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Abstract. Anomaly detection aims at identifying deviant samples from
the normal data distribution. Contrastive learning has provided a suc-
cessful way to sample representation that enables effective discrimina-
tion on anomalies. However, when contaminated with unlabeled ab-
normal samples in training set under semi-supervised settings, current
contrastive-based methods generally 1) ignore the comprehensive relation
between training data, leading to suboptimal performance, and 2) require
fine-tuning, resulting in low efficiency. To address the above two issues,
in this paper, we propose a novel hierarchical semi-supervised contrastive
learning (HSCL) framework, for contamination-resistant anomaly detec-
tion. Specifically, HSCL hierarchically regulates three complementary re-
lations: sample-to-sample, sample-to-prototype, and normal-to-abnormal
relations, enlarging the discrimination between normal and abnormal
samples with a comprehensive exploration of the contaminated data.
Besides, HSCL is an end-to-end learning approach that can efficiently
learn discriminative representations without fine-tuning. HSCL achieves
state-of-the-art performance in multiple scenarios, such as one-class clas-
sification and cross-dataset detection. Extensive ablation studies further
verify the effectiveness of each considered relation. The code is available
at https://github.com/GaoangW/HSCL.
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1 Introduction

Anomaly detection aims to distinguish outliers from in-distribution samples.
In addition to the basic image classification task that aims at identifying ab-
normal visual samples from the base class [59, 14], anomaly detection is also
widely exploited in other fields, such as defect detection [1, 21, 9, 27] and ab-
normal event detection [34, 10, 64, 37]. Some works focus on designing anomaly
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Fig. 1. Hierarchical contrastive relations with contaminated data for anomaly detec-
tion. Light red, purple, and light pink colors represent labeled normal, abnormal, and
unlabeled data, respectively. The green triangle represents the class prototype of normal
samples. Current contrastive learning-based anomaly detection approaches only con-
sider (a) sample-to-sample relation and largely overlook the discrimination between
normal and abnormal samples. Our proposed method jointly accounts for (a) sample-
to-sample, (b) sample-to-prototype, and (c) normal-to-abnormal contrastive relations
with both labeled and unlabeled data.

scores and anomaly classifiers, such as [43, 47]. Some methods combine reinforce-
ment learning [44] and knowledge distillation [38] in the anomaly detection. Some
self-supervised anomaly detection methods [59, 21, 53] use clean normal data in
training and achieve much progress. Recently, more and more works [11, 23, 52,
14] focus on the contaminated setting, where unlabeled abnormal samples are
included in the training set, following the semi-supervised framework. This set-
ting is much closer to the real situations that training data may be contaminated
by abnormal samples, while a small labeled set can be easily acquired.

With limited labeled information under the semi-supervised setting, a good
representation learning strategy is always crucial to identify the abnormal sam-
ples. Inspired by the recent success of contrastive learning for visual repre-
sentation [8, 15, 5, 13, 29, 84], much progress of contrastive learning has been
made in anomaly detection, and contrastive learning-based approaches [59, 56,
48, 14] have significantly outperformed the conventional reconstruction-based ap-
proaches [85, 83, 10, 34, 21, 53, 1].

However, current contrastive learning-based approaches only consider the
intuitively instance-level relationship among samples [59, 29, 84, 14], and ignore
other potential relations, such as the contrastive relations between samples and
prototypes of normal samples, and the discrimination between normal and ab-
normal samples. The above relations are shown in Fig. 1. Consequently, current
contrastive learning-based approaches are prone to errors when distinguishing
between normal and abnormal samples on the large contaminated set. Besides,
when contaminated with anomalies, a fine-tuning or an adaptation step [56,
14] is usually required for obtaining better representations. These multi-stage
training schemes often result in low efficiency with additional training tricks like
early-stop strategy [14], therefore not suitable for practice.

