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Abstract. Reliable confidence estimation for the predictions is impor-
tant in many safety-critical applications. However, modern deep neural
networks are often overconfident for their incorrect predictions. Recently,
many calibration methods have been proposed to alleviate the overcon-
fidence problem. With calibrated confidence, a primary and practical
purpose is to detect misclassification errors by filtering out low-confidence
predictions (known as failure prediction). In this paper, we find a general,
widely-existed but actually-neglected phenomenon that most confidence
calibration methods are useless or harmful for failure prediction. We
investigate this problem and reveal that popular confidence calibration
methods often lead to worse confidence separation between correct and
incorrect samples, making it more difficult to decide whether to trust a
prediction or not. Finally, inspired by the natural connection between
flat minima and confidence separation, we propose a simple hypothesis:
flat minima is beneficial for failure prediction. We verify this hypothesis
via extensive experiments and further boost the performance by com-
bining two different flat minima techniques. Our code is available at
https://github.com/Impression2805/FMFP.

Keywords: Failure prediction · Confidence Calibration · Flat minima ·
Uncertainty · Misclassification Detection · Selective Classification

1 Introduction

Deep neural networks (DNNs), especially vision models, has been widely deployed
in risk-sensitive applications such as computer-aided medical diagnosis [11,44],
autonomous driving [2, 29], and robotics [38]. For such applications, besides the
prediction accuracy, another crucial requirement is to provide reliable confidence
for users to make safe decisions. For example, an autonomous driving car should
rely more on other sensors or trigger an alarm when the detection network is
unable to confidently predict obstructions [29]. Another example is the control
should be handed over to human doctors when the confidence of a disease diagnosis
network is low [44]. Unfortunately, modern DNNs are generally overconfident for
their predictions, and can easily assign high confidence for misclassified samples
? Corresponding author.
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Fig. 1. Confidence calibration aims to reduce the mismatch between a model’s confi-
dence and accuracy from the perspective of global statistics, while failure prediction
is to distinguish correct from incorrect predictions from the perspective of confidence
separability. They both focus on in-distribution data and share the same motivation
to provide reliable confidence for trustworthy AI. Therefore, we explore a natural but
ignored question: is calibrated confidence useful for failure prediction?

[7, 15,17,22]. The overconfident issue makes DNNs models untrustworthy, and
therefore brings great concerns when DNNs are deployed in practical applications.

Recently, many approaches have been developed to alleviate the overconfidence
problem by calibrating the confidence, i.e., matching the accuracy and confidence
scores to reflect the predictive uncertainty [43]. Specifically, one category of
approaches [20, 41, 47, 48, 54, 61, 66, 68, 70, 75] aim to learn well-calibrated models
during training. For instance, mixup [61], label smoothing [48] and focal loss [47]
have been demonstrated to be effective for confidence calibration. Another class of
approaches [15,16,35,53,56,58] use post-processing techniques to calibrate DNNs.
The most famous post-processing calibration method is temperature scaling [15]
which learns a single scalar parameter to calibrate the probabilities.

In this paper, we study a natural but ignored question: can we use cali-
brated confidence to detect misclassified samples by filtering out low-confidence
predictions? This, perhaps, is the most direct and practical way to evaluate the
quality of the uncertainty. Actually, this problem is studied in the literature as
failure prediction (also known as misclassification detection or selective classifica-
tion) [7, 14, 22], whose purpose is to determine whether the prediction yielded by
a classifier is correct or incorrect. Note that failure prediction aims to detect the
erroneously classified natural example from seen class (e.g., misclassified samples
in test dataset), which is different from the widely studied out-of-distribution
detection [23, 37, 39] that focuses on judging whether an input sample is from
unseen classes. Compared with confidence calibration and out-of-distribution
detection, failure prediction is far less explored in the literature.
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Fig. 2. A comparison of (a) AUROC and (b) risk-coverage curves. We observed that
many popular confidence calibration methods are useless or harmful for failure prediction.
We propose a simple flat minima based method that can outperform the state-of-the-art
failure prediction method CRL [45]. ResNet110 [19] on CIFAR-10 [33].

As shown in Fig. 1, confidence calibration and failure prediction both focus on
the confidence of in-distribution data and share the same motivation that enables
the model to provide reliable confidence to make safe decisions. Therefore, common
wisdom in the community suggests that calibrated confidence could be useful
for failure prediction. However, we find a surprising pathology: many popular
confidence calibration methods (including both training-time [24,48,54,61,68,70]
and post-processing [15] calibration methods) are more of a hindrance than a help
for failure prediction, as illustrated in Fig. 2. Empirical study shows that those
methods often reduce overconfidence by simply aligning the accuracy and average
confidence. Such calibration could lead to worse separability between correct and
misclassified samples, which is harmful for failure prediction. Consequently, one
can not effectively detect misclassified samples by filtering out low-confidence
predictions based on the calibrated confidence.

Finally, how can we improve the failure prediction performance of DNNs?
Intuitively, failure prediction requires better discrimination between the confi-
dence of correct and incorrect samples, which would increase the difficulty of
changing the correct samples to be incorrect due to the larger confidence margins.
Interestingly, this is closely related to the notion of “flatness” in DNNs, which
reflects how sensitive the correct samples become misclassified when perturbing
the model parameters [12, 27, 28]. Inspired by the natural connection between
flat minima and confidence separation, we propose a simple hypothesis: flat
minima is beneficial for failure prediction. We verify this hypothesis by extensive
experiments and propose a simple and effective technique that combines different
kinds of flat methods to achieve state-of-the-art performance on failure prediction.

