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1 VAW experiments

1.1 RN50-Context Baseline

In our main paper, we introduce a new baseline for the VAW benchmark which
we name RN50-Context. Basically, RN50-Context has the same architecture as
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the RN50-Baseline used in [11] that first fuses the image features with the object
word embeddings features before classification. However, instead of predicting
attributes for every object independently, RN50-Context (1) takes in the whole
input image to produce the whole image feature maps, (2) uses RoIAlign to
pool features for every object residing in the image, then (3) predicts attributes
for every object at once. Figure 1 demonstrates how RN50-Context performs
attribute prediction. For illustration purpose, the figure only shows how this
is done for one object. The same set of computations can be parallelized and
applied for all other objects in a given image, which makes this model more
efficient than the RN50-Baseline in [11].

Category

Box

Word
embedding Linear

(768,) (2048,)

RoIAlign

o

Element-wise  
product

Image 
   features

Linear

(2048,) Predicted attribute 
probabilities

Fig. 1. Overview diagram of the RN50-Context baseline used in VAW.

1.2 TAP’s detailed performance breakdown

We present in Table 1 the detailed breakdown of our model performance on
each attribute type in the VAW dataset. It can be seen that our model is better
than the SOTA model SCoNE [11] in almost all attribute types, with the largest
improvement lies in action categories. This shows that our model utilizes context
information effectively because action usually requires more context than the
others. Regarding basic attribute types such as color, material, shape, size, our
improvement is more modest, especially in shape performance where we achieve
only comparable result with SCoNE. In SCoNE [11], the authors also use low-
level image ResNet features (from early ResNet blocks) and explain that this
improves their mAP on low-level attributes including color, material, shape,
texture. Therefore, we will explore using ResNet features from its early blocks in
our future work to get even better results.

1.3 Qualitative results

We show several examples of how our model predicts attributes on images in
the VAW dataset in Figure 2. We number the images from left to right, then
from top to bottom. In image 1, the model predicts perfectly attributes for sky
and boat, while for person it incorrectly predicts old and talking. It is possible
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Table 1. Detailed breakdown of performance on VAW.

Methods
Overall Class imbalance (mAP) Attribute types (mAP)

mAP mR@15 mA F1@15 Head Medium Tail Color Material Shape Size Texture Action State Others

RN50-Baseline [11] 63.0 52.1 68.6 63.9 71.0 59.6 43.2 57.4 66.0 64.7 65.2 61.3 53.6 61.2 66.2
SCoNE [11] 68.4 58.4 71.5 70.2 76.4 65.0 48.3 69.3 75.3 68.0 70.2 66.8 61.2 64.8 69.0

RN50-Context 67.3 54.1 69.3 66.1 71.3 67.3 52.1 61.8 71.1 60.9 63.1 64.8 67.5 63.7 69.8
TAP [Ours] 73.4 63.3 73.5 71.1 77.6 72.9 58.8 71.0 77.3 67.9 71.6 70.4 73.4 69.7 74.5

that the model sees a group of people sitting close together so it predicts talking.
In image 2, the model incorrectly predicts lying for dog with lower confidence,
but predicts all correct attributes for grass. In image 3, cloudy is incorrectly
predicted for sky, however, due to the brightness of the image it is difficult to
see if the sky is truly cloudy. For image 4, the wall is incorrectly predicted with
color brown, however, we believe the color of the wall here still bears a small
resemblance to brown. In the last image, the model incorrectly predicts grazing
for cows. Because grazing is very oftenly labeled for cows in the dataset, we
believe the model has learned a small bias towards outputting this action for
cows.

Boat: 
white
moving 
floating 
small
in water 
full 
splashing 

Sky: 
cloudy 
overcast 
blue 
gloomy 
gray 
calm 
daytime 

Person: 
wearing hat 
old
adult 
backwards 
sitting 
talking 
wearing red 

Dog: 
sitting 
small
look at camera 
gray 
white
lying 
outdoors 

Grass: 
patchy 
dry 
sparse 
dead 
rough 
scraggly 
on ground 

Sky: 
blue 
light colored 
spotless 
daytime 
bright 
clear
cloudy 

Church: 
old
brown 
stone 
high 
shaded 
classical 
brick 

Wall: 
red 
painted 
dark 
maroon 
indoors 
blank 
brown 

Monitor: 
gray 
turned off 
flat screen 
framed 
square 
white
black

Cows:
white
walking 
large 
adult 
standing 
horned 
grazing 

Fig. 2. Examples of our model predictions on the VAW dataset.

