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Abstract. Coarse Class Subdivision (CCS) is important for many prac-
tical applications, where the training set originally annotated for a coarse
class (e.g. bird) needs to further support its sub-classes recognition (e.g.
swan, crow) with only very few fine-grained labeled samples. From the
perspective of causal representation learning, these sub-classes inherit
the same determinative factors of the coarse class, and their difference
lies only in values. Therefore, to support the challenging CCS task with
minimum fine-grained labeling cost, an ideal data augmentation method
should generate abundant variants by manipulating these sub-class sam-
ples at the granularity of generating factors. For this goal, traditional
data augmentation methods are far from sufficient. They often per-
form in highly-coupled image or feature space, thus can only simulate
global geometric or photometric transformations. Leveraging the recent
progress of factor-disentangled generators, Unbiased Manifold Augmen-
tation (UMA) is proposed for CCS. With a controllable StyleGAN pre-
trained for a coarse class, an approximate unbiased augmentation is con-
ducted on the factor-disentangled manifolds for each sub-class, revealing
the unbiased mutual information between the target sub-class and its de-
terminative factors. Extensive experiments have shown that in the case
of small data learning (less than 1% fine-grained samples of commonly
used), our UMA can achieve 10.37% average improvement compared with
existing data augmentation methods. On challenging tasks with severe
bias, the accuracy is improved by up to 16.79%. We release our code at
https://github.com/leo-gb/UMA.

Keywords: Coarse Class Subdivision,Causal Representation Learning,
Factor-disentangled Generator,Unbiased Manifold Augmentation

1 Introduction

Different from the conventional classification tasks where the original class and
the new target are of similar level of semantic granularity, this paper focuses on
Coarse Class Subdivision (CCS) which is a very practical problem. Given an ex-
isting training set for a coarse class, the target of CCS is to further recognize its
sub-classes with minimum fine-grained labeling cost, as shown in Figure 1 (a).
From the perspective of causal representation learning [17,20,26], the generating
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Fig. 1. The proposed Unbiased Manifold Augmentation (UMA) for coarse class subdi-
vision task. (a) An example of task overview: given a training set for coarse class, and
only very few samples for each sub-class. (b) Abundant and unbiased samples genera-
tion using our UMA. It should be noted that the semantic of each latent-code manifold
is implicit. (c) The problem caused by limited and biased fine-grained data, and the
effect of our UMA.
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factors of images are composed of determinative factors and confounding factors.
In the case of CCS, the sub-classes inherit the same determinative factors of the
coarse class, and their difference lies only in values. This task requires iden-
tifying the determinative factors of these sub-classes and distinguishing subtle
differences between them. Fine-grained classification [10,16,17] is very challeng-
ing in itself, limited samples with agnostic bias make the task more difficult.
For instance, given a training set with the coarse label “bird”, a sub-class model
fine-tuned with a few white-swan images often fails while discriminating between
black swan and crow, revealing “color” as an unreliable determinative factor for
the target sub-class.

Traditional data augmentation methods have been proved to be effective for
common small data learning problems [27, 28], but show limited effect on this
challenging task. Ideal augmentation strategies for CCS should make full use of
the fine-grained samples, and manipulate them at the granularity of generating
factors. Even if their distribution on the generating factors is biased, we should
generate abundant variants based on them, revealing the unbiased mutual in-
formation between the target sub-classes and their generating factors. In this
way, the classifiers can be guided to focus on the determining factors which have
the best generalization performance, as shown in Figure 1 (b)(c). However, most
existing data augmentation methods perform in highly-coupled image or feature
space, thus can only simulate global geometric or photometric transformations,
which is far from sufficient for this challenging task.

Fortunately, the rapid development of factors-disentangled and controllable
generative models illuminates an entirely new avenue for overcoming this prob-
lem [18,23]. To support various attribute-level manipulation of a given image, an
idea controllable generative network is forced to learn disentangled manifolds for
all generating factors of the target class, thus can model any variations of these
factors with well-structured latent representations. Consequently, different from
the traditional data augmentation methods conducted in highly-coupled image
space or feature space, progressive manipulation in the disentangled manifolds
can lead to an approximate unbiased distribution of all generating factors for
the target category.