Contributions. Motivated by the widely confirmed confidence calibration effect
of recently proposed techniques, we rethink the confidence reliability by evaluating
them on the challenging and practical failure prediction task. Surprisingly, we
find that they often have negative effect on failure prediction. From a detailed
analysis, we identify a compounding less-separability effect of training-time
calibration methods [31,40,48,61,70], and further find that failure prediction can
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not be improved by post-hoc calibration strategies like temperature scaling [15].
Finally, inspired by the connection between flat minima [12,27,28] and confidence
separation, we propose to find flat minima to significantly reduce the confidence
of misclassified samples while maintaining the confidence of correct samples.
Extensive experiments show the strong performance of our method on both
failure prediction and confidence calibration.

2 Problem Formulation and Background

Considering the multi-class classification problem, we assume a sample (x, y) is
drawn i.i.d. from an unknown joint distribution over X×Y where X = Rd donates
the feature space and Y = {1, 2, ..., k} is a label space. Utilizing a standard softmax
function, a deep neural network classifier f : X → Y produces a probability
distribution over k classes. Specifically, given an input x, f produces the predicted
class probabilities p̂ = P̂ (y|x,θ), where θ is the parameters of the classification
model. With these probabilities, ŷ = argmaxy∈Y P̂ (y|x,θ) can be returned as
the predicted class and the associated probability p̂ = maxy∈Y P̂ (y|x,θ), i.e., the
maximum class probability, can be viewed as the predicted confidence.

2.1 Confidence Calibration

Definitions and notation. Intuitively, the predictive confidence of a well-
calibrated model could be indicative of the actual likelihood of correctness [15].
For example, if a calibrated model predicts a set of inputs x to be class y with
40% probability, then we expect 40% of the inputs indeed belong to class y.
Formally, a model is perfectly calibrated if [15, 36]:

P (ŷ = y|p̂ = p∗) = p∗,∀p∗ ∈ [0, 1]. (1)

The most commonly used calibration metric is the Expected Calibration Error
(ECE) [50], which approximates the miscalibration by binning the confidence in
[0, 1] under M equally-spaced intervals i.e., {Bm}Mm=1. Then the miscalibration is
estimated by taking the expectation of the mismatch between the accuracy and
averaged confidence in each bin: ECE =

∑M
m=1

|Bm|
n |acc(Bm)− avgConf(Bm)|,

where n is the number of all samples. Alternatives to ECE include the negative
log likelihood (NLL) and brier score [3].

Improving calibration. Many strategies have been proposed to address the
miscalibration of modern DNNs. (1) One category of approaches [47,48,54,61,
66,68,70,75] aim to learn well-calibrated models during training. For example,
several works [61,73,74] found that the predicted scores of DNNs trained with
mixup [72] are better calibrated. Muller et al. [48] showed the favorable calibration
effect of label smoothing. Mukhoti et al. [47] demonstrated that focal loss [40] can
automatically learn well-calibrated models. CS-KD [70] calibrates overconfident
predictions by penalizing the predictive distribution between the samples within
the same class. Recently, Joo et al. [31] explored the effect of explicit regularization
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strategies (e.g., Lp norm in the logits space) for calibration. (2) Another class
of approaches [15,16,35,53,56,58] rescal the predictions in a post-hoc manner.
Among them, temperature scaling [15] is a effective and simple technique, which
has inspired various post-processing approaches [34,46,58].

Empirical studies of calibration. In addition to the calibration strategies,
there have been some empirical studies on calibration. Guo et al. [15] observed
that larger networks tend to be less calibrated, even as classification accuracy is
improved. Ovadia et al. [52] studied the calibration under distribution shift and
empirically found the generally existing performance drop of different calibration
methods under distribution shift. More recently, Wang et al. [65] found that
it is harder to further calibrate the model with temperature scaling if it has
been trained with regularization methods. Minderer et al. [43] found that the
most recent non-convolutional models [10,62] are well-calibrated, suggesting that
architecture is a major factor of calibration performance. Differently from those
works, we rethink the confidence calibration for failure prediction.

2.2 Failure Prediction

Definitions and notation. Failure prediction, also known as misclassification
detection [22] or ordinal ranking [45], focus on distinguishing incorrect from
correct predictions based on their confidence ranking. Intuitively, if the associated
confidence of each misclassified sample is lower than that of any correctly classified
samples, we can successfully predict each error made by the classification model
at inference time. Formally, an optimal ordinal ranking model should reflect the
following relationship for every two samples (xi, yi) and (xj , yj):

κ(p̂i|xi,θ) ≥ κ(p̂j |xj ,θ)⇐⇒ P (ŷi = yi|xi) ≥ P (ŷj = yj |xj), (2)

where κ denotes a confidence-rate function (e.g., the maximum class probability)
that assess the degree of confidence of the predictions. Then, with a predefined
threshold δ ∈ R+, the users can reject the erroneously classification results based
on the following decision function g:

g(x) =

{
accept, if κ(x) ≥ δ,
reject, otherwise.

(3)

Common metrics for failure prediction are the risk-coverage curve (AURC), the
normalized AURC (E-AURC) [14,45], the false positive rate at 95% true positive
rate (FPR-95%TPR), and the area under the receiver operating characteristic
curve (AUROC). In addition, there are some other metrics [22] to imply how the
correct and incorrect predictions are separated.