2 LSA open-vocabulary experiments

2.1 Prompts

In the main paper, we explain how we use an ensemble of multiple prompts to
generate text embeddings of the attribute classes for our OpenTAP model and
for the CLIP baselines. As suggested by the authors from the CLIP paper [13]
and also from our empirical results, we construct the ensemble of these prompts
in the embedding space rather than the probability space. Here, we will list all
prompts that we use.
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OpenTAP and ‘CLIP (attribute prompt)’ baseline Our OpenTAP model
and the ‘CLIP (attribute prompt)’ baseline (Sect. 5.2) both use the following
same set of prompts:

– <attr>.
– A photo of <attr>.
– A photo of something <attr>.
– A photo of something that is <attr>.
– A cropped photo of <attr>.
– A cropped photo of something <attr>.
– A cropped photo of something that is <attr>.

‘CLIP (object-attribute prompt)’ baseline The ‘CLIP (object-attribute
prompt)’ baseline (Sect. 5.2) uses the following set of prompts that also mention
the object category name. For location and interaction classes (e.g ., on table,
carrying bag), we only use the prompts 2, 4, and 6 because the other prompts
produce non-sensical sentences (e.g ., we want person carrying bag instead of
carrying bag person).

1. <attr> <obj>.
2. <obj> <attr>.
3. A photo of <attr> <obj>.
4. A photo of <obj> <attr>.
5. A cropped photo of <attr> <obj>.
6. A cropped photo of <obj> <attr>.

For the ‘CLIP (combined prompt)’ baseline, we take the weighted average
of the output of the ‘CLIP (attribute prompt)’ and the ‘CLIP (object-attribute
prompt)’. The weights used for averaging are chosen based on the validation set.

2.2 Errors of CLIP baselines

In the main paper, we explain that using only the object attribute prompts
(numbered 1-6 above) returns drastically low accuracy due to CLIP being highly
attentive to the object, almost ignores the attribute, and unable to detect non-
sensical object-attribute pairs, e.g ., for an image of a hydrant with the text A
photo of a happy hydrant, CLIP still returns a high similarity score even though
happy hydrant is non-sensical, sometimes ranking even higher than true and
valid combinations, such as happy person. In other words, just the existence of
the object in the image alone already leads to a high similarity score. This char-
acteristic of CLIP messes up the returned ranklists of this baseline. To alleviate
this, we combine the predicted score of the ‘CLIP (object-attribute prompt)’
and ‘CLIP (attribute prompt)’ baseline, as we find this suppresses the object
part and allows CLIP to focus more on the attribute aspects (i.e., adjective and
verb).

In Figure 3, we show failure examples of the returned ranklist of the ‘CLIP
(object-attribute prompt)’ baseline for attributes jumping, happy, and using lap-
top. In almost all cases, the top retrieved images simply contain only the object
of interest and almost totally ignore the attribute.
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In Figure 4, we present the top retrieval results for the same set of attributes
but using the ‘CLIP (combined prompt)’ baseline. This shows that we can al-
leviate the aforementioned problem by combining with the ‘CLIP (attribute
prompt)’. Throughout the figure, it can be seen that the retrieved results are
much more accurate. However, the ‘non-sensical object-attribute pairs’ problem
still occurs. For jumping, combinations such as, jumping yard and jumping snow
are still at the top of the ranklist even though these pairs are non-sensical. This
might be due to the ‘combined model’ detecting the attribute and objects cues
separately (in the yard and snow image, the visual cues for jumping belongs
to the animal and not the yard and snow). The same thing happens for happy
shirt on the 2nd row where we know that happy shirt does not make sense, but
the model still returns it because it finds visual cues for happy from the girl.
For using laptop, the same thing happens for the non-sensical pair table - using
laptop.

using laptop

bears ✖ man ✔ table ✖ bear ✔floor ✖

jumping

wetsuit ✖ frisbee ✖ kite ✖ skateboard ✖ boy ✔ girl ✖ kite ✖

happy

hydrant ✖ frisbee ✖stove ✖ broccoli ✖ woman ✔ dog ✖hydrant ✖ zebra ✖

dog ✔

zebra ✖ bicycles ✖ wetsuit ✖

Fig. 3. Top image retrieval results of the ‘CLIP (object-attribute prompt)’ baseline for
3 attributes jumping, happy, and using laptop, with incorrect predictions marked with
✗ and correct predictions marked with ✓. Below each image is the category of the
object whose attributes are being predicted for.