However, the factor-decoupling and controllable-manipulation effects of exist-
ing generators are far from ideal, especially the correspondence between editable
latent-codes and the generating factors are implicit. Despite there are many
methods aiming to find out these relations [8,15], most of them are too costly to
be a practical option. In this paper, we propose a novel method called Unbiased
Manifold Augmentation method (UMA), which is a simple and effective solution
for the above difficult problems.

It should be noted that although the editable generator is essential for our
UMA, there are many off-the-shelf generic generators can be utilized directly. For
example, a generic face generator trained on the well-known datasets FFHQ [3]
or CelebA [1]can be used in our UMA for any facial attribute recognition task.
And any general bird generator trained on LSUN [25] or [2] can be used to
improve the recognition of “swan” or “gull”.
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Our main contributions are as follows:

– A novel and systematic data augmentation mechanism called Unbiased Man-
ifold Augmentation (UMA) is proposed for coarse class subdivision problem.
Given an existing training set for a coarse class, our UMA can support sub-
classes recognition with minimum fine-grained labeling cost.

– The UMA is conducted on latent-code manifolds of a controllable generator
pretrained for a coarser category, instead of the traditional highly-coupled
image or feature space. Using a simple and effective progressive synthesis
strategy, an approximate unbiased augmentation at the granularity of gen-
erating factors is achieved, even with limited labeled samples and agnostic
bias. By revealing the unbiased mutual information between the target class
and all of its impact factors, the classifier can be guided to focus on the right
determining factors of the target sub-classes. In conjunction with it, a phase
of progressive robust learning is further integrated, to keep a good balance
of the diversity and reliability of these synthetic samples.

– Extensive experiments have shown that in the case of small data learn-
ing (less than 1% fine-grained samples of commonly used), our UMA can
achieve 10.37% average improvement compared with existing data augmen-
tation methods. On challenging tasks with severe bias, the accuracy is im-
proved by up to 16.79%.

2 Related work

Although the coarse class subdivision task has rarely been formally defined, it is
a very practical problem and the related research is ubiquitous in deep learning.
An exhaustive list of these work is out of the scope of this paper. Here we
highlight data-augmentation strategies, especially based on the exploration of
the recent progress of controllable generators with disentangled manifolds.

Data Augmentation. As one of the most hopeful means to alleviate small
data learning problem in CCS task, the data augmentation methods have been
actively studied [5,6,9,13,24,27,28,30]. Considering the different spaces in which
the operations are performed, most of the widely used methods can be roughly di-
vided into three categories. 1) Image Augmentation: given two training samples,
Mixup [28] interpolates both the image and labels, while CutMix [27] partially
mixes the patches and labels. The approaches conducted in the original image
space [5,27,28] can improve the DNNs’ robustness over some common noise, but
the effects are often limited due to these simple variants of global geometric or
photometric. 2) Feature Augmentation: Some methods such as [10,24] regularizes
the DNNs by random interpolation of feature maps. It should be noted that the
manifolds mentioned in Manifold Mixup [24] are actually the traditional feature
maps in classification networks, not the manifolds of latent codes derived from
controllable generative models, as adopted in this paper. 3) Style Augmentation:
Since [7,9]decomposed the feature maps of the DNNs into separated representa-
tions of image content and style, many data augmentation methods using style
or content manipulation has been proposed [8–10,14,29]. However, the diversity
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and reasonableness of the above synthetic data are difficult to guarantee, be-
cause both the feature space and style space are still highly coupled in semantic.
Different from them, Our UMA is conducted in a well-structured latent space
of disentangled generating factors, leveraging the recent progress of controllable
generative models.