To address the above issues, we propose a novel Hierarchical Semi-supervised
Contrastive Learning framework, termed HSCL, to identify anomalies with con-
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taminated data under the semi-supervised setting. Specifically, HSCL jointly
learns sample-to-sample, sample-to-prototype, and normal-to-abnormal relations
to better distinguish anomalies over contaminated training data. The sample-to-
sample relationship is learned following the basic InfoNCE loss [42] that enlarges
the dissimilarities among different samples. Then, the similarities between proto-
types and normal/abnormal samples are maximized/minimized, respectively, to
regulate the sample-to-prototype contrastive relationship, where the prototypes
[37] are defined as the representative features for normal samples. Afterward, the
soft weighting on the unlabeled samples is incorporated and is further used for
sampling unlabeled data to learn the normal-to-abnormal relationship along with
the labeled set. The framework is shown in Fig. 2. With the proposed hierarchical
contrastive relations, HSCL achieves 1) end-to-end learning without offline clus-
tering and fine-tuning that has high computational complexity, 2) discriminative
learning from a limited number of labels, and 3) contaminated data mining from
large unlabeled samples. Extensive experiments are conducted under multiple
contamination scenarios. HSCL achieves state-of-the-art (SOTA) results on 1)
CIFAR-10, CIFAR-100 [26], and LSUN (FIX) [30, 59] for the one-class classifica-
tion, and 2) ImageNet (FIX) [17, 59] and SVHN [40] for cross-dataset anomaly
detection. Our main contributions are summarized as follows:

– We present a novel end-to-end contamination-resistant anomaly detection
framework using contaminated training data for discriminative representa-
tion learning.

– We propose a hierarchical semi-supervised contrastive learning approach that
jointly optimizes the complementary sample-to-sample, sample-to-prototype,
and normal-to-abnormal relation in an online manner to enlarge the discrim-
ination between normal and abnormal samples.

– We conduct extensive experiments with systematic analysis. The SOTA per-
formance of HSCL on multiple scenarios and datasets validates the effective-
ness of our HSCL.

2 Related Work

Reconstruction-Based Anomaly Detection. Reconstruction-based approaches
assume that abnormal samples cannot be well represented and reconstructed
with the model learned from clean normal data. The reconstruction error can be
treated as an indicator of anomalies. The commonly used reconstruction-based
techniques include the PCA methods [20], sparse representation methods [36],
and recent auto-encoder-based methods [85, 83, 10, ?]. For example, [10] intro-
duces a memory module that can retrieve the most relevant memory items for
reconstruction. However, studies have found that anomalies do not always yield
a high reconstruction error when classes are similar [78, 57]. Some studies em-
ploy generative adversarial networks (GAN) [34, 21, 53, 1] as the complement of
the reconstruction loss. For example, [34] adopts the U-Net [50] architecture and
leverages the adversarial training to distinguish whether the predicted frame is
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real or fake after reconstruction. [21] proposes a novel GAN-based anomaly de-
tection model, which consists of one auto-encoder generator and two separate
discriminators for normal and anomalous inputs, respectively. However, it has
been reported that GAN-based models easily generate suboptimal solutions and
hence are inapplicable for complex datasets [33, 45].

Contrastive-Based Anomaly Detection. The recent success of contrastive
learning [8, 15, 5, 13, 29, 65] provides a potential manner for visual representations
in anomaly detection [59, 56, 14, 48]. These contrastive learning-based approaches
significantly outperform the conventional reconstruction-based approaches. For
example, [59] proposes distributionally-shifted augmentations in contrastive learn-
ing, serving as a solid SOTA method in anomaly detection trained with clean
normal data. A fine-tuning stage is employed to adapt the pre-trained features
with mean-shifted contrastive loss in [48]. To better address the contaminated
data issue, [14] adopts a three-stage training scheme that fine-tunes the repre-
sentations learned from contrastive loss with pseudo labels. However, existing
contrastive learning-based approaches still suffer from the sensitivity to the con-
taminated abnormal samples or require multi-stage pre-training and fine-tuning,
leading to low efficiency and suboptimal performance.

Visual Representation Learning. Recent works explore the visual repre-
sentation learning [25, 24, 15, 68] based on designing various tasks [73, 49, 71, 82,
70, 80, 81, 79], such as image inpainting [46], permutation [39], predicting jig-
saw puzzles [19], and contrastive learning [74, 8]. These learning strategies are
also successfully extended to video representation learning, such as [69, 2, 60, 7].
With much progress made recently, visual representation learning is employed
in many real-world applications, such as anomaly detection [77, 76], and human-
based perception [61, 63, 62, 65]. However, the complex hierarchical relationships
among instances are seldom explored in the existing works.

