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Abstract. Synthetic data is a scalable alternative to manual supervi-
sion, but it requires overcoming the sim-to-real domain gap. This dis-
crepancy between virtual and real worlds is addressed by two seemingly
opposed approaches: improving the realism of simulation or foregoing re-
alism entirely via domain randomization. In this paper, we show that the
recent progress in neural rendering enables a new unified approach we
call Photo-realistic Neural Domain Randomization (PNDR). We propose
to learn a composition of neural networks that acts as a physics-based ray
tracer generating high-quality renderings from scene geometry alone. Our
approach is modular, composed of different neural networks for materi-
als, lighting, and rendering, thus enabling randomization of different key
image generation components in a differentiable pipeline. Once trained,
our method can be combined with other methods and used to gener-
ate photo-realistic image augmentations online and significantly more
efficiently than via traditional ray-tracing. We demonstrate the useful-
ness of PNDR through two downstream tasks: 6D object detection and
monocular depth estimation. Our experiments show that training with
PNDR enables generalization to novel scenes and significantly outper-
forms the state of the art in terms of real-world transfer.

1 Introduction

Collecting labelled data for various machine learning tasks is an expensive, error-
prone process that does not scale. Instead, simulators hold the promise of un-
limited, perfectly annotated data without any human intervention but often
introduce a domain gap that affects real-world performance. Effectively using
simulated data requires overcoming the sim-to-real domain gap which arises due
to differences in content or appearance. Domain adaptation methods rely on
target data (i.e., real-world data) to bridge that gap [53, 56, 40, 62, 67, 64, 33, 16].
A separate paradigm that requires no target data is that of Domain Random-
ization [51, 52], which forgoes expensive, photo-realistic rendering in favor of
random scene augmentations. In the context of object detection, CAD models
are typically assumed known [18, 60, 42] and a subset of lighting, textures, ma-
terials, and object poses are randomized. Although typically inefficient, sample
efficiency can be improved via differentiable guided augmentations [59], while
content [25, 10] and appearance [44, 35] gaps can also be addressed by leverag-
ing real data. However, a significant gap remains in terms of the photo-realism
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of the images generated. As an alternative, recent work [1, 16] has shown that
downstream task performance can be improved by increasing the quality of syn-
thetic data. However, generating high-quality photo-realistic synthetic data is
an expensive process that requires access to detailed assets and environments,
as well as modeling light sources and materials inside complex graphics pipelines
which are typically not differentiable.

We propose a novel method that brings together these two separate paradigms
by generating high-quality synthetic data in a domain randomization framework.
We combine intermediate geometry buffers (”G-buffers”) generated by modern
simulators and game engines together with recent advances in neural render-
ing [45, 36, 2], and build a neural physics-based ray tracer that models scene
materials and light positions for photo-realistic rendering. Our Photo-realistic
Neural Domain Randomization (PNDR) pipeline learns to map scene geometry
to high quality renderings and is trained on a small amount of high-quality photo-
realistic synthetic data generated by a traditional ray-tracing simulator. Thanks
to its geometric input, PNDR generalizes to novel scenes and novel object con-
figurations. Once trained, PNDR can be integrated in various downstream task
training pipelines and used online to generate photo-realistic augmentations.
This alleviates the need to resort to expensive simulators to generate additional
high-quality image data when training the downstream task. Our method is more
efficient in terms of time (PNDR renderings are generated 3 orders of magni-
tude faster than traditional simulators), space (PNDR renderings are generated
on-the-fly during training and therefore do not need storage space) and leads
to better generalization. Although our proposed pipeline is generic in nature,
we quantify the usefulness of our synthetic training for the specific tasks of 6D
object detection and monocular depth estimation in a zero-shot setting (i.e.,
without using any real-world data), and demonstrate that our method presents
a distinct improvement over current SoTA approaches.

In summary, our contributions are:

– We unify photo-realistic rendering and domain randomization for synthetic
data generation using neural rendering;

– Our learned deferred renderer, RenderNet, allows flexible randomization of
physical parameters while being 1, 600× faster than comparable ray-tracers;

– Our Photo-realistic Neural Domain Randomization (PNDR) approach yields
state-of-the-art zero-shot sim-to-real transfer for 6D object detection and
monocular depth estimation, almost closing the domain gap;

– We show that realistic physics-based randomization, especially for lighting,
is key for out-of-domain generalization.