Controllable Generative Models. In recent years, controllable generators
have witnessed great progress. It has been demonstrated that StyleGAN and
StyleGAN2 [4] can offer strong editing capabilities with a disentangled latent
space. Motivated by it, various methods have used StyleGAN to perform some
specific manipulation for any given image [18,19,23]. They first encode an image
into the latent space W of a pre-trained StyleGAN, then edit the latent code in a
semantically meaningful way to obtain a new code, according to different image
editing requirements. A desired image is then generated with this new code using
the StyleGAN. An extended latent space W+ as the concatenation of 18 different
W vectors is often used, one for each input layer of StyleGAN [18,23]. The latent
space is considered as an ideal model of natural images’ inherent distribution
[4,18,19,23]. Sample synthesis in these disentangled semantic manifolds can lead
to an approximate unbiased distribution of all generating factors of the target
category, thus will guide the classifier to correctly focus on the determining
factors which have the best generalization performance.
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3. The UMA method 
 Although the advanced controllable generative models 

can support various image manipulations, as for shortcuts 
inhibition, there still is a key question need to be answered: 

 
How to inhibit shortcuts without knowing which factor 

is the shortcut of a target category?   
 
The key idea of our approach is based on the important 

observation: From the perspective of information theory 
and causality, images of the same category correspond to 
identical determining factors and distribution manifolds, 
which have consistently high mutual information with the 
target class under most scenarios, whereas the confounding 
factors vary wildly. Consequently, ideal data augmentation 
should generate variants at the granularity of attributes or 
called generating factors, revealing the unbiased mutual 
information between the target class and all of its impact 
factors. Thus, the classifier can be guided to correctly focus 
on determining factors instead of shortcuts. 

However, traditional methods can only simulate simple 
and global geometric and photometric transformations, for 
they are conducted in the highly-coupled image or feature 
space. The progress of controllable generators illuminates 
a new avenue for overcoming this problem, because the 
semantic-disentangled manifolds have excellent properties 
of local linearity, to support unbiased augmentation. 

3.1. Progressive sample synthesis 

As shown in Figure 2, the proposed UMA consists of 
two complementary phases to ensure the diversity and 
credibility of the generated samples respectively. We now 
first turn to describe the details of the progressive sample 
synthesis strategy. 

In the phase of progressive sample synthesis, given a 
target category and only a few training samples, a series of 
simple and effective synthesis strategies is conducted, in 
the latent-code manifolds of a pretrained editable generator. 

It should be noted that the controllable generator needed 
by UMA is any StyleGAN or similar architecture whose 
latent codes containing the generating factors of the target 
class, so the editable generator can be trained at a much 
coarser granularity. E.g., a generic face generator can 
support any facial attribute recognition task with UMA, 
while the recognition of “swan” or “gull” can be improved 
with any generic bird generator. Since the controllable 
generative models have seen rapid improvement recently, 
there are many off-the-shelf models pretrained on well-
known large datasets for coarse categories. They can be 
adopted as the cornerstone as our UMA, to support the 
unbiased manifold augmentation of any subclass of them, 
which meets the needs of many practical applications.  

For the purpose of shortcut inhibition, the progressive 
sample synthesis is proposed, based on the full exploration 
of the controllable generators’ underlying properties. 

Figure 2: Overview of the proposed Unbiased Manifold Augmentation (UMA) for shortcut overreliance inhibition. Take “smiling” 
recognition for example, the model trained on a mostly female datasets will rely on the shortcut “gender” or other factors instead of 
the determining factor “expression”. UMA can lead the model to focus on determining factors rather than shortcuts. 
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Fig. 2. The architecture of the proposed Unbiased Manifold Augmentation (UMA) for
coarse class subdivision task. Take the coarse class “face” for example, here the tar-
get sub-classes are “smiling” and “unsmiling”. Randomly selected fine-grained samples
often have inevitable bias on the confounding factor “gender”, instead of the determin-
ing factor “expression” for the target task. Our UMA can generate unbiased samples
for each sub-class and lead the classifier to focus on determining factors with better
generalization.
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3 The UMA method

Although the advanced controllable generative models can support image manip-
ulations at the granularity of generating factors, as for coarse class subdivision
task, there are still three questions need to be answered:

1. How to synthetize abundant variants with only very few fine-grained sam-
ples?

2. How to synthetize unbiased variants without knowing what factors are the
determinative ones?

3. How to guarantee that these synthetic variants are fine-grained-label pre-
serving?

The key idea of our approach is based on an important observation: From the
perspective of causal representation learning, the generating factors of images
are composed of determinative factors and confounding factors. From the per-
spective of information theory, the determinative factors often have consistently
high mutual information with the target class under most scenarios, whereas the
confounding factors vary wildly, thus determinative factors have better gener-
alization ability. In the case of coarse class subdivision, the sub-classes inherit
the same determinative factors of the coarse class, and their difference lies only
in values. Consequently, given two samples within the same sub-class, if we ex-
change their correspondence factors, even without knowing their semantic or
whether they are determinative factors of the target class, the generated sam-
ples will still fall into the same sub-class. This observation is consistent with the
experimental results.

Furthermore, the progress of controllable generators illuminates a new av-
enue for overcoming these problems, because the semantic-disentangled mani-
folds have excellent properties of local linearity to support abundant and unbi-
ased augmentation even with limited and biased samples for each sub-class.

Based on the above observations, the Unbiased Manifold Augmentation (UMA)
is proposed. It consists of a simple and effective progressive synthesis strategy,
and a phase of progressive robust learning.

3.1 Progressive sample synthesis

As shown in Figure 2, the proposed UMA consists of two complementary phases
to ensure the diversity and credibility of the generated samples respectively. We
now first turn to describe the details of the progressive sample synthesis strategy.
In the phase of progressive sample synthesis, given a target category and only
a few training samples, a series of simple and effective synthesis strategies is
conducted, in the latent-code manifolds of a pretrained editable generator.

It should be noted that the controllable generator needed by UMA is any
StyleGAN or similar architecture whose latent codes containing the generating
factors of the target class, so the editable generator can be trained at a much
coarser granularity. E.g., a generic face generator can support any facial attribute
recognition task with UMA, while the recognition of “swan” or “gull” can be im-
proved with any generic bird generator. Since the controllable generative models
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Fig. 3. Examples of the progressive diversity of synthetic samples for sub-class “smiling
face”, corresponding to UMA A to UMA D. The full version of UMA and UMA++
are different integration of them.

have seen rapid improvement recently, there are many off-the-shelf models pre-
trained on well-known large datasets for coarse categories. They can be adopted
as the cornerstone as our UMA, to support the unbiased manifold augmentation
of any subclass of them, which meets the needs of many practical applications.

The advanced controllable generators often consist of two components, named
the encoder-decoder architecture. First, a mapping network converts a given
image into the latent code vectors (W 0 · · ·W 17) of a pre-trained StyleGAN,
corresponding to its 18 layers of progressive generator with different resolutions.
Second, after some manipulations, the modified latent vectors are then fed into
the synthesis network to generate a new image. It has been demonstrated that
different layers correspond to different semantic levels of image attributes from
coarse to fine, taking facial attributes manipulation for example, from global
pose to local details of the hair.

However, most existing manipulation methods are not suitable for unbiased
augmentation due to the lack of safety and diversity guarantee. The generated
images must still fall into the same class, and variants of the generating factors
should be covered as many as possible, even with limited and biased training
samples of this category.

For the purpose of coarse class classification, the progressive sample syn-
thesis is proposed, based on the full exploration of the controllable generators’
underlying properties.

Based on the observation introduced before, a series of progressive sample
synthesis strategy denoted as UMA A to UMA D is proposed. Given a pair of
samples xi and xj , the corresponding operations are as following:

W k
i = e(xi), W

k
j = e(xj), k ∈ [0, 17] (1){

W k
i

⊙
W k

j

}
t
=

{
W k

j |t=k,W
k
i |t ̸=k

}
t
, t ∈ [0, 17] (2)
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{x̂ij single}t =
{
g
(
W k

i

⊙
W k

j

)}
t

(3)

{
W k

i

⊕
W k

j

}
t
=

{
W k

j |t≤k,W
k
i |t>k

}
t
, t ∈ [0, 17] (4)