Semi-Supervised and Noisy Label Approaches. Several approaches have
been proposed for semi-supervised classification in recent years, such as Mix-
Match [4], EnAET [67], FixMatch [55], SelfMatch [18], VPU [6] and Active-
Match [75]. For example, FixMatch [55] uses the pseudo label generated from
weakly augmented data to guide the prediction on strongly augmented data
and achieves SOTA performance; VPU [6] learns from positive and unlabeled
data. Due to the effectiveness of semi-supervised approaches that take account
of both the labeled set and the large unlabeled set, many works have been pro-
posed for anomaly detection under the semi-supervised setting [11, 23, 52, 14].
For example, [52] modifies the one-class classifier that incorporates the negative
abnormal samples in the training objective. To deal with contaminated train-
ing data, we can treat anomaly detection as a noisy label problem. Since we
assume that normal samples are dominant, we can regard all unlabeled sam-
ples as normal with noisy labels. Some progress has been made for noisy label
classification, such as [72, 32, 28, 41]. For example, DivideMix [28] leverages semi-
supervised learning techniques with noisy labels. [41] studies the effectiveness of
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Fig. 2. The framework of hierarchical semi-supervised contrastive learning for anomaly
detection. Given a mixture of contaminated training data, three complementary
sample-to-sample, sample-to-prototype, and normal-to-abnormal relations are learned
in a hierarchical way. Specifically, the sample-to-sample relation is learned to enlarge
the dissimilarities among different samples. Then, the prototypes are optimized for rep-
resenting normal samples and pushing away anomalies to learn the sample-to-prototype
relations. The normal-to-abnormal module further enlarges the discrimination between
normal and abnormal samples. More details are demonstrated in Sec. 3.2.

several augmentation strategies. However, these semi-supervised learning and
noisy label approaches usually generate biased solutions when training data is
imbalanced, particularly for the anomaly detection task where the normal data
is always dominant.

3 Method

3.1 Problem Description

We consider the semi-supervised anomaly detection as the same as [14]. Let
X = {xi}Ni=1 denote the training set, where X contains three disjoint sets, i.e.,
an unlabeled set Xu, a labeled normal Xn, and an abnormal set Xa, respectively.
Assume Xu is a contaminated set with a majority of normal samples and a
small portion of abnormal samples. With the combination of these three sets
X = Xu ∪Xn ∪Xa in training, we aim at learning discriminative representations
that can distinguish the anomalies in the testing data.

3.2 Hierarchical Semi-Supervised Contrastive Learning

To detect anomalies with the contaminated training set, we propose a hierarchi-
cal semi-supervised contrastive learning approach that jointly learns sample-to-
sample, sample-to-prototype, and normal-to-abnormal contrastive relations of
instances, as shown in Fig. 2. We demonstrate the details as follows.
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Sample-to-Sample Module The goal of this module is to learn the sample-
to-sample relations and enlarge the dissimilarity among different samples. With
only a few labeled samples, it is easy to get overfitting and collapse in trivial
solutions. The learned representations of samples should include rich semantic
information that can distinguish anomalies in unseen samples. To achieve this
goal, we employ the InfoNCE-like loss [42, 8, 59] as follows,

LInfoNCE(x,X+,X−)

= − 1

N
log

∑
x′∈X+

exp (sim(fΘ(x), fΘ(x
′
))/τ)∑

x′∈(X+∪X−) exp (sim(fΘ(x), fΘ(x′))/τ)
,

(1)

where X+ and X− represent the set of positive and negative samples to x, re-
spectively; “sim” stands for a similarity measure, e.g., cosine similarity; τ is
the temperature parameter; and fΘ(·) is the sample representation from the
embedding network. We use the above InfoNCE loss as the training loss for
the sample-to-sample module, i.e., LS-S = LInfoNCE(x,X+,X−). Following the
typical framework of contrastive learning [8], various augmented copies from the
same instance are treated as positive samples, and copies from different instances
are negative samples, i.e.,

X+ = {x
′
|ID(x

′
) = ID(x)},

X− = {x
′
|ID(x

′
) ̸= ID(x)}.