2 Related Work

Domain Adaptation. Due to the domain gap, models trained on synthetic
data suffer performance drops when applied on statistically different unlabelled
target datasets. Domain Adaptation is an active area of research [7] with the
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Fig. 1: PNDR Architecture. The main component of our domain randomiza-
tion method is the ray tracer approximator (RenderNet). It takes a G-buffer as
well as random material maps and light maps produced by corresponding sam-
plers and generates intermediate light outputs. These outputs are then combined
using a tone mapper to generate a final rendering. The lower-right row shows
different material and light samples (e.g., roughness, specularity, light position).

aim of minimizing the sim-to-real gap. Common approaches rely on adversarial
learning for feature or pixel adaptation [6, 53, 13], paired [56] or unpaired [66,
40, 30] image translation, style transfer [62], refining pseudo-labels [67, 64, 33], or
unsupervised geometric guidance [16].

Domain Randomization. A different approach to closing the sim-to-real gap
relies on generating augmentations of the input data through random pertur-
bations of the environment (e.g., lights, materials, background) [51, 52, 18]. The
aim is to learn more discriminative features that generalize to other domains.
While simple and inexpensive, this method is sample inefficient because the
randomization is essentially unguided with many superfluous (or even harmful)
augmentations, and it rarely captures the complexity and distribution of real
scenes. Differently, procedurally generating synthetic scenes [43] can preserve
the context of real scenes while minimizing the gaps in content [25, 10, 20] and
appearance [44, 60, 42]. While some of these methods require expensive, bespoke
simulators [25, 10], pixel-based augmentations can be generated differentiably
and combined with the task network to generate adversarial augmentations [59].
Similarly to [59] our pipeline is also differentiable, however while [59] is lim-
ited to handcrafted image augmentations where respective parameters are sam-
pled from artificial distributions, our method approximates a material-based ray
tracer simulating the physical process of light scattering and global illumination,
enabling effects such as shadows and diffuse interreflection. Our augmentations
are solely based on light and material changes, thus reducing the randomization
set to physically plausible augmentations. Moreover, as opposed to [59], we as-
sume no color information of the objects of interest, making our method more
practical for real-world applications.

Photo-Realistic Data Generation. Although expensive to generate, high-
quality synthetic data (i.e., photo-realistic) can increase model generalization
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capabilities [1, 16]. The task of view synthesis allows the rendering of novel data
given a set of input images [49]. Neural Radiance Fields [34] overfit to specific
scenes and can generate novel data with very high levels of fidelity, while also
accounting for materials and lights [4, 48, 5]. Alternative methods use point-based
differentiable rendering [46, 3] and can optimize over scene geometry, camera
model, and various image formation properties. While these methods overfit
to specific scenes, recent self-supervised approaches learn generative models of
specific objects [35] and can render novel and controllable complex scenes by
exploiting compositionality [37]. While neural volume rendering and point based
techniques can yield impressive results, other methods aim to explicitly model
various parts of traditional graphics pipelines [45, 36, 2, 24, 50]. Our work is
similar to [45] in that we also use intermediate simulation buffers to generate
photo-realistic scenes. However, while [45] relies on real data and minimizes a
perceptual loss in an adversarial framework, we focus on the task of 6D object
detection in a zero-shot setting using only object CAD model information and
no real images.
6D Object Detection. Correspondence-based methods [61, 32, 23, 19, 39, 41]
tend to show superior generalization performance in terms of adapting to differ-
ent pose distributions. However, they use PnP and RANSAC to estimate poses
from correspondences, which makes them non-differentiable. Additionally, they
are very reliant on the quality of these correspondences, and errors can result in
unreasonable estimates (e.g., behind the camera, or very far away). Conversely,
regression-based methods [65, 12, 28] show superior performance for in-domain
pose estimation. However they do not generalize very well to out-of-domain
settings. To validate our method we implement a correspondence-based object
detector, which allows us to also evaluate instance segmentation and object cor-
respondences in addition to the object pose regressed.