{x̂ij multiple}t =
{
g
(
W k

i

⊕
W k

j

)}
t

(5)

Here e and g denote the encoder and decoder of the used controllable gener-
ator, while k means 18 latent-code layers. For UMA A, the pair of seed images
is randomly sampled from the target category, and new codes are generated by
single layer switching, leading to 18 new images in all. UMA B uses progres-
sive switching layer by layer. Figure. 3 shows that the simple operation is very
useful to guarantee the safety of the synthetic samples, as it only swaps the
real attribute values within the same class, thus the determining factors and
their manifolds are kept unchanged. Meanwhile, the progressive switching also
brings in many reasonable variants of other factors. To further improve diversity,
UMA C and UMA D use one sample in the target class and another from the
coarser category, conducting single or multiple layers swapping respectively. We
can see from Figure. 3 that the diversity and reliability of the synthetic samples
gradually change from UMA A to UMA D.

Algorithm 1 : UMA (Unbiased Manifold Augmentation)

Input: a source dataset S(s+, s−) for the target category c;
a controllable generator G(e, g) for a coarser category C

Output: learned classification model M for task c
1: Initialize: Straining ← S
2: for n = 1, ..., N do
3: sample a pair of seed images (xi, xj) from s+:
4: Straining ← {(x̂ij single, y+)}t, using Eq.(1)(2)(3)
5: Straining ← {(x̂ij multiple, y+)}t, using Eq.(1)(4)(5)
6: sample a pair of seed images (xi, xj) from s−:
7: Straining ← {(x̂ij single, y−)}t, using Eq.(1)(2)(3)
8: Straining ← {(x̂ij multiple, y−)}t, using Eq.(1)(4)(5)
9: end for
10: train MUMA using Straining

11: for n = 1, ..., N do
12: sample seed pair (xi, xj), xi from s+, xj from C:
13: Straining ← {(x̂ij single, ŷ)}t, using Eq.(1)(2)(3)
14: Straining ← {(x̂ij multiple, y)}t, using Eq.(1)(4)(5)
15: ŷ (or weight ) is determined using robust learning
16: end for
17: train MUMA++ using Straining

18: return MUMA or MUMA++
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3.2 Progressive robust learning

Theoretically, using the proposed progressive sample synthesis strategy men-
tioned above, infinite new samples can be generated. But the trustworthiness of
their pseudo labels should also be taken into account.

We can see from Figure 3 that based on the underlying properties of the
controllable generators, using seed images sampled from the target category,
UMA A and UMA B can generate label-preserving samples. To further improve
diversity, UMA C and UMA D are also introduced, but they often result in
unreliable labels. For example, the layer swapping between images of a smiling
person and a person who doesn’t smile, may lead to a new one without obvious
expression. Consequently, the phase of progressive robust learning is further
integrated, to keep a good balance of the diversity and reliability for the synthetic
samples.

As noisy labels may severely degrade the generalization, robust learning with
noisy samples has gained significant attention in the machine learning commu-
nity. Please refer to the comprehensive survey [22] for more information.

As introduced before, the diversity and reliability of the synthetic samples
gradually change with UMA A to D. In conjunction with it, a progressive robust
learning strategy is proposed to cope with different scenarios. For datasets with
random distribution, a classifier for the target category is trained on augmented
dataset with label-preserving synthetic samples using UMA A and B, which is
called UMA in this paper. For a dataset with severe bias, only using UMA may
still generate biased samples. To cope with it, UMA++ should be used. It con-
sists of the complete series of progressive synthesis strategies and the progressive
robust learning strategy. Here a simple method wildly used in semi-supervised
learning [12, 21, 22] is adopted. A classifier is trained using UMA first. Then
the classifier itself can be used to filter out unreliable samples obtained with
UMA C and D, and fine-tune in an iterative manner. The appropriate combi-
nation of the progressive sample synthesis and selection makes UMA a flexible
mechanism. Thus, a good balance of the diversity and reliability of the synthetic
samples can be achieved.