Improving failure prediction. For DNNs, Hendrycks et al. [22] firstly estab-
lished a standard baseline for failure prediction by using maximum softmax
probability. Trust-Score [30] adopts the similarity between the classifier and a
nearest-neighbor classifier as a confidence measure. The main drawback of Trust-
Score is the lack of practicality and scalability in high-dimensional spaces. Some
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works [7, 42] formulate the failure prediction as a supervised binary classification
problem. Technically, ConfidNet [7,8] and SS [42] train auxiliary models to predict
confidence by learning the misclassified samples in training set. However, they
may fail when the model has a high training accuracy, in which few or even no
misclassified examples will exist in the training set. CRL [45] improves failure
prediction by regularizing the model to learn an ordinal ranking relationship
based on the historical correct rate during training. To the best of our knowledge,
there are only a few works for failure prediction and no method can significantly
or fairly outperform the baseline [22].

Why revisit confidence calibration for failure prediction? On the one hand,
confidence calibration and failure prediction both focus on the confidence of in-
distribution data and share the same motivation to provide reliable confidence for
making safer decisions. From a practical perspective, with a calibrated classifier in
hand, one natural way to verify its trustworthiness is to filter out predictions with
low confidence. On the other hand, confidence calibration has drawn significant
attention from the machine learning community, including improving calibration
[15,48,61,70], empirical studies of model calibration [15,43,52,66] and measures of
model calibration [3,16,51,64]. However, there are few works for failure prediction,
which is a practical, important, yet somewhat under-appreciated area of research.
Therefore, revisiting calibration from the perspective of failure prediction not
only helps understand the effect of calibration but also benefits the investigation
of failure prediction.

3 Does Calibration Help Failure Prediction?

In recent years, there is a surge of research focused on alleviating the over-
confidence problem of modern DNNs. As shown by many empirical results,
existing methods do help the calibration of DNNs. In this section, we empirically
investigate the reliability of the calibrated confidence for failure prediction.

3.1 Experimental Setup

Datasets and network architectures. We thoroughly conduct experiments on
benchmark datasets CIFAR-10 and CIFAR-100 [33], and large-scale ImageNet [9]
dataset. In terms of network architectures, we consider a range of models: PreAct-
ResNet110 [19], WideResNet [71], DenseNet [26] and more recent architecture
ConvMixer [63] for experiments on CIFAR-10 and CIFAR-100. For ImageNet,
we used a ResNet-18 [18] model. Due to space limitation, we provide the results
of more networks like MobileNet [25], EfficientNet [60] and dataset like Tiny-
ImageNet [69] in the the supplementary material.

Evaluation metrics. We adopt the standard metrics in [22] and [14, 45] to
measure failure prediction: AURC, E-AURC, AUROC, FPR-95%TPR, AUPR-
Success and AUPR-Error. Lower values of AURC, E-AURC, FPR-95%TPR and
higher values of AUROC, AUPR-Success, AUPR-Error indicate better failure
prediction ability. Supplementary material provides definitions of these metrics.
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Table 1. Failure prediction performance on CIFAR-10 and CIFAR-100 datasets. AURC
and E-AURC values are multiplied by 103, and all remaining values are percentage.

CIFAR-10

Network Method AURC
(↓)

E-AURC
(↓)

FPR-95%
TPR(↓)

AUROC
(↑)

AUPR-
Success(↑)

AUPR-
Error(↑)

ResNet110

baseline [22] 9.94±1.29 7.94±1.23 45.01±2.55 90.76±0.60 99.16±0.13 43.66±1.86
mixup [61] 15.05±0.09 13.31±0.29 41.18±2.54 86.93±0.98 98.60±0.03 43.19±3.52
LS [48] 24.50±2.73 22.57±2.77 44.76±3.76 81.89±1.64 97.63±0.29 39.57±1.00
Focal [47] 10.70±1.32 8.30±1.25 45.85±0.75 90.70±0.69 99.12±0.13 44.32±1.40
CS-KD [70] 18.02±3.47 15.81±3.43 43.98±3.86 85.89±1.87 98.33±0.36 41.17±4.09
L1 [70] 14.21±1.93 12.11±1.92 45.71±0.60 87.19±1.56 98.72±0.20 41.93±1.51

WRNet

baseline [22] 4.89±0.25 3.93±0.22 32.85±0.36 93.24±0.15 99.59±0.02 43.38±1.12
mixup [61] 6.24±0.79 5.52±0.80 31.27±0.63 91.18±0.66 99.43±0.08 41.86±0.79
LS [48] 16.69±2.86 15.69±2.86 34.24±2.84 85.30±1.79 98.38±0.29 43.19±1.27
Focal [47] 6.91±0.56 5.83±0.55 35.43±2.52 91.86±0.66 99.39±0.06 43.11±0.37
CS-KD [70] 10.29±0.35 9.22±0.38 38.65±2.67 88.13±0.74 99.04±0.04 38.88±0.66
L1 [70] 7.01±1.63 5.99±1.66 34.19±0.78 91.08±1.91 99.38±0.17 42.25±1.51