3 Photo-realistic Neural Domain Randomization

Our photo-realistic neural domain randomization (PNDR) approach consists of
two main components: a neural ray tracer approximator (RenderNet), and sam-
pling blocks for material and light. To increase perceptual quality and realism,
the network outputs are passed through a non-linear tone-mapping function
which yields the final rendering. We now describe the main two components
of PNDR. All other implementation and training details are provided in the
supplementary.

3.1 Geometric Scene Representation

As a first step, we define a geometric room representation outlining our synthetic
environment. We place 3D objects inside an empty room ensuring no collisions.
Next, we assign random materials to both objects and room walls and position
a point light source to illuminate the scene (see Fig 2). Resulting output buffers,
consisting of G-Buffer (scene coordinates in camera space X, surface normals
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Fig. 2: Geometric scene representation. Visualization of RenderNet’s input
consisting of G-Buffer (scene coordinates in camera space X, surface normals
mapN), material properties (albedo A, roughness R, specularity S), and lighting
(light direction map Ldir, and light distance map Ldist).

mapN), material properties (albedo A, roughness R, specularity S), and lighting
(light direction map Ldir, and light distance map Ldist), are used by our neural
ray tracer approximator to generate high fidelity renderings in real time (∼2.5ms
per image), as opposed to ∼4s per image with a conventional ray tracer.

3.2 Neural Ray Tracer Approximator

Our neural ray tracer RenderNet fR is an encoder-decoder CNN taking G-buffer,
material properties, and lighting as input, and generating a final high-fidelity
rendering (see Fig. 1). This is akin to deferred rendering, a common practice in
computer graphics [8]. Instead of outputting a final rendering directly, we split
the output into direct and indirect light outputs and colors which can be easily
combined to form a final, shaded image. This allows not only for a much more
explainable representation, but also for better control over the complexity of the
rendering. As a result, our RenderNet fR is capable of generating photo-realistic
images, generalizes well to novel material and light distributions, and even novel
scenes, objects, and poses.

Light Modelling Lighting in ray tracers can often be decomposed into (1)
direct lighting as coming from lamps, emitting surfaces, the background, or am-
bient occlusion after a single reflection or transmission from a surface; and (2)
indirect lighting that comes from lamps, emitting surfaces or the background
after more than one reflection or transmission. Simulating indirect lighting ap-
proximates realistic energy transfer much closer and produces better images, but
comes at much higher computational cost. To be computationally reasonable, we
render all scenes with a single point light source.
Light Sampler. Our light sampler is a uniform random 3D coordinate gener-
ator. We limit the light pose space to the upper hemisphere and normalize the
position to be at a distance of 1.5m from the scene center as defined in our
training data. The resulting light source position in scene coordinates is then



6 S. Zakharov, R. Ambrus
,
et al.

brought into the camera space given a fixed transform. Next, we parametrize
the scene lighting by composing two light maps: Ldir defines the direction to the
light source from each visible coordinate and Ldist defines the metric distance
to the light source. Since RenderNet fR is fully differentiable, we can also use
it to recover scene parameters in terms of lighting, particularly when combined
with a correspondence-based object detector (see Sec. 4 with qualitative results
in 6.6). In this case we define the light sampling network fL as a SIREN-based
MLP [47] conditioned on the scene ID, which allows us to optimize for the light
position given an input image.

Material Modelling For both direct and indirect lighting our RenderNet fR
outputs two separate images representing diffuse and glossy bidirectional scat-
tering distribution functions (BSDF). The diffuse BSDF is used to add Lamber-
tian [29] and Oren-Nayar [38] diffuse reflection, whereas the glossy BSDF adds a
GGX microfacet distribution [54] that models metallic and mirror-like materials.
Material Sampler. Similarly to the light sampler, the material sampler is a
uniform random value generator. It samples five values per object: RGB values
for albedo A, roughness R and specularity S values. We query the material
sampler for all objects in the scene including the background and, given ground
truth instance masks, compose final 2D maps for each output property. The
RGB albedo values are then multiplied by the GT decolorized albedo to form the
final coloring map. Roughness and specular values are assigned to corresponding
object masks to form full 2D maps.

Following a similar architecture to LightNet, we introduce an object material
sampling network fM , outputting material properties for each of the objects
present in the dataset as well as the background environment. As shown in Fig. 1,
it takes an object ID and scene ID values as input, and as before, produces
the same object-specific material properties, i.e., albedo A, roughness R, and
specularity S. Similarly to the uniform sampler, we query MaterialNet for all
scene objects and compose final 2D maps for each output property.

