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Fig. S1: The absolute and relative distribution of scales estimated by VSA with
different input resolutions. The X-axis denotes the scale ratio of the varied-size
window w.r.t. the default one. VSA generates the target windows at various
scales to capture rich contextual information and the window size tends to be-
come larger to adapt to large objects with the resolution going higher.

A.1 Implementation details

In this section we give details of the regression and sampling process. Different
from previous work [3] that controls the regression distance by a predefined
parameter, the proposed VSR module is hyper-parameter free. Denoting the
coordinates of samples within one window as {(xi, yi)|i = 1 . . . n} where i refers
to the ith token, we first disentangle the coordinates as

xi = xre
i + xce,

yi = yrei + yce,
(1)
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where (xce, yce) denote the center coordinates of the corresponding window and
(xre

i , yrei ) are the relative coordinates w.r.t. the center. Then given the learned
scales and offsets sw, ow ∈ R2 of the corresponding window from Equation 3,
they are normalized by multiplying the ratio between the window size and image
size (also denoted as sw, ow for simplicity). This makes the VSR module learn
how to expand and move the current window towards the optimal attention
region by taking the window as a base. Then the tokens’ new coordinates within
that window are calculated as

(x∗
i , y

∗
i )

T = (xre
i , yrei )T · sw + ow + (xce, yce)T . (2)

In the end, the key and value tokens are sampled according to the new coordi-
nates (x∗

i , y
∗
i ) and fed into the following window-based attention layer.

Model
Params FLOPs Input Training ImageNet [5] Real [1]
(M) (G) Size Set Top-1 Top-5 Top-1

DeiT-S [12] 22 4.6 224 IN1k 81.2 95.4 86.8
PVT-S [14] 25 3.8 224 IN1k 79.8 - -
ViL-S [17] 25 4.9 224 IN1k 82.4 - -
PiT-S [8] 24 4.8 224 IN1k 80.9 - -
TNT-S [7] 24 5.2 224 IN1k 81.3 95.6 -
MSG-T [6] 25 3.8 224 IN1k 82.4 - -
Twins-PCPVT-S [4] 24 3.8 224 IN1k 81.2 - -
Twins-SVT-S [4] 24 2.9 224 IN1k 81.7 - -
T2T-ViT-14 [16] 22 5.2 224 IN1k 81.5 95.7 86.8
Swin-T [11] 29 4.5 224 IN1k 81.2 - -
Swin-T+VSA 29 4.6 224 IN1k 82.3 96.1 87.5
ViTAEv2-S1 [18] 20 5.4 224 IN1k 82.2 96.1 87.5
ViTAEv2-S [18] 20 5.7 224 IN1k 82.6 96.2 87.6
ViTAEv2-S1+VSA 20 5.6 224 IN1k 82.7 96.3 87.8
Swin-T [11] 29 14.2 384 IN1k 81.4 95.4 86.4
Swin-T+VSA 29 14.9 384 IN1k 83.2 96.5 88.0
Swin-T [11] 29 23.2 480 IN1k 81.5 95.7 86.3
Swin-T+VSA 29 24.0 480 IN1k 83.4 96.7 88.0
PiT-B [8] 74 12.5 224 IN1k 82.0 - -
TNT-B [7] 66 14.1 224 IN1k 82.8 96.3 -
Focal-B [15] 90 16.0 224 IN1k 83.8 - -
ViL-B [17] 56 13.4 224 IN1k 83.7 - -
MSG-S [6] 56 8.4 224 IN1k 83.4 - -
PVTv2-B5 [13] 82 11.8 224 IN1k 83.8 - -
Swin-S [11] 50 8.7 224 IN1k 83.0 - -
Swin-B [11] 88 15.4 224 IN1k 83.3 - 88.0
Shuffle-S[9] 50 8.9 224 IN1k 83.5 - -
Swin-S+VSA 50 8.9 224 IN1k 83.6 96.6 88.4
ViTAEv2-48M 49 13.3 224 IN1k 83.8 96.6 88.4
ViTAEv2-48M1+VSA 50 13.0 224 IN1k 83.9 - -
Swin-B [11] 88 15.4 224 83.3 - 88.0
Swin-B+VSA 88 16.0 224 83.9 96.7 88.6

ViTAEv2-48M1+VSA 50 13.0 224 IN22k+IN1k 84.9 - -
ViTAEv2-B 90 24.3 224 IN22k+IN1k 86.1 97.9 89.9
ViTAEv2-B1+VSA 94 23.9 224 IN22k+IN1k 86.2 97.9 90.0
1 The full window version.