(2)

Here, ID stands for the sample identity. In addition, following CSI [59], we adopt
the shifting transformation (rotation) to generate more out-of-distribution sam-
ples that are treated as negative copies of the original samples.

Sample-to-Prototype Module The sample-to-sample module enlarges the
dissimilarity among samples and learns neutral representations. However, using
the sample-to-sample module alone lacks the discrimination on anomalies. To
this end, we propose a prototype learning scheme to learn discriminative repre-
sentations with sample-to-prototype relations with the assistance of prototypes
to represent normal samples. Unlike previous prototype-based approaches [37,
14] that use either the reconstruction constraint or offline clustering and omit
the relations among labeled samples, we directly model the contrastive relations
between samples and the prototypes. As shown in Fig. 2, we aim at generating
prototypes that are close to normal samples and away from abnormal samples.
The prototypes are differentiable and can be optimized in an online manner.
With prototypes, it is easier to generate the sample weight for distinguishing
abnormal samples, which will be demonstrated in Eq. (5) and Eq. (7). Addition-
ally, the learned prototypes are used as indicators in the inference stage to dis-
tinguish anomalies, as shown in Eq. (9). The details of the sample-to-prototype
module is explained as follows.

Denote the prototypes of normal samples as V ∈ RD×K , where D is the
feature dimension, and K is the number of prototypes. Since the sample rep-
resentation is updated for each batch data, V is also learned simultaneously in
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batch with the designed sample-to-prototype loss LS-P defined as follows,

LS-P(X B̃
n ∪ X B̃

a ) =
1

Nn
∥bn −maxk(Z

T
nVk)∥22 +

1

Na
∥[maxk(Z

T
aVk)]+∥22, (3)

where B̃ represents the augmented batch data. The subscripts “n” and “a”
represent normal and abnormal samples, respectively. Zn = [z1, z2, ..., zNn

] ∈
RD×Nn are the normal sample embeddings, i.e., zi = fΘ(xi); bn = [1, 1, ..., 1]T

is an all-one vector to represent the targeted similarity between normal samples

to the closest prototype; Nn = |X B̃
n | and Na = |X B̃

a | are the number of normal
samples and abnormal samples in the augmented batch data, respectively. The
loss function contains two parts. The first part pushes normal samples to be
close to the learned prototypes V, where max(·) takes the maximum similarity
between each normal sample representation to the prototypes, constraining that
normal samples should be close to at least one prototype. The second part is
the constraint of the relationship between prototypes and abnormal samples,
where [·]+ clamps negative values to zeros, thus pushing the prototypes to have
non-positive cosine similarity scores to abnormal samples. However, the above
loss does not consider the large contaminated unlabeled samples. Instead, we
consider the modified version with the sample weighting as follows,

LS-P(X B̃
n ∪ X B̃

u ∪ X B̃
a )

=
1

∥w∥1
∥wT

(
bn∪u −maxk

(
ZT

n∪uVk

))
∥22 +

1

Na
∥[maxk(Z

T
aVk)]+∥22,

(4)

where Zn∪u and bn∪u include both normal and unlabeled samples; and w ∈
RNn∪u is the sample weight defined as follows,

wi =

{
1, if xi ∈ Xn;(
maxk(z

T
i Vk) + 1

)
/2, if xi ∈ Xu.

(5)

We assume both V and zi are already normalized. Therefore, wi is in the
range [0, 1]. If the representation of an unlabeled sample is closer to the learned
prototypes, it is more likely to be a normal sample. Thus, the sample weight
wi is closer to 1. With the soft weighting strategy incorporated in the loss, the
learned prototypes can better represent the normal samples.