Image Compositing and Tone Mapping Supplied with the G-buffer that
provides us with scene coordinates in camera space X and surface normals map
N , we can form the final input to the RenderNet fR by concatenating all inter-
mediate results and passing them through the encoder-decoder structure:

fR(X,N,A, S,R, Ldir, Ldist) = [Ddir, Dind, Gdir, Gind]. (1)

Here, A,S,R, Ldir, Ldist are the outputs of the material and light submodules,
as previously explained, whereas Ddir, Dind and Gdir, Gind are the diffuse and
glossy BRDF outputs for direct and indirect lighting, respectively. During train-
ing we supervise the 4 outputs of RenderNet using corresponding ground truth
quantities through an L1 loss. As outlined in Figure 1, the final HDR image is
a combination of the light and BSDF outputs. In particular:

IHDR = (Ddir +Dind) ∗Dcol + (Gdir +Gind) ∗Gcol, (2)
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where Dcol represents object albedo and Gcol represents the probability that
light is reflected for each wavelength. All compositing computations are per-
formed in linear color space, which corresponds closer to nature and results in
a more physically accurate output, i.e., there is a linear relationship between
color intensity and the number of incident photons. However, these values do
not directly correspond to human color perception and display devices.

To address the limited color spectrum and brightness of displays, we apply
a non-linear tone mapping to fit the device gamut. Although there are many
families of mappings to choose from, we picked the commonly-used operator
proposed by Jim Hejl and Richard Burgess-Dawson [21]. At its core, it is a
rational function that mimics the response curve of a Kodak film commonly
used in cinematography:

Ifinal =
Is ∗ (6.2 ∗ Is + .5)

Is ∗ (6.2 ∗ Is + 1.7) + 0.06
, (3)

where Is = max(0, IHDR − 0.004).

4 Downstream Tasks

We combine PNDR with two downstream task methods. At each training step,
PNDR is used to generate photo-realistic augmentations on the fly, which are
fed to the downstream task network.
Correspondence-Based 6D Object Detection. Following related work [61,
23, 39, 32, 19], our Correspondence-Based 6D Object Detector (CBOD) operates
on RGB images and outputs the probability of each pixel belonging to a certain
local object coordinate. Estimated 2D-3D correspondences are then fed into a
PnP+RANSAC solver together with camera parameters to estimate final poses.
We use non-uniform Normalized Object Coordinates Space (NOCS) [55, 58] maps
that maximize the volume inside a unit cube, and we train using a cross-entropy
loss. To disambiguate objects, our detector also outputs an instance segmenta-
tion mask. We then define object regions relying on instance mask probabilities
and use respective correspondences to compute final poses. In addition to achiev-
ing competitive results, this simple yet effective architecture allows us to analyze
the benefit of PNDR not just for a single task of 6D pose estimation, but also
for instance mask estimation and geometric correspondence accuracy, which are
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Fig. 3: Downstream Tasks Coupled with PNDR. During training, both
downstream tasks (detection and depth estimation) take PNDR renderings gen-
erated online, providing new realistic augmentations at each iteration.
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crucial components of general scene understanding. The structure of our detec-
tor is shown in Fig. 3, while the network architecture details are provided in the
supplementary material.
Monocular Depth Estimation. We aim to learn a function fD : I → D

that recovers the depth D̂ = fD (I(p)) for every pixel p ∈ I. We operate in the
supervised setting where we have access to the ground truth depth map, and we
train the monocular depth network using the SILog loss [11, 31] defined between
the predicted and the ground truth depth maps. We evaluate the effect of PNDR
using two network architectures: monodepth2 [14] and packnet-sfm [15].

5 Experiments

We designed a number of experiments aimed at exploring how PNDR-generated
data compares to real data as well as expensive, ray-tracer based simulation data
in terms of downstream task performance.