DenseNet

baseline [22] 6.2±0.29 4.66±0.27 38.20±2.48 92.87±0.44 99.51±0.03 43.74±2.44
mixup [61] 8.57±0.54 7.08±0.51 37.88±3.73 91.17±0.84 99.26±0.05 44.35±1.16
LS [48] 19.35±2.29 17.67±2.19 40.20±2.10 84.45±1.45 98.15±0.23 41.35±1.18
Focal [47] 7.17±0.28 5.35±0.19 41.75±0.88 92.31±0.17 99.44±0.02 43.27±2.04
CS-KD [70] 13.55±1.02 11.64±0.92 43.11±3.75 88.02±0.46 98.77±0.10 40.08±4.30
L1 [70] 8.34±1.24 6.94±1.07 37.02±0.97 91.40±0.63 99.27±0.13 44.19±0.55

ConvMixer

baseline [22] 8.33±1.44 6.29±1.30 42.32±3.26 92.02±0.96 99.34±0.14 43.80±1.49
mixup [61] 9.87±0.14 8.40±0.25 37.57±2.10 90.25±0.81 99.12±0.02 45.01±2.40
LS [48] 18.45±1.12 16.41±1.08 40.99±1.91 86.01±0.24 98.27±0.11 43.32±0.70
Focal [47] 9.59±1.02 7.17±1.03 46.18±1.66 91.32±0.87 99.24±0.11 44.03±0.57
CS-KD [70] 13.62±0.86 11.69±0.93 43.06±0.35 88.02±0.53 98.77±0.10 41.35±0.78
L1 [70] 12.92±2.41 11.07±2.36 41.39±0.91 88.35±1.57 98.83±0.25 42.91±1.60

CIFAR-100

Network Method AURC
(↓)

E-AURC
(↓)

FPR-95%
TPR(↓)

AUROC
(↑)

AUPR-
Success(↑)

AUPR-
Error(↑)

ResNet110

baseline [22] 93.90±2.37 50.88±2.03 66.02±1.53 85.00±0.35 93.42±0.28 66.54±0.29
mixup [61] 95.03±2.77 57.57±3.33 63.68±0.36 84.03±0.80 92.65±0.40 64.55±1.46
LS [48] 111.18±0.36 69.46±1.08 63.93±0.65 82.85±0.34 91.00±0.11 65.19±0.32
Focal [47] 96.60±2.81 52.97±1.96 66.60±0.64 84.22±0.17 93.16±0.28 65.23±0.53
CS-KD [70] 100.68±2.83 58.89±1.94 66.15±1.69 83.98±0.21 92.39±0.27 65.09±0.55
L1 [70] 119.49±4.04 71.47±3.31 65.78±0.96 82.73±0.51 90.55±0.44 66.44±0.59

WRNet

baseline [22] 51.97±1.74 30.18±1.09 59.19±0.20 87.75±0.30 96.38±0.14 62.99±0.98
mixup [61] 50.54±0.98 32.00±0.92 57.29±1.57 87.47±0.43 96.21±0.10 61.72±1.25
LS [48] 58.29±3.46 36.69±2.66 58.47±0.98 86.76±0.19 95.59±0.34 61.95±0.72
Focal [47] 54.54±1.44 32.40±1.28 61.87±1.06 86.89±0.22 96.12±0.16 60.56±0.65
CS-KD [70] 58.30±1.29 35.62±0.68 60.44±0.95 86.98±0.19 95.70±0.09 62.23±1.17
L1 [70] 61.63±0.46 38.78±0.45 59.48±2.07 86.21±0.28 95.31±0.05 62.55±0.77

DenseNet

baseline [22] 67.41±0.67 35.82±0.54 61.55±2.01 86.46±0.31 95.55±0.05 65.60±1.26
mixup [61] 64.84±4.26 37.06±2.74 62.94±2.55 86.26±0.63 95.47±0.36 62.64±0.81
LS [48] 76.24±2.31 44.40±1.01 62.41±0.51 85.32±0.10 94.47±0.15 63.59±0.43
Focal [47] 73.43±2.05 40.70±1.40 65.67±1.48 85.62±0.30 94.95±0.19 62.76±0.61
CS-KD [70] 75.22±1.02 41.38±1.28 62.75± 0.85 86.20±0.40 94.82±0.15 64.50±0.30
L1 [70] 68.73±1.10 40.47±1.37 63.39±0.92 85.46±0.50 95.06±0.22 61.90±0.44

ConvMixer

baseline [22] 76.96±1.64 41.20±1.64 63.57±0.52 86.28±0.18 94.81±0.06 65.39±0.83
mixup [61] 70.87±2.25 39.38±2.65 63.80±1.72 86.12±0.75 95.12±0.75 63.71±0.75
LS [48] 83.50±3.88 47.37±2.45 66.49±1.50 84.69±0.62 94.03±0.33 62.87±1.24
Focal [47] 83.79±2.03 45.51±0.88 66.26±1.50 85.17±0.34 94.24±0.12 64.36±1.76
CS-KD [70] 74.02±1.18 42.18± 0.56 64.83±1.46 85.44±0.14 94.76±0.09 62.64±0.69
L1 [70] 82.68±0.35 46.62±0.50 65.03±0.44 85.02±0.14 94.12±0.05 64.01±0.42

Implementation details. All models are trained using SGD with a momentum
of 0.9, an initial learning rate of 0.1, and a weight decay of 5e-4 for 200 epochs
with the mini-batch size of 128 on CIFAR-10 and CIFAR-100. The learning rate is
reduced by a factor of 10 at 80, 130, and 170 epochs. We randomly sample 10% of
training samples as a validation dataset for each task because it is a requirement
for post-calibration methods like temperature scaling [15]. For each experiment,
the mean and standard deviation over three random runs are reported.