Normal-to-Abnormal Module As a complement to the previous two mod-
ules, the normal-to-abnormal module directly models the relation between nor-
mal and abnormal samples. Along with the assistance of the contamination-
resistant sampling strategy, we aim at separating the abnormal representations
from normal ones as much as possible. To better utilize the unlabeled set Xu and
the anomalies Xa, we further employ the normal-to-abnormal contrastive rela-
tions in the training. To incorporate unlabeled data, we use sampling strategy
and propose the normal-to-abnormal contrastive loss as follows,

LN-A = LInfoNCE(xx∼pw , {x
′
}x′∼pw

,Xa), (6)
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where we treat abnormal samples Xa as negatives and draw positive samples
from the distribution pw defined by the sample weight w, i.e.,

pw(xi) =
1[wi>wδ]wi∑
i 1[wi>wδ]wi

, (7)

where the indicator function 1[wi>wδ] = 1 if and only if wi is greater than a
pre-defined threshold wδ. This is to avoid sampling false positives as much as
possible. Based on the definition of w, normal samples are more likely to have
larger weights than abnormal samples. Therefore, the normal instances have
higher chances of being sampled.

3.3 Training and Inference

Combined with sample-to-sample, sample-to-prototype, and normal-to-abnormal
hierarchical learning, the unified total loss is defined as follows,

L = LS-S + λ1LS-P + λ2LN-A, (8)

where λ1 and λ2 are the weights to balance the contributions of different losses.
In the inference stage, we define a normality score with the assistance of

learned prototypes to distinguish anomalies as follows,

s(x̃i|Θ̂, V̂) = maxk

(
fΘ̂(x̃i)

T V̂k

)
, (9)

where x̃i represents a testing sample; Θ̂ and V̂ represent the learned encoder
parameters and prototypes, respectively. The normality score is measured as the
maximum similarity between the testing sample and the learned prototypes.

4 Experiments

To verify the effectiveness of our proposed HSCL, we consider three anomaly
detection scenarios on several commonly used public datasets and compared
HSCL with recent anomaly detection methods. Our HSCL significantly outper-
forms the general semi-supervised and noisy label approaches on the anomaly
detection task with both quantitative and visualization results. Moreover, we
also show the importance of each component of HSCL in the ablation study.

4.1 Scenario Setup

In the experiments, we consider three representative scenarios following the prior
work [14, 1, 52, 33] with CIFAR-10 [26], CIFAR-100 [26], ImageNet (FIX) [17],
SVHN [40], and LSUN (FIX) [30] public datasets. Note that we use the fixed
version of ImageNet and LSUN following the same process as mentioned in [59,
14]. The details of each scenario are described as follows.
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Table 1. Experiment results of anomaly detection in Scenario-1 over CIFAR-10 with
different labeled ratios γl. The best performance of each experiment is shown in bold.

γl .00 .01 .05 .10

CSI [59] 94.3 - - -
SS-DGM [23] - 49.7 50.8 52.0
SSAD [11] 62.0 73.0 71.5 70.1
DeepSAD [52] 62.9 72.6 77.9 79.8
Elsa [14] - 80.0 85.7 87.1
Elsa+ [14] - 94.3 95.2 95.5
HSCL (Ours) - 96.4 97.9 98.5

Table 2. Experiment results of anomaly detection in Scenario-2 over CIFAR-10 with
different pollution ratios γp. The best performance of each experiment is shown in bold.

Self-Supervised / Unsupervised Supervised / Semi-Supervised

γp .00 .05 .10 γp .00 .05 .10

OC-SVM [54] 62.0 61.4 60.8 SSAD [11] 73.8 71.5 69.8
IF [31] 60.0 59.6 58.8 SS-DGM [23] 50.8 50.1 50.5
KDE [51] 59.9 58.1 57.3 DeepSAD [52] 77.9 74.0 71.8
DeepSVDD [51] 60.9 59.6 58.6 Elsa [14] 85.7 83.5 81.6
E3Outlier [66] 86.6 83.5 81.7 Elsa+ [14] 95.2 93.0 91.1
GOAD [3] 88.2 85.2 83.0 HSCL (Ours) 97.9 97.6 97.3
CSI [59] 94.3 88.2 84.5

(Scenario-1) Semi-Supervised One-Class Classification [14, 1, 52]. We
assume we can access a small subset of labeled normal samples Xn and abnormal
samples Xa during training. We treat one class as the normal set while the
remaining classes as anomalies. Both Xn and Xa are randomly sampled. Denote
the labeled ratio of Xn and Xa both as γl. We report the results on the testing
set over 90 experiments (10 normal × 9 abnormal) for a given γl.