4 Experiments

To verify the effectiveness of the proposed UMA and UMA++ methods, ex-
tensive experiments are conducted on three publicly available datasets, CelebA
[1], Stanford-Cars [11] and LSUN-Horses [25]. The performance of classifica-
tion accuracy is compared with ten widely used data augmentation methods
[5, 6, 9, 13, 24, 27, 28, 30], on various settings including random distribution and
severe bias.

4.1 Datasets and settings

Different from traditional data augmentation methods which simulate global
transformations, UMA can support the unbiased augmentation at the granu-
larity of generating factors, thus we perform experiments on a diverse set of
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challenging domains to illustrate the generalization of our approach. For fa-
cial domain, we perform various facial attributes recognition tasks from CelebA
dataset [1]. Recognition tasks on Stanford Cars dataset [11] and LSUN horse
dataset [25] are also conducted.

For sample synthesis, we start with the pretrained StyleGAN [4] genera-
tor for each coarse domain, e.g., a generic face generator pretrained on FFHQ
dataset [3]. Then the latent-code encoder is further obtained by e4e [23] frame-
work through image manipulation (or StyleGAN inversion) task. Hence, the
latent code of each image could be extracted, which contains 18 layers with 512
dimensions. For the UMA A and UMA B synthesis mode, the source image and
reference image are from the same class. In mode A, the latent code of the two
images is extracted, and single layer is switched, then fed into the StyleGAN [4]
generator to synthesis a new image. For B mode, the latent code of source image
is replaced by the reference image from the first layer to the 18th layer. For the
UMA C and UMA D synthesis mode, the source image and reference image are
from the different class. In mode C, single layer of the latent code is switched,
while the latent code is gradually replaced in mode D.

For these recognition tasks, we train the model from scratch, and no extra
data or pretrained models are used. ResNet-18 is used as the default CNN back-
bone for feature extraction, and all images are resized to 224 × 224 size. The
training batch size is 32 for all the tasks, and Adam optimizer is used during
training with initial learning rate 0.004. We perform warm-up schedule in the
first 5 epochs, then the learning rate is decayed by 0.1 every 20 epochs and to-
tal 50 epochs are trained. The training set is 256, and the test set is 1024. To
train all the parameters in our model, we compute the cross-entropy between
the prediction and target as the loss function. In the robust learning process, the
probability distribution over the classes of the synthesized image is predicted. If
the probability of the most likely class is higher than a predetermined threshold
of 0.95, it would be added to the training dataset. The label of the sample would
be assigned to its most likely class.

4.2 Evaluation of datasets with agnostic bias

For datasets with agnostic bias, we validate the effective ness of UMA by measur-
ing classification accuracies on 11 challenging recognition tasks, across facial, car
and horse domains [1,11,25], and compare the performance with 10 widely used
data augmentation methods [5, 6, 9, 13, 24, 27, 28, 30]. All the results in Table 1
and Figure 4 show that the UMA is very effective, and consistently outperforms
other augmentation methods significantly.

As shown in Table 1, we perform five single attributes recognition tasks (black
hair, eyeglasses, heavy makeup, smiling and bald) and two tasks for combined
attributes recognition (CA #1 is heavy makeup and smiling, CA #2 is male
with black hair) in facial domain. The subclass recognition tasks in car or horse
domain are also included. We can see that the performances of other methods
are not stable, revealing that they are not suitable for all scenarios. By contrast,
UMA performs best in all tasks. Especially, in the eyeglass-wearing recognition
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Table 1. Accuracy comparison on 11 coarse class subdivision tasks with 10 widely
used data augmentation methods. All methods use an identical backbone architecture
and the same default parameters. The number of training samples is only 32. More
details of the task settings please refer to section 4.