Evaluated calibration methods. We evaluate various calibration methods
include training-time regularization like mixup [61], label-smoothing (LS) [48],
focal loss [40], CS-KD [70], L1 norm [31] and post-hoc method like temperature
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Fig. 3. Large-scale experiments on ImageNet. AURC and E-AURC values are multiplied
by 103 for clarity, and all remaining values are percentage.

scaling (TS) [15]. Those methods have been verified to be effective to address the
miscalibration problem of DNNs. Particularly, compared with post-hoc methods,
the effect of training-time regularization is irreversible. Therefore, we mainly
focus on their performance on failure prediction. Supplementary material provides
detail introduction and hyperparameter setting of each method.

3.2 Results and Analysis

In our experiments, we confirmed the positive calibration effects of the evaluated
methods. For example, on CIFAR-10, with mixup, the ECE (%) can be reduced
from 4.14 to 2.97 for ResNet110 and from 2.96 to 1.39 for DenseNet; with focal
loss, the ECE (%) can be reduced from 4.14 to 1.60 for ResNet110 and from 2.96
to 1.36 for DenseNet. These observations are consistent with that in [40,61].

Popular calibration methods can harm failure prediction. In practice,
users would naturally expect that the calibrated confidence can be used to
filter out low-confidence predictions in risk-sensitive applications. However, if
we shift focus to Table 1, it is evident that those methods generally lead to
worse failure prediction performance under various metrics. For example, when
training with mixup and LS on CIFAR-10/ResNet110, the AUROC (↑) drops 3.83
and 9.07 percentages, respectively. And the AURC (↓) increases 5.51 and 14.56
percentages, respectively. This is counter-intuitive as we expect those methods,
which successfully calibrate the confidence, could be useful for failure prediction.

The same observations generalize to large-scale dataset. Here we verify our
observation that calibration methods often harm failure prediction on ImageNet [9]
dataset, which comprises 1000 classes and over 1.2 million images. We train a
ResNet-18 [18] that achieve a 70.20% top-1 classification accuracy. The results are
shown in Fig. 3, from which we can observe similar negative effect of calibration
methods on failure prediction. More results on other networks, which exhibit
similar pattern, can be found in supplementary material.

Selective risk analysis. To make intuitive sense of the effect of those calibration
methods on failure prediction, Fig. 2(b) plots the risk-coverage curve. Specifically,
selective risk is the empirical loss or error rate that trust the prediction, while
coverage is the probability mass of non-rejected predictions [14,45]. Intuitively, a
better failure predictor should have low risk at a given coverage. As can be seen
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Fig. 4. Temperature scaling can hardly improve failure prediction.

from Fig. 2(b), the baseline has the lowest risks compared to other calibration
methods, which indicates that using the confidence calibrated by those methods
would unfortunately increase the risk when making decisions.

Does temperature scaling improve failure prediction? As a representative
post-hoc calibration technique, TS [15] is simple and effective. Specifically, TS
calibrates probabilities by learning a single scalar parameter T for all classes on a
hold-out validation set. In Fig. 4, we show the failure prediction performance of
TS on different networks and datasets. Specifically, using validation set and test
set to learn the parameter T are donated as TS-valid and TS-optimal, respectively.
By directly using test set, TS-optimal yields the optimal T for failure prediction.
As shown in Fig. 4, compared with baseline, TS-valid has negative effectiveness
while TS-optimal has negligible improvement.

3.3 Calibration Harms Failure Prediction: A Closer Look

de
ns

ity

confidence                                               

Fig. 5. LS results in under-confident
of correct samples. ResNet110 on
CIFAR-10.

Illustrative experiments. To empirically
understand the negative effect of those cali-
bration methods, Fig. 5 shows the confidence
distribution of test samples. It can be seen
that LS leads to a more severe overlap be-
tween the confidence of correct and incorrect
samples. Fig. 6(a) plots the average confidence
of correctly classified samples during training,
where their confidences are obviously reduced.
This can also be seen from Fig. 6(b-c), in
which mixup and LS lead to better overall
ECE but worse ECE of correct samples. This
indicates that those calibration methods yield under-confident correct prediction.
In conclusion, those calibration methods reduce the overconfident of DNNs, but
lead to worse separability between correct and misclassified samples, making it
hard to detect misclassified samples based on the calibrated confidence.

Discussion on calibration for failure prediction. The best failure prediction
is achieved when correct and wrong predictions are clearly separated according
to the confidence level. However, calibration focuses on matching the average
accuracy and confidence, and the best ECE score is achieved when correct and
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Fig. 6. (a) Comparison of average confidence of correctly classified samples during
training. (b) Mixup and LS successfully reduce the overall ECE, (c) but result in worse
ECE of correct samples. ResNet110 on CIFAR-10.

wrong predictions are “mixed” in the right way such that those with confidence
at level [c, c + w) (confidence window in a bin, where c donates the value of
confidence) should have a mix of correct and wrong predictions with ratios c : 1−c.
Regularization methods such as mixup [61], LS [48], focal loss [40], CS-KD [70]
and Lp norm [31] typically improve calibration by penalizing the confidence of the
whole samples to a low level. However, this will lead to undesirable effects: erasing
important information about the hardness of samples [59], which would introduce
an undesired mixing in ranking, and thus result in drops in failure prediction
qualities. Nevertheless, this does not mean that a better ECE must lead to worse
failure prediction. A proper strategy might benefit both confidence-accuracy
matching and confidence separability. As shown in Section 4, calibration and
failure prediction could be improved concurrently.