5.1 Evaluation Metrics

6D Object Detection. Following related work [61, 27], we use ADD [17] as the
metric to evaluate object detection. ADD is defined as the average Euclidean dis-
tance between the model vertices transformed with ground truth and predicted
poses:

m = avg
x∈M

∥

∥

∥
(Rx+ t)− (R̂x+ t̂)

∥

∥

∥

2

, (4)

where M is a set of vertices of a 3D model, (R, t) and (R̂, t̂) are ground truth
and predicted rotation and translation, respectively. Most commonly, a predicted
pose is considered to be correct if ADD calculated with this pose is less than 10%
of a model diameter. However, this is a very strict metric especially for objects
with a small diameter since it can completely disregard good pose estimates and
estimates that could be refined. To be able to better analyze pose quality, we
instead compute ADD under multiple thresholds (from 5 to 50 with a step of 5)
and then estimate the area under the curve (AUC).
Instance Segmentation. To evaluate the quality of the instance segmentation
we use a standard Intersection over Union (IoU) metric, which quantifies the
percent overlap between the target mask and our prediction output.
Object Correspondences. To evaluate the quality of estimated object corre-
spondences, we compare per-point metric distances in object’s coordinate space
between the GT partial shape and the predicted one. To do that we first use GT
masks to recover partial object shapes and compute their absolute scale given
provided model information. Then, we measure one-to-one distances between
the GT shape and predicted shape in millimeters.
Depth Estimation. We evaluate the performance of our depth networks using
the standard metrics found in the literature: AbsRel, RMSE and δ1, which are
defined in detail in the supplementary.
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Train Method

HB Scene 5 HB Scene 10 (Lighting)

Car P12 P15 Pumba Dog Mean Car P12 P15 Pumba Dog Mean

Real 91.76 94.12 79.34 94.41 95.00 90.93 26.69 35.88 8.75 25.22 14.63 22.24

Real
+ CAD†

Pix2Pix [22] 81.84 76.47 38.53 76.76 94.12 73.54 37.13 35.59 13.75 24.78 33.82 29.01
Pix2PixHD [56] 90.96 92.21 73.09 91.91 95.00 89.59 37.21 40.96 21.25 29.26 15.59 32.33

Real
+ CAD‡

CycleGAN [66] 49.41 31.10 24.12 40.88 73.24 43.75 27.72 2.28 6.91 7.06 11.47 11.09
CUT [40] 56.10 28.97 29.34 41.47 85.29 66.49 27.35 4.63 7.35 8.90 12.13 25.36

CAD
RayTraced - 1088 85.59 86.76 61.18 89.71 94.85 83.62 47.28 36.84 9.12 36.25 23.38 30.57
RayTraced - 2176 86.99 90.00 63.01 91.47 95.00 85.29 50.88 38.82 10.00 35.29 30.96 33.19
RayTraced - 4352 89.71 88.97 66.91 92.35 95.00 86.59 52.43 38.75 10.29 41.47 43.82 37.35

Ours - 1088 89.93 91.62 71.99 92.35 95.00 88.18 58.01 42.50 10.59 46.18 44.93 40.44

Table 1: HB Dynamic Lighting Benchmark: All methods are trained on
the training set of HB5 and evaluated on the HB5 test set and on HB10. †
indicates that [22, 56] are trained with synthetic and real image pairs, while
‡ indicates unpaired synthetic and real images for [66, 40]. Training on photo-
realistic synthetic data is competitive with real data training and generalizes
better to new domains. By training on PNDR images we further close the gap
to training on real data in HB5 and increase generalization performance to the
novel lighting setting of HB10.

Perceptual Quality. To evaluate generated RenderNet images, we use the stan-
dard image quality metrics PSNR and SSIM [57] for all evaluations. Moreover,
we include LPIPS [63], more accurately reflecting human perception.

6 Results

6.1 HB Dynamic Lighting Benchmark

In this first experiment we aim to isolate the effects of training and testing under
significantly different illumination while keeping the scene contents constant.
We use scenes 5 and 10 of the HomeBrewedDB (HB) dataset [26] (HB5 and
HB10 for short), as shown in Fig. 4. Both scenes contain the same objects in
the same environment and consist of 340 images with associated depth maps
and object annotations (CAD models and poses). HB5 and HB10 are captured
with drastically different lighting conditions, allowing us to isolate the effect

HB: Scene 5 HB: Scene 10

Fig. 4: HB Dynamic Lighting

Benchmark: two scenes contain-
ing same the objects under signifi-
cantly different lighting conditions.

