CLIP pre-trained
weights.
Results. In Table 1, we can see
that our VL-LTR models are
superior to conventional vision-
based methods with similar vi-
sual encoders (i.e., backbones). For example, when using ResNet-50 (R-50) [14] as the
backbone, the overall accuracy of our method reaches 70.1%, which outperforms base-
line by 9.6 points (70.1% vs.60.5%), and 10.1 points better than previous best PaCo [7]
(70.1% vs.60.0%).

Moreover, from the aspect of few-shot accuracy, the performance of our method
is more promising, which is 16.3 points and 7.3 points better than baseline (50.8%
vs.34.5%) and the second-best method [53] (50.8% vs.43.5%). When replacing the
backbone with heavy ViT-Base/16 (ViT-B) [10], the overall accuracy of our method
can further boost up to 77.2%, which is the current new state-of-the-art of ImageNet-
LT, and near the prevailing performance (i.e., 80%) training on the full ImageNet [9].
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Method Backbone
Accuracy (%)

Overall Many Medium Few
Cross Entropy [26] ResNeXt-50 44.4 65.9 37.5 7.7
OLTR [29] ResNeXt-50 46.3 - - -
SSD [26] ResNeXt-50 56.0 66.8 53.1 35.4
RIDE (4 Experts) [48] ResNeXt-50 56.8 68.2 53.8 36.0
TADE [53] ResNeXt-50 58.8 66.5 57.0 43.5
smDRAGON [39] ResNeXt-50 50.1 - - -
ResLT [6] ResNeXt-101 55.1 63.3 53.3 40.3
PaCo [7] ResNeXt-101 60.0 68.2 58.7 41.0
NCM [21] ResNeXt-152 51.3 60.3 49.0 33.6
cRT [21] ResNeXt-152 52.4 64.7 49.1 29.4
τ -normalized [21] ResNeXt-152 52.8 62.2 50.1 35.8
LWS [21] ResNeXt-152 53.3 63.5 50.4 34.2
NCM [21] ResNet-50* 49.2 58.9 46.6 31.1
cRT [21] ResNet-50* 50.8 63.3 47.2 27.8
τ -normalized [21] ResNet50* 51.2 60.9 48.4 33.8
LWS [21] ResNet-50* 51.5 62.2 48.6 31.8
Zero-Shot CLIP [37] ResNet-50* 59.8 60.8 59.3 58.6
Baseline ResNet-50* 60.5 74.4 56.9 34.5
VL-LTR (ours) ResNet-50* 70.1 77.8 67.0 50.8
VL-LTR (ours) ViT-Base* 77.2 84.5 74.6 59.3

Table 1: Results on ImageNet-LT [29]. Our method outperforms prior arts when using
a similar backbone network. “*” indicates the corresponding backbone is initialized
with CLIP [37] weights.

In Figure 4, we visualize the class-level performance improvement, which is mea-
sured by the absolute accuracy gains of our method against the baseline, both of which
use ViT-B as the visual backbone. We see that there is more gains on tail classes, which
indicates that our method can help mitigate the data-scarce problem under long-tail
settings by introducing class-level text descriptions.

4.4 Experiments on Places-LT

Settings. We also investigate our method on Places-LT [29], a dataset with a different
domain. The experimental setting of Places-LT is the same as Section 4.3.
Results. As reported in Table 2, using ResNet-50 (R-50) as backbone, our model achieves
48.0% overall accuracy, surpassing counterparts by at least 6.8 points (48.0% vs.41.2%),
including state-of-the-art PaCo [7], TADE [53], and ResLT [6], while all of them use
ResNet-152 [14] as backbone. The performance are also impressive for the medium-
(47.2%) and few-shot (38.4%) classes. Once again, the model with ViT-Base/16 (ViT-
B) [10] gives the top overall accuracy of 50.1%, which is a new state-of-the-art on this
benchmark.
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Method Backbone
Accuracy (%)