4 Improving Failure Prediction by Finding Flat Minima

As reported in Section 3, none of those popular calibration methods seem to
address failure prediction problem (stably) better than simple baseline [22].
Does there exist a more principled and hassle-free strategy to improve failure
prediction?

4.1 Motivation and Methodology

Rationale: why. Confidence separability between correct and incorrect samples
is crucial for failure prediction. Let us consider how confidence separability affects
the confidence robustness of correct samples. Specifically, for a correctly classified
sample, to become misclassified, it must reduce the probability on the ground
truth class and increase its probability on another (wrong) class. During this
process, the confidence margin plays a crucial role: a larger confidence margin
could make it harder to change the predicted class label. Interestingly, flatness of a
model reflects how sensitive the correctly classified samples become misclassified
when perturbing the weights of a model [12, 27, 28]. As illustrated in Fig. 7,
with flat minima, a correct sample is difficult to be misclassified under weight
perturbations and vice versa. Therefore, we conjecture that the confidence gap
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This inspires us to improve failure prediction by finding flat minima.

between correct and incorrect samples of a flat minima is larger than that of a
sharp minima.
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Reliable overfitting phenomenon.
As shown in Fig. 8, we observed an
interesting phenomenon that the AU-
ROC can be easily overfitting during
the training of a model (ResNet110
on CIFAR-10). Concretely, the test ac-
curacy continually increases while the
AUROC decreases at the last phases,
making it difficult for failure prediction.
We term this phenomenon as “reliable
overfitting ”, which exists on different model and dataset settings and somewhat
similar to the robust overfitting [57] in adversarial robustness literature. Since flat
minima has been verified to be effective for alleviating robust overfitting [6, 67],
we expect that flat minima could also benefit failure prediction.

Approach: how. There are several methods have been proposed to seek flat
minima for DNNs [5,12,28,55]. We select stochastic weight averaging (SWA) [28]
and sharpness-aware minimization (SAM) [12] as two representative methods due
to the simplicity for proofs-of-concept. Specifically, SWA simply averages multiple
parameters of the model along the training trajectory: θtswa = θswa

t−1×n+θt

n+1 ,
where n indexs the number of past checkpoints to be averaged, t is the training
epoch, θ is the current weights, θswa is the averaged weights. While SAM finds
the flat minima by directly perturbing the weights: min

θ
max
||ε||p≤ρ

L(θ + ε) + λ
2 ||θ||.

Although the SWA and SAM find flat minima based on different mechanism, we
find they both improve the failure prediction performance. This also motivates
us to combine them to get better performance. We refer the combine of them as
FMFP (Flat Minima for Failure Prediction). Supplementary material presents
pseudo-code for the FMFP algorithm.
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Table 2. Confidence estimation results. AURC and E-AURC values are multiplied by
103, and NLL are multiplied by 10 for clarity. Remaining values are percentages.

CIFAR-10

Network Method AURC
(↓)

E-AURC
(↓)

FPR-95%
TPR(↓)

AUROC
(↑)

AUPR-
Success(↑)

AUPR-
Error(↑)

ECE
(↓)

NLL
(↓)

Brier
(↓)

ResNet110

baseline [22] 9.94±1.29 7.94±1.23 45.01±2.55 90.76±0.60 99.16±0.13 43.66±1.86 4.14±0.06 2.88±0.08 10.47±0.28
CRL [45] 7.54±0.20 5.29±0.16 45.25±3.24 92.86±0.17 99.44±0.02 44.93±1.31 1.65±0.08 2.05±0.03 10.01±0.09

SAM 5.31±0.13 3.74±0.17 39.44±2.75 93.73±0.45 99.61±0.02 45.23±2.88 1.86±0.12 1.76±0.02 8.55±0.19
SWA 6.38±0.18 4.38±0.07 39.36±0.29 93.69±0.08 99.54±0.01 47.49±2.03 1.33±0.10 1.83±0.03 9.17±0.15
ours 5.57±0.11 3.92±0.09 39.50±0.52 93.76±0.10 99.58±0.01 44.45±1.89 0.50±0.13 1.68±0.02 8.50±0.13

WRNet

baseline [22] 4.89±0.25 3.93±0.22 32.85±0.36 93.24±0.15 99.59±0.02 43.38±1.12 2.71±0.06 1.82±0.03 7.15±0.07
CRL [45] 4.52±0.10 3.23±0.10 32.92±2.18 94.24±0.23 99.66±0.01 44.07±1.61 0.44±0.14 1.52±0.02 7.41±0.14

SAM 2.85±0.04 2.15±0.07 26.07±0.96 95.10±0.19 99.78±0.01 44.50±1.20 1.58±0.05 1.25±0.01 5.76±0.07
SWA 2.84±0.04 2.06±0.05 28.60±0.08 95.31±0.12 99.79±0.01 44.62±2.14 1.22±0.05 1.22±0.01 5.92±0.05
ours 2.60±0.06 1.90±0.03 27.80±2.19 95.43±0.07 99.80±0.01 44.36±3.46 0.43±0.14 1.12±0.01 5.57±0.03