HB: Scene 2 LM: Scene 2 LM: Scene 15LM: Scene 8

Fig. 5: HB-LM Cross-Domain Adapta-

tion Benchmark: four scenes containing
the same objects in different environments
and recorded with different cameras.



10 S. Zakharov, R. Ambrus
,
et al.

Tr
a

in
in

g
Po

se
s

(a) Real (b) Pix2PixHD (c) CUT (d) PNDR

Fig. 6: 6D Object detection qualitative results. We compare object detec-
tion results when trained on PNDR renderings with our image-to-image trans-
lation GAN baselines and with the baseline trained on real data. All methods
are evaluated on an HB5 test image.

simulated data has on overcoming this perceptual domain gap. We split HB5

into a training and in-domain testing subsets consisting of 272 and 68 frames
respectively; HB10 is used entirely for testing.

We present the benchmark results in Table 1 (qualitative results are shown
in Fig. 6). Our first baseline consists of training CBOD directly on the HB5 real
images, and we record good in-domain performance (90.93) and poor transfer
to different light configurations (22.24). Our second baseline uses entirely syn-
thetic photo-realistic images of increasing sizes. Using the object CAD models
and associated poses corresponding to the different training frames (i.e. we have
a total of 272 different object configurations), we generate Domain Randomized
synthetic photo-realistic images with BlenderProc [9]. Specifically, for each train-
ing configuration we vary object materials and light positions. For backgrounds
we randomly select from 5 different asset classes (Bricks, Wood, Carpet, Tile,
Marble 3) and also randomize their materials. For each training configuration
we generate an increasing number of augmentations using this technique, lead-
ing to larger synthetic datasets with very high perceptual quality at the expense
of rendering time and storage space. We train CBOD on the synthetic images,
and, as expected, downstream task performance improves as more high-quality
synthetic data is available (i.e., with 4352 synthetic images we achieve 37.35 gen-
eralization performance). We compare this with the proposed PNDR method as
follows: using the high-quality synthetic data along with the corresponding G-
buffer information, we train PNDR, and use it in the training pipeline of CBOD
to generate new, high-quality augmentations on the fly, saving rendering time
and storage space. As shown in our experiments, 1088 synthetic images are
enough to train PNDR, and we almost match the performance of training on
real data and increase generalization to scenes with significant light variation
by 82% (40.44 vs 22.24). We note that as CBOD is trained over 400 epochs, it
would require ∼30h and 600GB storage space to generate as many images with
the raytracer as were generated by PNDR.

3 https://ambientcg.com
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Train Method

HB Scene 2 LM Scenes 2, 8, 15

Bvise Drill Phone Mean Bvise Drill Phone Mean

Real 94.71 95.00 94.41 94.71 4.43 0.30 0.35 1.69

Real + CAD†
Pix2Pix [22] 75.66 77.94 67.65 73.75 4.97 1.38 0.28 2.21

Pix2PixHD [56] 92.57 94.41 91.76 92.92 4.65 1.62 0.47 2.25

Real + CAD‡
CycleGAN [66] 35.37 26.76 45.22 35.78 5.68 5.40 3.23 4.77

CUT [40] 78.53 61.25 65.44 68.41 21.70 10.05 6.33 12.69

CAD
RayTraced - 1088 84.49 72.43 80.81 79.24 33.67 9.55 15.90 19.71

Ours - 1088 85.88 81.54 83.09 83.50 35.50 28.02 18.48 27.33

Table 2: HB-LM Cross-Domain Adaptation Benchmark: All methods are
trained on the training set of HB2 and evaluated on HB2 test set as well as
on the LM2, LM8 and LM15 scenes. Training on real data generalizes poorly
to novel object categories. Training on photo-realistic synthetic data is compet-
itive with real data training when evaluated on the same object categories, and
greatly increases generalization performance for novel object categories. † indi-
cates that [22, 56] are trained with paired synthetic and real image pairs, while
‡ indicates unpaired images for [66, 40].