Method Publication
Black
Hair

Eye-
glasses

Makeup Smilling Bald CA#1

MixUp [28] ICLR’18 74.28 77.39 67.58 55.76 76.56 64.45
CutMix [27] ICCV’19 70.68 74.45 62.89 51.76 76.17 65.82

Auto Augment [5] CVPR’19 71.55 77.76 59.67 54.98 74.22 63.77
Manifold Mixup [24] ICML’19 75.76 75.74 67.29 58.40 76.95 66.70
Random Erasing [30] AAAI’20 74.24 75.55 60.94 50.78 73.05 62.79
Random Augment [6] NIPS’20 71.52 72.06 59.28 54.69 73.83 59.18

MoEx [13] CVPR’21 74.09 78.68 69.73 53.22 81.64 66.80
StyleMix [9] CVPR’21 68.71 78.86 63.67 61.23 71.88 51.76

StyleCutMix [9] CVPR’21 72.34 69.30 64.84 60.94 75.39 66.11
StyleCutMix(auto-γ) [9] CVPR’21 68.67 71.32 63.09 58.98 74.21 67.09

UMA -
79.20
(3.44↑)

90.99
(12.13↑)

74.41
(4.68↑)

67.87
(6.64↑)

84.77
(3.13↑)

76.95
(9.86↑)

UMA++ -
79.89
(4.13↑)

93.01
(14.15↑)

77.05
(7.32↑)

69.53
(8.30↑)
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(5.86↑)

78.03
(10.94↑)

Method Publication CA#2 Sedan SUV
Brown
Horse

White
Horse

Average

MixUp [28] ICLR’18 74.51 62.89 62.30 79.69 84.38 70.89
CutMix [27] ICCV’19 71.00 65.04 62.50 79.69 79.69 69.06

Auto Augment [5] CVPR’19 72.75 68.75 66.99 85.94 78.91 70.48
Manifold Mixup [24] ICML’19 74.32 63.96 61.91 76.56 80.47 70.73
Random Erasing [30] AAAI’20 72.07 61.52 59.08 78.91 78.12 67.91
Random Augment [6] NIPS’20 71.78 66.99 68.55 81.25 81.25 69.13

MoEx [13] CVPR’21 71.97 60.16 57.62 85.16 86.72 71.44
StyleMix [9] CVPR’21 73.34 63.96 62.50 78.12 81.25 68.66

StyleCutMix [9] CVPR’21 72.75 64.36 59.57 75.00 78.91 69.05
StyleCutMix(auto-γ) [9] CVPR’21 72.27 64.84 62.65 76.56 85.16 69.53

UMA -
76.86
(2.35↑)

72.56
(3.81↑)

71.29
(2.74↑)

89.84
(3.90↑)

88.28
(1.56↑)

79.37
(7.93↑)

UMA++ -
81.74
(7.23↑)

74.61
(5.86↑)

74.90
(6.35↑)

91.41
(5.47↑)

92.19
(5.47↑)

81.81
(10.37↑)
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Fig. 4. Accuracy comparison on various sub-class recognition tasks, with different num-
ber of training samples. To simulate the challenging small-data-learning scenario of
coarse class subdivision task, we only provide less than 1% fine-grained samples of
commonly used.
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task, our UMA and UMA++ are superior to the best one with a large margin
of 12.13% and 14.15%. On average, UMA and UMA++ gain 7.93% and 10.37%
improvement than the best method.

Figure 4 shows the details of accuracy varying with different number of train-
ing samples. In general, the accuracy substantially improves with the increase of
training data, whereas the marginal gain decreases gradually. This means that
the less data, the more important data augmentation is. UMA has a greater
advantage with limited training data. With the whole training data, 2% im-
provement is obtained. While using only 12.5% training data, UMA can achieve
up to 7% improvement in smiling recognition and 9.8% improvement in combined
attribute recognition task of heavy makeup with smiling. This is a compelling
proof of the diversity and reliability of the progressive synthesis and selection
method in UMA.

4.3 Evaluation of datasets with severe bias

(1) Smiling

Female Male

70%

30%

(2) Blond Hair

73%

27%

Makeup No Makeup

(3) Eyeglasses

83%

17%

Male Female

(a) Severe bias observed in well-known facial dataset [14]

(b) Accuracy comparison on the recognition task of “gender” with severe 
bias on “wearing eyeglasses”, using three different backbones.

Fig. 5. The observation of severe bias in wildly-used datasets, and the accuracy com-
parison between our UMA and the state-of-the-art data augmentation methods.