DenseNet

baseline [22] 6.20±0.29 4.66±0.27 38.20±2.48 92.87±0.44 99.51±0.03 43.74±2.44 2.96±0.12 2.10±0.06 8.77±0.17
CRL [45] 6.17±0.26 4.29±0.09 39.76±0.24 93.64±0.18 99.55±0.01 46.51±1.88 0.95±0.18 1.81±0.06 8.98±0.35

SAM 4.56±0.17 3.06±0.14 33.69±1.68 94.55±0.20 99.68±0.01 47.32±1.03 1.37±0.13 1.53±0.05 7.45±0.20
SWA 5.02±0.20 3.48±0.04 37.87±2.71 94.31±0.24 99.64±0.01 44.48±1.38 1.13±0.11 1.61±0.03 8.12±0.24
ours 4.48±0.13 3.01±0.12 31.41±1.29 94.92±0.19 99.69±0.01 48.12±0.88 0.52±0.08 1.51±0.01 7.68±0.06

ConvMixer

baseline [22] 8.33±1.44 6.29±1.30 42.32±3.26 92.02±0.96 99.34±0.14 43.80±1.49 3.43±0.51 2.53±0.27 10.15±0.65
CRL [45] 6.89±0.51 4.78±0.35 41.47±1.38 93.27±0.21 99.50±0.04 45.99±1.38 0.99±0.22 1.98±0.07 9.57±0.31

SAM 5.52±0.22 3.88±0.16 36.16±1.35 93.92±0.32 99.59±0.02 46.66±2.60 2.16±0.21 1.84±0.06 8.55±0.29
SWA 4.68±0.26 3.35±0.17 34.73±2.04 94.54±0.16 99.65±0.02 45.62±1.17 1.31±0.17 1.59±0.07 7.90±0.30
ours 4.98±0.23 3.47±0.13 32.88±1.77 94.75±0.19 99.63±0.02 49.02±1.36 0.89±0.20 1.58±0.05 7.86±0.28

CIFAR-100

Network Method AURC
(↓)

E-AURC
(↓)

FPR-95%
TPR(↓)

AUROC
(↑)

AUPR-
Success(↑)

AUPR-
Error(↑)

ECE
(↓)

NLL
(↓)

Brier
(↓)

ResNet110

baseline [22] 93.90±2.37 50.88±2.03 66.02±1.53 85.00±0.35 93.42±0.28 66.34±0.29 15.71±0.15 13.54±0.12 42.88±0.27
CRL [45] 81.02±2.06 41.82±0.94 64.37±0.43 86.32±0.24 94.68±0.13 66.26±0.32 10.96±0.53 11.02±0.09 38.82±0.57

SAM 78.35±1.32 41.01±0.61 63.86±0.52 86.38±0.14 94.82±0.09 66.21±0.72 10.58±0.15 10.54±0.18 37.89±0.44
SWA 71.94±0.60 37.23±0.67 63.98±0.68 86.86±0.21 95.35±0.08 65.59±0.88 5.38±0.13 8.81±0.02 34.95±0.08
ours 69.51±0.56 35.51±0.08 62.57±0.81 87.24±0.12 95.57±0.02 66.52±1.04 3.41±0.35 8.51±0.07 34.10±0.19

WRNet

baseline [22] 51.97±1.74 30.18±1.09 59.19±0.20 87.75±0.30 96.38±0.14 62.99±0.98 7.19±0.36 8.43±0.11 29.67±0.45
CRL [45] 46.17±0.20 25.28±0.34 58.32±0.48 88.77±0.35 97.00±0.03 63.34±0.98 3.93±0.06 7.33±0.06 27.98±0.17

SAM 43.21±0.22 24.51±0.65 57.56±0.91 88.82±0.26 97.11±0.07 62.69±0.72 4.97±0.38 7.15±0.03 26.99±0.16
SWA 41.62±0.18 22.73±0.02 57.19±0.87 89.23±0.03 97.33±0.01 62.17±0.27 7.61±0.14 7.29±0.05 27.64±0.06
ours 40.80±0.31 22.00±0.15 56.13±0.44 89.53±0.10 97.41±0.01 63.11±0.12 6.07±0.34 6.83±0.01 26.78±0.20

DenseNet

baseline [22] 67.41±0.67 35.82±0.54 61.55±2.01 86.46±0.31 95.55±0.05 65.60±1.26 9.04±0.31 9.60±0.08 35.11±0.39
CRL [45] 64.30±1.26 34.59±0.33 61.42±1.74 87.19±0.25 95.74±0.06 64.67±1.45 5.38±0.34 8.50±0.14 32.85±0.32

SAM 63.52±2.41 34.51±1.07 61.46±0.32 87.01±0.13 95.76±0.15 64.41±1.04 5.91±0.39 8.53±0.18 32.75±0.71
SWA 59.88±1.40 32.08±0.25 63.11±0.73 87.34±0.18 96.09±0.05 62.88±1.39 4.89±0.28 7.82±0.10 31.63±0.47
ours 56.62±0.18 30.33±0.42 61.34±1.59 87.75±0.20 96.32±0.05 63.45±0.70 3.16±0.08 7.53±0.04 30.55±0.10

ConvMixer

baseline [22] 76.96±1.64 41.20±1.64 63.57±0.52 86.28±0.18 94.81±0.06 65.39±0.83 7.42±1.20 9.98±0.33 36.27±0.83
CRL [45] 64.20±0.50 33.57±0.56 60.11±2.62 87.59±0.31 95.85±0.06 65.78±1.73 3.99±0.43 8.55±0.02 32.84±0.06