Additionally we train state-of-the-art image-translation methods on the same
images we train PNDR on, and we use the corresponding real images as transla-
tion targets. Specifically, we compare against (i) pix2pix [22] and pix2pixHD [56]
using BlenderProc and real image pairs; and (ii) cycleGAN [66] and CUT [40]
using unpaired BlenderProc and real images. Although our method does not
require any real images, adversarial image translation methods are representa-
tive of the state-of-the-art in domain adaptation and serve as good baselines.
The training details of all the baselines are provided in the supplementary. The
paired GAN baselines [22, 56] increase generalization performance, although we
note that having access to synthetic and image pairs is an unrealistic scenario
in practice and this serves as an upper-bound, at least for in-domain evaluation.
The more realistic case of unpaired translation [66, 40] performs much worse, as
expected. This is easily explained by the rather large domain shift induced from
the different scene setups and cameras.

6.2 HB-LM Cross-Domain Adaptation Benchmark

Our HB-LM cross-domain benchmark (see Fig. 5) is represented by HB2 cov-
ering three objects of the LineMOD (LM) [17] dataset (benchvise, driller, and
phone). Additionally, we use scenes 2, 8 and 15 from the LM dataset for testing:
these scenes contain the same objects as HB2 but with significantly different
poses and in a different setting. This setting allows us to evaluate the general-
ization performance of PNDR to new scenes and new object poses. As before, we
partition the HB2 into a training and test split consisting of 272 and 68 images,
respectively, and we use BlenderProc [9] to generate the same synthetic photo-
realistic renderings and G-buffer information. In addition to the HB2 data, we
also generate 1000 photo-realistic images using BlenderProc while randomizing
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both the camera and the poses of the 3 objects from HB2. As we show in the
experiments, using this extra simulated data allows us to generalize much better
to the LM scenes where the object pose distribution is significantly different.
We train PNDR as before and use its output to train CBOD, which is evaluated
both in domain, i.e., on the test split of HB2 as well as out of domain on LM2,
LM8 and LM15.

We analyze how well we generalize to completely different scenes with differ-
ent lighting conditions, environment, camera setup and object poses; our results
are summarized in Table 2. As before, we report the best in-domain results when
training on real data, with a slight performance drop when training directly on
the photo-realistic synthetic BlenderProc data. We note that by using PNDR
we significantly increase performance. As before, the paired translation GAN
baselines compare quite well, and we record a similar performance drop when
doing unpaired image translation. Both the GAN and the baseline trained on
real data generalize poorly to the LM scenes, reflecting the challenging nature of
this benchmark. Interestingly, the unpaired image translation baselines general-
ize better in this setting - we provide qualitative examples in the supplementary.
By training on the synthetic data which contains additional renderings with
randomized object poses we significantly improve performance. As before, using
PNDR as part of the training pipeline further improves performance, achieving
27.33 on the LM scenes.

6.3 HB Generalization Benchmark

Here we aim to evaluate how well PNDR can generate novel photo-realistic
images in and out of domain. We train PNDR on HB2 and evaluate on the test
set of HB2 as well as HB5. Note that these two scenes contain different objects,
allowing us to investigate if our learned ray-tracing network generalizes to novel
scene geometries. For completeness, we also perform the same experiment by
training on HB5 and evaluating on HB2.

We quantify the generalization capabilities of PNDR when applied to novel
scenes, object arrangements, material properties and lighting. We train PNDR on

Real image Recovered materials / lighting 

Fig. 7: Recovering scene properties via our RenderNet. Given the recov-
ered G-Buffer we optimize over MaterialNet and LightNet to find the best fit
explaining the input image.
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Train Test PSNR↑ SSIM↑ LPIPS↓

HB2 - Train

HB2 - Train 30.36 0.96 0.03
HB2 - Test 26.14 0.94 0.05
HB5 - Test 24.14 0.92 0.06

HB5 - Train

HB5 - Train 30.39 0.96 0.03
HB5 - Test 26.40 0.94 0.06
HB2 - Test 23.72 0.92 0.07

Table 3: PNDR Generalization: We
achieve strong performance not only
when applied to a test image of the same
scene containing the same objects with
different material properties and differ-
ent poses, but also when applied on a
completely different scene.