(Scenario-2) Contaminated One-Class Classification [14, 52]. In this set-
ting, in addition to a small labeled subset of normal and abnormal samples, we
assume the normal training set is contaminated with anomalies with a pollu-
tion ratio γp. This is done by sampling images from every anomalous class and
adding them into the unlabeled set Xu. We report results with each pollution
ratio γp ∈ {0.00, 0.05, 0.10}. γl is fixed to 0.05 for all experiments.

(Scenario-3) Cross-Dataset Anomaly Detection [14, 33]. In this setting,
we use all images in CIFAR-10 as normal samples and the down-sampled Ima-
geNet dataset as labeled anomalies. We test the detection performance on the
other four datasets, i.e., CIFAR-100, SVHN, LSUN, and ImageNet, as anomalies
over the normal samples from the CIFAR-10 testing set. This setting tests the
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Table 3. Experiment results of anomaly detection in Scenario-2 compared with general
semi-supervised learning and noisy label approaches over CIFAR-10 (C-10), CIFAR-
100 (C-100), and LSUN. The best performance of each experiment is shown in bold.

C-10 C-100 LSUN
Method .05 .10 .05 .10 .05 .10

CSI [59] 88.2 84.5 82.4 80.4 73.5 71.3
DivideMix [28] 83.9 83.2 66.8 66.3 67.8 66.9
Aug-LNL [41] 84.1 83.6 66.6 67.1 68.0 64.9
FixMatch [55] 93.5 94.3 71.8 78.5 76.0 73.2
HSCL (Ours) 97.6 97.3 93.0 92.2 88.6 88.9

capability of the proposed method that leverages a large-scaled external dataset
as an abnormal auxiliary set.

Evaluation Metrics. Following [14, 59], we use the area under the receiver
operating characteristics (AUROC) score as the evaluation metric. The ROC
represents the true positive rate against the false-positive rate, while AUROC is
the area under the curve. It is a common statistic for the goodness of a predictor
in a binary classification task. The higher the score, the better the performance.

4.2 Implementation Details

Training Details. Following [14, 59], we use ResNet-18 [16] as the base encoder
network and project images to representations with 128 dimensions. The tem-
perature τ is set to 0.5 in the InfoNCE loss. λ1 and λ2 are set to 1. The number
of prototypes K is set to 1 for simplicity, and a more thorough analysis of the
selection of K is made in the ablation study. The batch size is set to 256. For
the optimization, we train the proposed method with 250 epochs under Adam
[22] optimizer with an initial learning rate 1e-3. For the learning rate scheduler,
we use the linear warmup [12] for the early 10 epochs, followed by the cosine
decay schedule [35]. The model is learned from scratch without any large-dataset
pre-training. We use one Nvidia RTX 3090 GPU for training.

Augmentation Details. We use augmentations as the same with SimCLR
[8], including Inception crop [58], horizontal flip, color jitter, and gray-scale
transform. We also adopt rotation with {90◦, 180◦, 270◦} as shifting instances
as defined in CSI [59].

4.3 Performance Comparison

Results on Scenario-1. We report the AUROC score for scenario-1 in Table 1.
Several SOTA methods are adopted for comparison, including CSI [59], SS-DGM
[23], SSAD [11], DeepSAD [52], and Elsa [14]. Here, CSI presents a novel de-
tection method based on contrastive learning with shifting instances; SS-DGM
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Table 4. Experiment results of anomaly detection in Scenario-3, where we use CIFAR-
10 as in-distribution samples and other datasets as out-of-distribution samples. The
best performance of each experiment is shown in bold type.

Dataset GOAD CSI ELSA+ HSCL

ImageNet 83.3 93.3 96.4 99.8
LSUN 78.8 90.3 95.0 95.8
C-100 77.2 89.2 86.3 88.4
SVHN 96.3 99.8 99.4 99.8

proposes a semi-supervised generative model that allows for effective generaliza-
tion from small labeled datasets to large unlabeled ones; SSAD makes a detailed
analysis of supervised anomaly detection with active learning strategy; DeepSAD
presents a deep end-to-end methodology for general semi-supervised anomaly de-
tection method; and Elsa is a novel semi-supervised anomaly detection approach
that unifies the concept of energy-based models with contrastive learning. Ex-
cept for CSI that belongs to self-supervised anomaly detection, the proposed
HSCL achieves the best performance among all the compared semi-supervised
methods, with more than 2% improvement over the second-best method, Elsa+.