Overall Many Medium Few
OLTR [29] ResNet-152 35.9 44.7 37.0 25.3
ResLT [6] ResNet-152 39.8 39.8 43.6 31.4
TADE [53] ResNet-152 40.9 40.4 43.2 36.8
PaCo [7] ResNet-152 41.2 36.1 47.9 35.3
NCM [21] ResNet-152 36.4 40.4 37.1 27.3
cRT [21] ResNet-152 36.7 42.0 37.6 24.9
τ -normalized [21] ResNet-152 37.9 37.8 40.7 31.8
LWS [21] ResNet-152 37.6 40.6 39.1 28.6
smDRAGON [39] ResNet-50 38.1 - - -
NCM [21] ResNet-50* 30.8 37.1 30.6 19.9
cRT [21] ResNet-50* 30.5 38.5 29.7 17.6
τ -normalized [21] ResNet-50* 31.0 34.5 31.4 23.6
LWS [21] ResNet-50* 31.3 36.0 32.1 20.7
Zero-Shot CLIP [37] ResNet-50* 38.0 37.5 37.5 40.1
Baseline ResNet-50* 39.7 50.8 38.6 22.7
VL-LTR (ours) ResNet-50* 48.0 51.9 47.2 38.4
VL-LTR (ours) ViT-Base* 50.1 54.2 48.5 42.0

Table 2: Results on Places-LT [29]. “*” indicates the corresponding backbone is ini-
tialized with CLIP [37] weights.

4.5 iNaturalist 2018

Settings. We further test our VL-LTR on iNaturalist 2018, a long-tailed fine-grained
benchmark. Following the common practice [45], we adopt a long training schedule. To
be specific, our models are pre-trained for 100 epochs, and fine-tuned for 360 epochs.
The initial learning rate of the pre-training and fine-tuning phase is set to 5× 10−4 and
2 × 10−5, respectively. Correspondingly, the baseline has the same fine-tuning epochs
and initial learning rate as the proposed method. All other experimental settings are the
same as Section 4.3.
Results. Table 3 shows the top-1 accuracy on iNaturalist 2018 of different methods. We
see that when using ResNet-50 (R-50) [14] as the backbone, our models can achieve
a 74.6% overall accuracy, surpassing previous methods with the same backbone by at
least 1.4 points. Besides that, when equipped with a strong backbone ViT-Base/16 (ViT-
B) [10], our model can have an overall accuracy of 76.8%, which outperforms the state-
of-the-art PaCo (ResNet-152) by 1.6 points (76.8% vs.75.2%). Moreover, our model
can also benefit from a larger image input size (i.e., 384 × 384), and achieve 81.0%
top-1 accuracy, which is 1.5 points higher than DeiT-B/16-384 [45] (81.0% vs.79.5%).

4.6 Ablation Study

Settings. In order to provide a deep analysis of our proposed method, we also conduct
ablation studies on the ImageNet-LT dataset. In these experiments, we use ResNet-
50 as the default backbone. All other settings remain the same as Section 4.3 unless
specifically mentioned.
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Method Backbone Accuracy (%)
CB-Focal [2] ResNet-50 61.1
LDAM+DRW [2] ResNet-50 68.0
BBN [56] ResNet-50 69.6
SSD [26] ResNet-50 71.5
RIDE (4 experts) [48] ResNet-50 72.6
smDRAGON [39] ResNet-50 69.1
ResLT [6] ResNet-50 72.3
TADE [53] ResNet-50 72.9
PaCo [7] ResNet-50 73.2
NCM [21] ResNet-50 63.1
cRT [21] ResNet-50 67.6
τ -normalized [21] ResNet-50 69.3
LWS [21] ResNet-50 69.5
NCM [21] ResNet-50* 65.3
cRT [21] ResNet-50* 69.9
τ -normalized [21] ResNet-50* 71.2
LWS [21] ResNet-50* 71.0
Zero-Shot CLIP [37] ResNet-50* 3.4
Baseline ResNet-50* 72.6
VL-LTR (ours) ResNet-50* 74.6
PaCo [7] ResNet-152 75.2
DeiT-B/16 [45] - 73.2
DeiT-B/16-384 [45] - 79.5
VL-LTR (ours) ViT-Base* 76.8
VL-LTR-384 (ours) ViT-Base* 81.0

Table 3: Results on iNaturalist 2018 [46]. “*” indicates the corresponding backbone
is initialized with CLIP weights. “*-384” means the input size of 384× 384.

Class-wise Visual-Linguistic Pre-training. To examine the effectiveness of our class-
wise visual-linguistic pre-training (CVLP) framework, we remove it by directly per-
forming the fine-tuning process on the pre-trained weights of CLIP [37]. As reported
in the #1 and #2 of Table 4, the model with CVLP outperforms the one without CVLP
by 7.3 points on the overall accuracy. Such gap might be attributed to the inconsistency
between image and text representation, which can be alleviated by our CVLP.