For a dataset with severe bias, only UMA is not enough, and UMA++ is
very suitable for this problem. Severe bias is very common in many well-known
datasets. As shown in Figure. 5(a), 70% of the annotation samples in [1] with
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smiling are female, while 73% annotated blond hair are heavily makeup, and
83% person with eyeglasses are male. The highly-coupled attributes can become
the confounding factors during recognition. E.g., “smiling” would hinder the
discrimination of “gender” attribute.

To study the effectiveness of UMA++ with severe bias, we conduct gender
recognition on a biased dataset. In the training dataset, 95% of the male samples
are wearing eyeglasses, and 5% of the female samples are wearing eyeglasses,
while in the test dataset, 50% of the samples are wearing eyeglasses for all
genders.

We start with a baseline classification model with only random horizontal
flip augmentation, and achieves 66.02% accuracy. Because of the severe bias in
the training dataset, the model heavily relies on the factors of eyeglasses, while
the intrinsic factors of gender are neglected. To relieve this problem, samples of
male without eyeglasses and female with eyeglasses are desired. Hence, we gen-
erate samples using UMA C and UMA D, which selects reference images outside
the target class. It can introduce valuable variants, e.g., male samples without
eyeglasses and female samples with eyeglasses. In UMA++, samples synthesized
by UMA C are assigned with the same label with the source image, and added
to the original dataset to train a base classifier. Then samples are further syn-
thesized by UMA D and selected with robust learning such as [12], achieving
16.79% improvement compared with baseline, as shown in Figure. 5(b). Com-
pared with the state-of-the-art methods, the UMA++ still outperforms them by
9.37%.

We also conduct experiments with different backbones, Figure. 5(b) shows
that UMA++ outperforms others consistently with various backbones. With
limited and biased datasets, ResNet-18 achieves the best performance, which
implies that deeper backbone could learn to fit the confounding factors much
easier and reduce the performance.

Table 2. Performance comparison with several state-of-the-art FGVC methods, on a
dataset with severe bias. Baseline stands for resnet-18 backbone with one fully con-
nected layers. UMA++ and various FGVC methods are added to evaluate the perfor-
mance.

Method Publication Baseline
Baseline

+
UMA++

Baseline
+

FGVC

Baseline
+FGVC

+UMA++

SPS [16] ICCV’21
66.02% 82.81%

72.27% 83.59%(11.31↑)
ProtoTree [10] CVPR’21 66.80% 84.38%(17.58↑)

CAL [17] CVPR’21 73.05% 84.77%(11.72↑)

For sub-class recognition tasks, many Fine-Grained Visual Classification(FGVC)
methods have been proposed [10, 16, 17], focusing on the design of networks or
attention mechanism, complementary with data augmentation discussed in this
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paper. Table 2 shows that compared with the state-of-the-art FGVC strategies,
our UMA can still perform best with dataset bias. Besides, our UMA is comple-
mentary with these FGVC strategies, and further improve the performance by
over 11.31%.

Source Reference MixUp[28] CutMix[27] StyleMix[9] 
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Fig. 6. Visualization of the proposed UMA and other wildly used data augmentation
methods. The reliability and diversity of the synthetic samples using the UMA are
better than other augmentation methods conducted in image space or feature space

5 Conclusion

To support the challenging CCS task with minimum fine-grained labeling cost,
the Unbiased Manifold Augmentation (UMA) is proposed. Leveraging the re-
cent progress of controllable generators, unbiased and reliable sample synthesis
is conducted in the disentangled latent-code manifolds, at the granularity of gen-
erating factors or called attributes, different from traditional augmentation in
highly-coupled image or feature space. UMA can reveal the approximate unbi-
ased mutual information between the target class and all of its impact factors,
thus guides the classifier to focus on causal factors.The proposed framework is
independent of the adopted editable generator or the specific robust learning
method. Experiments have shown that with a generator for a coarser category,
our UMA can greatly improve the generalization ability of the DNNs for sub-
classes recognition, on datasets with agnostic even severe bias.
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