Results on Scenario-2. Different from Scenario-1 that we have clean labels
for anomalies, we have a large unlabeled set contaminated with anomaly sam-
ples. In this scenario, we keep the labeled ratio fixed with γl = 0.05 and conduct
experiments with the contamination ratio γp ∈ {0.00, 0.05, 0.10}. The results are
reported in Table 2. Except for CSI, SS-DGM, SSAD, DeepSAD, and Elsa used
in Scenario-1, we also compare with OC-SVM [54], IF [31], KDE [51], DeepSVDD
[51], E3Outlier [66], and GOAD [3] methods. Specifically, OC-SVM is a method
that estimates a function to distinguish from different distributions; IF is a fun-
damentally different model-based method that explicitly isolates anomalies in-
stead of profiles normal points; DeepSVDD introduces a new anomaly detection
method for one-class classification based on deep support vector data description,
which is trained on an anomaly detection based objective; E3Outlier first-time
leverages a discriminative deep neural network for representation learning by
using surrogate supervision to create multiple pseudo-classes from original data;
and GOAD presents a unifying view and proposes an open-set method to relax
generalization assumptions. From Table 2, we can see our HSCL achieves the
best performance, demonstrating the effectiveness of HSCL in semi-supervised
settings. With the increase of γp, the performance degrades largely for most of
the compared methods, while HSCL still roughly keeps the similar performance
as the situation without contaminated samples. Compared with Elsa+, there
is 2.7%, 4.6%, and 6.2% significant improvement with γp ∈ {0.00, 0.05, 0.10},
respectively. This demonstrates the capability of contamination resistance of
HSCL when dealing with a large number of unlabeled samples.
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Fig. 3. Visualization of learned representation for anomaly detection on CIFAR-10
using t-SNE. From (a) to (f): initial model, CSI, FixMatch, DivideMix, Aug-LNL, and
HSCL. Normal samples (from class 0) are in pink color, while abnormal samples (from
other classes) are in other colors.

Comparison with General Semi-Supervised and Noisy Label Approaches.
The contaminated scenario can be treated as a special case of the general semi-
supervised learning setting. The main difference between contaminated anomaly
detection and general semi-supervised learning is that the normal sample is dom-
inant in the unlabeled set in anomaly detection, which is an imbalanced data
problem. We compare one of the SOTA methods, FixMatch [55], under the
anomaly detection setting and report the results on CIFAR-10, CIFAR-100, and
LSUN datasets in Table 3. Our proposed HSCL outperforms FixMatch with a
large margin, validating the effectiveness of our method for anomaly detection.
Note that FixMatch achieves higher performance with γp = .10 than γp = .05
on CIFAR-10 and CIFAR-100. This is reasonable since using γp = .05 suffers
from a more severe imbalanced problem, resulting in a larger degeneration on
the performance. In addition, the contaminated setting can also be treated as a
special case of noisy-label classification. We assume all samples from the contam-
inated set are from the normal class with some noisy labels. We also compare our
proposed HSCL with two recent SOTA methods dealing with noisy label classi-
fication, i.e., DivideMix [28] and Aug-LNL [41]. As shown in Table 3, HSCL also
outperforms both the methods on CIFAR-10, CIFAR-100, and LSUN datasets.

Results on Scenario-3. The cross-dataset validation is shown in Table 4,
where we treat CIFAR-10 as the normal set, while four other datasets, i.e., Ima-
geNet, LSUN, CIFAR-100, and SVHN, as the abnormal set. HSCL outperforms
other methods like GOAD, CSI, and Elsa+ in most of the cases. This further
verifies the generalization of the proposed HSCL method.
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Table 5. Results with different settings of module components on C-10, C-100 (short
for CIFAR-10 and CIFAR-100) and LSUN datasets. “S-S”, “S-P” and “N-A” represent
sample-to-sample, sample-to-prototype, and normal-to-abnormal, respectively. “w/o
pos in S-P” and “w/o neg in S-P” represent the performance without the first and
second term in Eq. (4), respectively.