Table S1: Image classification results on ImageNet. ‘Input Size’ denotes the image
size used for training and test. ‘IN1k’ and ‘IN22k’ refer to ImageNet-1k and
ImageNet-22k datasets respectively.
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A.2 Visual inspection

Statistics of target windows’ scales. In this part, we analyze the behav-
ior of VSA in regressing the target windows when dealing with input images
of different resolutions. Specifically, we first scale the input images to different
resolutions, i.e., 224×224, 384×384, and 480×480 and train three corresponding
models respectively, whose performance has been reported in Table S1. Then, we
randomly sample images from the ImageNet validation set and feed them into
the three models respectively to count the scale distribution of all target win-
dows estimated by VSR. We plot the results from the 5th, 7th, and 9th layers in
Figure S1, where the X-axis denotes the scale ratio between the target windows
and the default one. The Y-axis in the first row denotes the percentage of corre-
sponding scales. For better visualization, we normalize the data independently
along the Y-axis w.r.t. each scale on the X-axis, i.e., obtaining the relative dis-
tribution as shown at the bottom of the figure. As can be seen, larger windows
gradually dominate the VSA when the input size increases from 224×224 to
480×480, showing the good ability of VSA in adapting to different input sizes.

A.3 Classification results

We present the classification results of various model in Table S1. As shown in
the table, the proposed VSA method can consistently improve the classification
results. It is noted that with the help of VSA, the full window version of ViTAEv2
outperforms its counterpart using full attention in the last two stages [18], which
has much computation cost when the input images become larger as shown in
[18]. Besides, when pretraining using the ImageNet-22k dataset, the full window
version of ViTAEv2-B reaches 86.2% and 90.0% Top-1 accuracy on ImageNet-1k
and ImageNet-1k Real datasets respectively.

Params Cascade RCNN 1x Cascade RCNN 3x

(M) APbbAPbb
50APbb

75 APmkAPmk
50 APmk

75 APbbAPbb
50APbb

75 APmkAPmk
50 APmk

75

R50 82 44.3 62.7 48.4 38.3 59.7 41.2 46.3 64.3 50.5 40.1 61.7 43.4
Swin-T 86 48.1 67.1 52.2 41.7 64.4 45.0 50.2 69.2 54.7 43.7 66.6 47.3
Swin-T+VSA 86 49.8 69.0 54.1 43.0 66.2 46.4 51.3 70.3 55.8 44.6 67.6 48.1

ViTAEv2-S1 77 47.3 66.0 51.5 40.6 63.0 43.7 48.0 65.7 52.5 41.3 63.1 45.0
ViTAEv2-S1+VSA 77 49.8 69.2 54.0 43.1 66.4 46.5 51.9 70.6 56.2 44.8 68.1 48.5

1 The full window version.

Table S2: Object detection results on MS COCO with Cascade RCNN.

A.4 Downstream task results

We further present the results of Swin [11] and ViTAEv2 [18] with the proposed
VSR module on MS COCO dataset [10] for detection tasks. ViTAEv2 with win-
dow attention for all stages, i.e., the full window attention version, is adopted as
default. We evaluate their detection performance Cascade RCNN [2] frameworks
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CascadeRCNN 3x

AP bb AP bb
s AP bb

m AP bb
l APM APM

s APM
m APM

l fps
Swin-T 50.4 33.8 54.1 65.2 43.7 27.3 47.5 59.0 25.2

Swin-T+VSA 51.4 35.5 54.7 66.0 44.7 28.7 48.1 59.8 22.5
Swin-S 51.9 35.2 55.7 67.7 45.0 28.8 48.7 60.6 16.0