Modes ADDAUC ↑ IoU ↑ Corr (mm) ↓

Material
A 85.43 83.29 38.56

+S +R 3% 3% 11%

Light
Fixed 73.04 72.24 76.94

Dynamic 21% 19% 55%

Rendering
Ddir, Gdir 87.09 85.55 38.42

+ Dind, Gind 1% 0% 11%

Full 88.18 85.97 34.32

Table 4: Ablation: We analyze the
effect of different augmentations on
downstream task performance. All
methods are trained on the HB5

train set and evaluated on the HB5

test set.

the training split of HB2 and evaluate how it performs when applied to: (1) the
training split, (2) the test split, (3) the test split of a different scene (i.e., HB5).
For completeness, we also perform the reverse experiment (i.e., train onHB5 and
evaluate on HB2). The results in Table 3 suggest a high level of visual quality
when assessed with PSNR, SSIM, and LPIPS (please refer to the supplementary
for details on these metrics). PNDR not only shows strong results on the test
set containing the same objects under different poses and with different material
properties, but also generalizes well to a scene with completely different objects.

6.4 Ablation Study

We analyze how different physically-based augmentations affect the downstream
task performance, and consider: material randomization, light randomization,
and rendering complexity. PNDR is conditioned on material properties of the
objects, i.e., albedo A, specularity S, and roughness R, with A being the most
important property. In Table 4 we see that training with just albedo random-
ization results in very good performance already. Additionally simulating S and
R brings a relative gain of 2% with respect to ADDAUC, 3% to mIoU, and
11% to correspondence quality. Furthermore, we note that lighting is by far the
most important randomization parameter. Going from fixed to dynamic light-
ing significantly improves the results: 19% ADDAUC gain, 19% mIoU gain, and
55% correspondence quality gain. Finally, we note that simulating computation-
ally expensive indirect lighting only helps improve correspondence quality but is
negligible for the other metrics. Since we use an outlier-robust PnP+RANSAC
solver, small deviations in correspondence quality do not significantly affect the
pose quality as evaluated by ADDAUC.

6.5 Monocular Depth Estimation

We quantify the impact of PNDR when applied for the task of monocular depth
estimation. We use the same data as for the Dynamic Lighting Benchmark
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Method Training

HB5 HB10

AbsRel↓ RMSE↓ a1↑ AbsRel↓ RMSE↓ a1↑

Monodepth2
Raytraced 0.082 0.09 0.951 0.162 0.148 0.805
PNDR 0.075 0.083 0.966 0.154 0.14 0.83

PackNet-SfM
Raytraced 0.11 0.111 0.884 0.141 0.136 0.833
PNDR 0.082 0.087 0.977 0.135 0.131 0.852

Table 5: PNDR vs Raytraced - monocular depth results.

(see 6.1). For both monodepth2 and packnet-sfm we compare performance when
training directly on the 1088 raytraced images with performance when PNDR is
integrated in the training pipeline and generates novel augmentations on the fly.
As before, we note that when training with PNDR we achieve better in-domain
and better generalization performance (see Table 5).

6.6 Object Material and Light Recovery

The fact that RenderNet is fully differentiable allows us to optimize over scene
parameters. In particular, given an initial scene prediction provided by CBOD
we can recover material properties of the objects and scene light (see Fig. 7).
First, we construct a G-buffer by estimating a depth map using estimated poses
and object models, which is in turn used to estimate scene coordinates X and
surface normals N . LightNet fL and MaterialNet fM conditioned on the scene
and object IDs output the remaining maps A, R, S, Ldir, and Ldist required for
the RenderNet. Finally we generate a rendering that is then compared to the GT
RGB image to find the best fit. Estimated scene parameters can be used to learn
a distribution of material and light configurations across the entire dataset. This
information might not only be useful for analysis, but also for domain-specific
data generation using our RenderNet, especially where the same object instances
exist in multiple material variations.

7 Conclusion

We have presented a novel approach towards sim-to-real adaptation by means of
a neural ray tracer approximator with randomizable material and light modules
that we named PNDR. We have demonstrated that applying our photo-realistic
randomized output to the problem of zero-shot 6D object detection significantly
outperforms other established DA approaches, and even comes close to train-
ing on real data. We have identified lighting as the most crucial component,
but it remains an open question what kind of additional randomization could
further benefit the domain transfer. One possible future research avenue would
be randomized sampling of low-level camera sensor artifacts, or the coupling of
randomization and downstream task optimization in a common framework.
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