Component C-10 C-100 LSUN

w/o S-S 89.8 72.9 67.0
w/o S-P 82.9 85.5 70.3
w/o N-A 94.1 85.3 87.1
w/o pos in S-P 96.5 88.4 87.3
w/o neg in S-P 96.1 89.4 87.8
Full model 97.1 90.5 88.6

Fig. 4. Left: AUROC with variant sampling threshold wδ on CIFAR-10. Right: AU-
ROC with variant number of prototypes on CIFAR-10, CIFAR-100 and LSUN datasets.

Visualizations. To verify the effectiveness of the proposed hierarchical con-
trastive learning strategy, We draw the sample representations on CIFAR-10
with t-SNE as the dimension reduction method and compare with the initial
model, CSI, FixMatch, DivideMix, and Aug-LNL, as shown in Fig. 3. All the
models are trained using mixed contaminated data with γl = 0.05 and γp = 0.05.
In this example, the plane class is treated as the normal class while samples
from other classes are regarded as anomalies. In each sub-figure, we use light
pink color to represent the normal class while other colors represent abnormal
classes. As shown in the figure, the anomalies can be better distinguished using
HSCL compared with other methods.

4.4 Ablation Study

Importance of Different Modules. To validate the effect of individual mod-
ules, we conduct experiments with the removal of each module. For simplic-
ity, we use “S-S”, “S-P”, and “N-A” to represent sample-to-sample, sample-
to-prototype, and normal-to-abnormal modules, respectively. Note that we use
k-NN to distinguish anomalies as the same as [59] when removing the sample-
to-prototype module since prototypes are not available at this configuration. We
further verify the importance of individual terms of the prototype learning in
Eq. (4). We report the results on CIFAR-10, CIFAR-100, and LSUN datasets, as
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shown in Table 5. As expected, the full model generates the best performance.
The drop of “w/o S-P” is due to two facts: 1) prototypes are replaced with
k-NN in the normality score and 2) the soft-weighting strategy has to be dis-
carded since prototypes are unavailable. The above changes make the method
sensitive to unlabeled abnormal samples, causing the degradation. Prototype
learning remains even though we discard only one term in Eq. (4). That is why
the degradation of “w/o pos in S-P” and “w/o neg in S-P” is not significant.

Varying Sampling Threshold. To optimize the normal-to-abnormal con-
trastive learning loss, we sample the data from the unlabeled set according to the
sampling strategy with a pre-defined weight threshold wδ in Eq. (7). To learn
the effect and sensitivity of the threshold, we vary wδ from 0.2 to 0.8 and report
the AUROC of plane class on CIFAR-10 dataset in the left of Fig. 4. From the
result, when wδ = 0.4, we achieve the best performance with AUROC = 97.1%.
With different choices of thresholds, the result does not change much, showing
the robustness of the sampling strategy.

Analysis of Prototypes. We vary the prototype number K from 1 to 8 on
CIFAR-10, CIFAR-100, and LSUN datasets. The results of AUROC are shown
in the right of Fig. 4. We achieve the best performance with K = 1. With the in-
crease of K, the performance slightly degrades. This phenomenon is reasonable
for the contamination setting. Since the learned prototypes need to represent
normal samples (not abnormal samples), using one prototype to represent the
normal class is good enough. However, when we increase the number of proto-
types, some prototypes may become closer to unlabeled abnormal samples in the
training set, resulting in slightly poorer performance for anomaly detection.

5 Conclusion

In this paper, we tackle anomaly detection in a semi-supervised setting with con-
taminated samples. We learn the discriminative sample representations based
on hierarchical contrastive relations among samples, prototypes, and classes
in an end-to-end manner. The proposed method, HSCL, achieves the SOTA
performance in several different scenarios and outperforms recent general semi-
supervised learning and noisy-label approaches. Furthermore, the ablation study,
including the analysis of components of individual modules, the sampling strat-
egy with soft weighting, and the number of prototypes, also demonstrates the
effectiveness and robustness of the proposed method. In our future work, we plan
to conduct anomaly detection with contaminated data in unsupervised settings.
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