To verify this, we visualize some concepts by retrieving images with the greatest
cosine similarity. As shown in Figure 6, both CLIP and our method can learn common
visual concepts, such as the “blue” color, but CLIP [37] fails to capture rare concepts,
such as “stick” shape and “spot” texture. More examples are provided in the supple-
mentary material.
CLIP Pre-trained Weights. To analyze the influence of CLIP pre-trained weights, we
train our method with randomly initialized weights. Comparing the #1 and #3 of Table
4, we can see that initializing with CLIP pre-trained weights benefits our VL-LTR. We
also plot the curves of training and validation loss in the fine-tuning stage in Figure
5, where CLIP pre-trained weights (see red curves) can help alleviate the over-fitting
problem. This phenomenon is caused by the limited text corpus for pre-training. There
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Fig. 5: Train and validation loss curves of VL-LTR (ResNet-50) on ImageNet-
LT [29] under different settings. Both without CLIP [37] weights (w/o CLIP) and
without distillation lead to a certain degree of overfitting.

#
CLIP Pre-training Fine-tuning Accuracy

Weights w/o Ldis w/ Ldis Head SS (%)
1 ✓ - ✓ LGR AnSS 70.1
2 ✓ - - LGR AnSS 62.8
3 - ✓ - LGR AnSS 46.8
4 ✓ ✓ - LGR AnSS 66.2
5 ✓ - ✓ FC - 62.1
6 ✓ - ✓ KNN - 63.9
7 ✓ - ✓ LGR Cut Off 69.7

Table 4: Ablation studies on ImageNet-LT [29]. “Head” denotes the recognition head
used in the fine-tuning stage, and “SS” denotes the sentence selection strategy.

are only 1000 class descriptions (about 127K sentences) for ImageNet-LT, it is easy to
overfit an image to a specific set of sentences without a pre-trained linguistic encoder.
Distillation Loss. Similar to the role of pre-trained weights, the distillation loss Ldis is
also used to reduce the risk of over-fitting in the pre-training phase. Comparing the red
and blue curves in Figure 5, the over-fitting problem is alleviated in the model with Ldis.
From the #1 and #4 of Table 4, we also see that the model with Ldis performs better than
the one without Ldis (70.1% vs.66.2%).
Linguistic-Guided Recognition. We verify the effectiveness of linguistic-guided recog-
nition (LGR) by comparing it with other recognition heads, including FC (vision-based),
and KNN (vision-language-based). As reported in #1, #5, and #6 of Table 4, the pro-
posed LGR performs better than FC and KNN by 8.0% and 6.2% points in overall
accuracy respectively. It is notable that, as a vision-language-based recognition head,
KNN also works better than FC. These results indicate the effectiveness of LGR and
the power of visual-linguistic representation.
Anchor Sentence Selection. We study the effectiveness of anchor sentence selection
(AnSS) by replacing it with “Cut Off” strategy, where we simply select the first M sen-
tences from text descriptions as the anchor sentences for visual recognition. As shown
in Table 4, the model with AnSS (see the #1 of Table 4) outperforms the model with
“Cut Off” on the overall accuracy, which proves the effectiveness of AnSS to filter
out some noisy sentences. Note that, AnSS is a training-free module, which can bring
considerable improvements in noisy scenes.
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Fig. 6: Concept visualization, where “freq” and “rare” mean concepts appear fre-
quently and rarely, respectively. Our method can effectively learn common visual con-
cepts, and even the rare concepts where CLIP [37] makes mistakes, such as “spot”
texture and “stick” shape.

4.7 Limitations

Although the proposed VL-LTR achieves good performance on multiple long-tailed
recognition benchmarks, it still has some flaws. First, due to the limited text corpus, our
method currently relies on existing pre-trained foundation models to learn high-quality
linguistic representation. Second, like most LTR works [26,7,21], our VL-LTR is a two-
stage method as well, which does not support end-to-end training. But we believe these
problems could be well addressed in the future with the enrichment of text data and the
development of visual-linguistic model.

5 Conclusions

In this work, we introduce VL-LTR, a new visual-linguistic framework for long-tailed
recognition. We develop a class-level visual-linguistic pre-training (CVLP) to connect
images and text descriptions at class level, and a language-guided recognition (LGR)
head to make effective use of visual-linguistic representation for visual recognition.
Extensive experiments on various long-tailed recognition benchmarks verify that our
method works better than well-designed vision-based methods. We hope this work
could provide a strong baseline for vision-language-based long-tailed visual recogni-
tion.
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