SAM 64.47±2.10 34.05±1.19 64.58±1.44 87.11±0.24 95.82±0.16 63.52±0.66 7.96±0.10 8.34±0.10 33.36±0.38
SWA 69.73±2.51 37.47±1.14 63.43±1.24 86.56±0.15 95.35±0.17 64.57±0.64 6.29±0.35 9.13±0.24 34.54±0.67
ours 57.15±1.92 29.96±0.59 60.49±2.22 88.04±0.35 96.35±0.09 64.57±2.05 6.40±0.62 8.05±0.18 31.52±0.63

4.2 Experiments Results and Analysis

Experimental setup. We conduct experiments on CIFAR-10, CIFAR-100, and
Tiny-ImageNet with various network architectures. For comparison methods, we
mainly compare our method with baseline [22] and CRL [45], which is the state-of-
the-art approach for failure prediction that outperforms representative bayesian
methods [13, 32]. Due to the limitation of space, we provide implementation
details and experimental results on Tiny-ImageNet in supplementary material.

Flat minima do improve failure prediction. Comparative results are sum-
marized in Table 2. We observe that flat minima based methods: SAM, SWA, and
FMFP (ours) consistently outperform the strong baseline and CRL on various
metrics of failure prediction. Particularly, FMFP generally yields the best results.
For example, in the case of ResNet110, our method has 3.00% and 2.24% higher
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Fig. 9. Confidence distribution on correct and misclassified samples. Our method leads
to a better separation for failure prediction.
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Fig. 10. (a) Predictive distribution on misclassified samples. (b) Our method (FMFP)
significantly enlarges the average confidence gap between correct and incorrect samples.

values of AUROC on CIFAR-10 and CIFAR-100, respectively. In addition, flat
minima based methods, especially the proposed FMFP, can achieve effective
gains over confidence calibration (the last three columns in Table 2).

In Fig. 9, we observe that correct predictions and erroneous predictions over-
lap severely, making it difficult to distinguish them. Our method remarkably
shifts the errors’ confidence distributions to smaller values and maintains the
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Fig. 11. Comparison of risk-coverage curves.

confidence of correct samples,
leading to a better separation
for failure prediction. Fig. 10(a)
presents some examples of mis-
classified samples and their cor-
responding confidence distribu-
tion. Ours outputs much lower
confidence on the erroneously
predicted class. In Fig. 10(b), our method significantly enlarges the confidence
gap between correct and incorrect samples. Besides, the risk-coverage curves in
Fig. 11 and Fig. 2(b) also demonstrate the confidence reliability of our method.

Failure prediction under distribution shift. In real-world applications,
the model may encoder inputs subject to various kinds of distributional shifts.
Thus, it becomes necessary to evaluate the confidence estimation performance
to distributional shifts. The model is trained on CIFAR-10 and evaluated on
corrupted dataset CIFAR-10-C [21]. The average results for 15 kinds of corruption
under 5 different levels of perturbation severity are reported in Table 3. Our
method consistently performs better than baseline and CRL methods.
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Table 3. Failure prediction performance under distributional shifts.

Method
AUROC ↑ AURC ↓ FPR-95%TPR ↓

ResNet110 WRNet DenseNet ConvMixer ResNet110 WRNet DenseNet ConvMixer ResNet110 WRNet DenseNet ConvMixer

baseline [22] 79.45 83.81 81.97 81.28 157.46 112.46 148.91 168.39 71.29 64.05 69.26 71.07
CRL [45] 82.54 85.91 83.51 82.46 133.73 104.95 133.58 163.68 68.86 63.35 67.73 69.34
ours 84.72 87.34 84.90 84.93 119.79 94.34 130.42 145.21 65.51 58.87 64.95 65.29
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Fig. 12. Flat minima effectively mitigates
the reliable overfitting.

Flat minima mitigates the reliable
overfitting. Fig. 12 plots the AUROC
curves during training. Although the
failure prediction performance can be
improved by early stopping, the clas-
sification accuracy of early checkpoint
is much lower (Fig. 8). We can clearly
observe that with flat minima, reliable
overfitting has been diminished signifi-
cantly, and the AUROC curves robustly
improve until the end. Flat minima fur-
ther leads to better classification accuracy, avoiding the trade-off between AUROC
and accuracy when applying early stopping.

Further understanding flat minima for failure prediction. ¬ Represen-
tation learning. Misclassification with high confidence is often attributed to
spurious correlations appearing in the sample and the wrong class. Flat minima
has been theoretically proved to result in invariant and disentangled representa-
tions [1], which is effective for spurious representations mitigation [4]. Therefore,
with fewer spurious or irrelevant representations, the misclassified sample would
be near the decision boundary with low confidence and less activated for wrong
classes.  Uncertainty. It has been shown that flat minima corresponds to
regions in parameter space with rich posterior uncertainty [49]. Therefore, flat
minima has the advantage to indicate the uncertainty of an input.

5 Concluding Remarks

Failure prediction is an important yet far less explored problem for safety-critical
applications. This paper evaluates the effect of popular calibration methods for
failure prediction. To our surprise, they have no or negative effect on failure
prediction. We further find the under-confident issue of correctly classified samples,
which leads to worse separation between the confidence of correct and incorrect
samples. Finally, we propose to enlarge the confidence gap by finding flat minima,
which yields strong performance on extensive experiments.
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