Swin-S+VSA 52.7 36.7 56.0 68.3 45.6 29.8 49.0 61.2 14.1
Swin-B 51.9 35.4 55.2 67.4 45.0 28.9 48.3 60.4 14.4

Swin-B+VSA 52.9 36.8 56.4 68.4 45.9 30.1 49.3 61.5 12.8

Table S3: More object detection results with Cascade RCNN.

with both 1× and 3× settings. The detection results are available in Table S2
and Table S3 (Cascade RCNN). The results in both tables imply that VSA can
successfully boost the detection performance with Cascade RCNN frameworks.
Besides, the performance gain keeps when scaling to models with more param-
eters, e.g ., Swin-S and Swin-B [11] with 50M and 88 parameters, respectively,
as demonstrated in Table S3. In addition, from Table S3, we can see that the
improvement on small and big objects significantly exceeds the median ones of
the baseline, which supports our claim that VSA can better deal with objects of
different sizes.
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1. Beyer, L., Hénaff, O.J., Kolesnikov, A., Zhai, X., Oord, A.v.d.: Are we done with
imagenet? arXiv preprint arXiv:2006.07159 (2020) 2

2. Cai, Z., Vasconcelos, N.: Cascade r-cnn: Delving into high quality object detection.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 6154–6162 (2018) 3

3. Chen, Z., Zhu, Y., Zhao, C., Hu, G., Zeng, W., Wang, J., Tang, M.: Dpt: De-
formable patch-based transformer for visual recognition. In: Proceedings of the
29th ACM International Conference on Multimedia. pp. 2899–2907 (2021) 1

4. Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., Xia, H., Shen, C.: Twins:
Revisiting the design of spatial attention in vision transformers. In: Advances in
Neural Information Processing Systems (2021) 2

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 248–255. Ieee (2009) 2

6. Fang, J., Xie, L., Wang, X., Zhang, X., Liu, W., Tian, Q.: Msg-transformer:
Exchanging local spatial information by manipulating messenger tokens. arXiv
preprint arXiv:2105.15168 (2021) 2

7. Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer.
Advances in Neural Information Processing Systems 34 (2021) 2

8. Heo, B., Yun, S., Han, D., Chun, S., Choe, J., Oh, S.J.: Rethinking spatial di-
mensions of vision transformers. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) (2021) 2

9. Huang, Z., Ben, Y., Luo, G., Cheng, P., Yu, G., Fu, B.: Shuffle transformer: Re-
thinking spatial shuffle for vision transformer. arXiv preprint arXiv:2106.03650
(2021) 2

10. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 740–755. Springer (2014)
3

11. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 10012–
10022 (2021) 2, 3, 4

12. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training
data-efficient image transformers; distillation through attention. In: International
Conference on Machine Learning. PMLR (2021) 2

13. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pvtv2: Improved baselines with pyramid vision transformer (2021) 2

14. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction with-
out convolutions. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 568–578 (2021) 2

15. Yang, J., Li, C., Zhang, P., Dai, X., Xiao, B., Yuan, L., Gao, J.: Focal attention for
long-range interactions in vision transformers. In: Advances in Neural Information
Processing Systems (2021) 2

16. Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.H., Tay, F.E., Feng, J., Yan,
S.: Tokens-to-token vit: Training vision transformers from scratch on imagenet.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 558–567 (2021) 2



6 Q. Zhang et al.

17. Zhang, P., Dai, X., Yang, J., Xiao, B., Yuan, L., Zhang, L., Gao, J.: Multi-scale
vision longformer: A new vision transformer for high-resolution image encoding.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 2998–3008 (October 2021) 2

18. Zhang, Q., Xu, Y., Zhang, J., Tao, D.: Vitaev2: Vision transformer advanced
by exploring inductive bias for image recognition and beyond. arXiv preprint
arXiv:2202.10108 (2022) 2, 3


	VSA: Learning Varied-Size Window Attention in Vision Transformers Supplementary Material