2.3 OpenTAP qualitative results

In Figure 5, we show the top retrieval results for the same set of attributes
as above, including jumping, happy, and using laptop. Even though OpenTAP
uses the same text embeddings as the ‘CLIP (attribute prompt)’ baseline, Open-
TAP is still able to rank the correct images on top. This shows that CLIP text
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using laptop

table ✖ laptop ✖ man ✔ table ✖ laptop ✖ person ✔ bear ✔floor ✖

jumping

yard ✖ dog ✔ dog ✔ skateboard ✖ boy ✔ snow ✖

happy

hydrant ✖dog ✔ baby ✔ woman ✔dog ✖

dog ✔ dog ✔

woman ✔ shirt ✖ baby ✔

Fig. 4. Top image retrieval results of the ‘CLIP (combined prompt)’ baseline (the best
overall CLIP baseline) for 3 attributes jumping, happy, and using laptop, with incorrect
predictions marked with ✗ and correct predictions marked with ✓. Below each image
is the category of the object whose attributes are being predicted for.

embeddings do really contain knowledge about attributes, however, using them
out of the box is challenging due to the aforementioned problems. By training
OpenTAP on LSA with our training scheme, OpenTAP is able to use CLIP text
embeddings for predicting attributes much more accurately.

2.4 Baseline choices

Attribute prediction for objects in the wild is very underexplored, especially
in the open-vocabulary setting. Open-vocabulary recognition has been studied
before, but mostly for object recognition and detection and not for attribute
prediction. In order to select good baselines for our LSA experiment, we look
for SOTA vision-language models since these models have been trained on a
large corpus of image-text pairs that already include attribute concepts. CLIP
is the best candidate as a baseline since (1) CLIP has been trained on enormous
amount of data (400M image-text pairs) which makes it fair to expect that CLIP
should perform well on attribute recognition, and (2) CLIP is easy and fast to use
in a retrieval/classification setting where we want to output prediction scores for
as many as 9000 attributes in LSA (CLIP uses one single dot product to output
all scores). In addtion, we believe the CLIP baselines that are presented in the
main paper could be further improved by fine-tuning CLIP image encoder on
LSA.

Other baselines that we can use are SOTA vision-language pre-trained or
VQAmodels [9,7,15] . However, these models are extremely expensive to evaluate
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on LSA. For example, given an image, for every attribute, we have to construct a
different text query/question then perform model inference from the beginning.

In addition to LSA, it is also possible to evaluate OpenTAP on other bench-
marks to better showcase its ability and compare against other methods in
understanding attributes. We have demonstrated OpenTAP ability on another
benchmark that is the HICO dataset [3]. Another interesting benchmark is the
recently proposed GPV-Web10k dataset [8] that contains images with 298 verbs
and 148 adjectives annotations. We leave this as future work.

using laptop

jumping

happy

man ✔ person ✔ girl ✔ man ✔ man ✖ dog ✔ woman ✔

man ✔ people ✔ girl ✖ couple ✔ woman ✔ man ✖ woman ✔

people ✔ man ✔ man ✔ woman ✔ people ✔ man ✖ man ✔ woman ✖

dog ✔

baby ✔

Fig. 5. Top image retrieval results of our OpenTAP model for 3 attributes jumping,
happy, and using laptop, with incorrects marked with ✗ and corrects marked with ✓.
Below each image is the category of the object whose attributes are being predicted
for.

3 LSA dataset

3.1 Attribute extraction example

We provide in Fig. 6 two examples of how we extract attributes from captions,
with one case having grounding information for the objects and one without.

3.2 Localized Narratives data processing

Mouse trace to bounding box: in Localized Narratives [12], every word
(or utterance) in a caption is accompanied with a mouse trace segment that
describes where the annotator moves their mouse cursor while speaking the
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 An Indian man in a mustard jacket is shoveling a lot of snow

Man wearing glasses and brown jacket shovels deep snow

A man is shoveling snow without a hat or gloves 

Jacket: 
Brown, Mustard

Snow: 
Deep

A large black pick up truck with a dog riding on it's flatbed.

A puppy standing in the back of a pickup truck.

Truck: 
Large, Black, Pickup, with dog

Dog: 
Riding, On Flatbed

Puppy: 
Standing, in the back 

Man: 
Indian, shoveling snow, wearing

glasses, wearing jacket, in jacket,
without hat, without gloves

Fig. 6. Extracted attributes example. Objects and attributes parsed using
grounded (left, from Flickr30k) and ungrounded captions (right, from COCO).

word. Therefore, this mouse trace segment describes roughly the image location
of any words. In our work, after we apply our parsing algorithm to extract
objects in a given caption, we follow Sec 4.3 in [2] to convert the mouse trace
of the parsed objects to their bounding boxes. We also apply temporal padding
as in [2] to handle cases when an annotator speaks before (or after) their mouse
is actually moved. In addition, we also enlarge the converted bounding box by
40% vertically and horizontally as we notice a large number of cases where the
annotator only circles their mouse cursor around a small region of the object.

In Figure 7, we show some examples of boxes converted from mouse trace in
the Localized Narratives dataset. It can be seen that these boxes are not accurate
as they do not fit exactly to the object. Some boxes occupy a large region around
the object, while some boxes only occupy the object partially. Despite this, these
boxes still provide important object localization information.

boat boycar dog horse clock

Fig. 7. Localized Narratives’s converted bounding boxes from mouse trace.

3.3 Attribute statistics

We provide in Table 2 the number of attributes in the adjective, verb, inter-
action, and location subcategories in our seen set Cs and unseen set Cu of the
open-vocabulary experiment. Because of the compositional nature of the location
classes, the number of attributes in this subcategory could be extremely large
(e.g ., for 4 basic prepositions on, in, under, next to and N different object cate-
gories, the total number of location classes could go up to N × 4). Therefore, for
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location classes in our seen set, we only keep those that involve common object
categories (i.e., the top-1000 most frequent object categories across LSA).

Table 2. Number of attributes in each type.

Attribute types # of classes in Cs # of classes in Cu

Adjective 1251 1058
Verb 950 757
Interaction 1278 906
Location 2047 1291

Total 5526 4012

From Figure 8 to Figure 11, we also provide the long-tail distribution of at-
tributes in Cs and Cu, belong to each type (adjective, verb, interaction, location),
across the whole LSA dataset.

Fig. 8. Distribution of adjective attributes.

4 Implementation details

4.1 TAP architecture: multi-modal Transformer

We use 512 as the input dimension to the multi-modal Transformer. At input,
to map the visual tokens {vi} and query tokens {hj} to the same embedding
space that has dimensionality of 512, we respectively use two FC layers FCimg

and FCquery. FCimg maps from 2048-d ResNet features, and FCquery maps from
768-d BERT word embeddings. Inside the multi-modal Transformer, we use the
same inner-layer dimension 2048 for the feedforward network (FFN) as in [14].
Similar to [1], we use additive dropout 0.1 after every multi-head attention and
FFN before layer normalization. All of the Transformer weights are initialized
using Xavier init [5].
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Fig. 9. Distribution of verb attributes.

Fig. 10. Distribution of interaction attributes.

Fig. 11. Distribution of location attributes.



Improving Closed and Open-Vocabulary Attribute Prediction 11

4.2 TAP object grounding

We use the object grounding loss to train the model to softly localize the image
region for any object of interest. This allows the model to know where to attend
to for object without bounding box (e.g ., objects from unaligned image-text
pairs in MS-COCO Captions [4]), making the model able to learn attribute
prediction even from ungrounded objects. We leverage the portion of our data
with known grounding information to train with this loss. We randomly remove
the box information of an object at input with probability 15%, i.e. we set the
box coordinates of an object to be the top-left and bottom-right corner of the
entire image to remove its location information. We avoid instances where this
might cause ambiguity, i.e. when multiple objects of the same type are present
in the image which makes the model unable to know which instance is being
referred to. In addition, for a training image with N objects, we also randomly
sample a subset of k ≤ N objects to be used for training in each iteration. This
is to prevent the model from learning spurious correlations based on occurrence
of objects in the context.

4.3 Training

LSA training we train our model using AdamW [10] with learning rate 1e−4.
For the ResNet-50 backbone, it is trained using learning rate 1e−5 with frozen
BatchNorm layers. We keep our query sequence at maximum length of 40. Train-
ing image is resized to 512 × 512 which results in the visual sequence length
Lv = 16 × 16 = 256. For image augmentation, we apply random flipping and
cropping such that none of the sampled boxes are cropped. In the object ground-
ing loss, we use τ = 0.02. In the BCE classification loss (formula (7) in the main
paper), we treat missing labels as negatives with a small weight of 0.02, while
computing pc and nc in the same way as [11]. The model is trained for 34 epochs
with learning rate reduced by a factor of 10 at epoch 28 and 32. We use batch size
96. The whole training takes approximately 30 hours using 4 NVIDIA GeForce
GTX 1080 Ti GPUs.

VAW finetuning All attribute labels in VAW are present in the seen attribute
set Cs of LSA, hence we can use our model with the closed-set classifier head
(TAP) to fine-tune and test on the VAW benchmark. TAP is fine-tuned with
learning rate 1e−5, while its ResNet backbone is fine-tuned with learning rate
1e−6. We fine-tune for 16 epochs with learning rate multiplied by 0.3 at epoch
10 and 14.

HICO finetuning Because the majority of labels in HICO are not present in
the seen attribute set Cs of LSA, we use our model with the open-set classi-
fier head (OpenTAP) for this experiment. To initialize classifier for all human-
object interaction (HOI) classes, we use the prompt ‘a person <interaction>

<object>’ (e.g ., ‘a person riding horse’) and generate CLIP text embeddings of
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them. This initialization step is the same with [6]. We then fine-tune our model
with learning rate 1e−5, the ResNet backbone with learning rate 1e−6, and the
HOI classifiers with learning rate 1e−4. We fine-tune for 18 epochs with learning
rate reduced by 10 at epoch 14.
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