1 Proof of Theorem 2

Proof. First we make some notations. Suppose we have a grid of size (q, q). For a position (x, y) that $1 \leq x, y \leq q$, denote $U L(x, y)$ to be the generalized window with size $\left(q / 2+p_{n}, q / 2+p_{n}\right)$ whose upper left corner lies on (x, y), and $L(y)$ to be the set of generalized windows with size $\left(q / 2+p_{n}, q / 2+p_{n}\right)$ whose left side lies on y. For a generalized window M, denote $L(M), R(M), U(M), L o(M)$ to be the position of left, right, upper and lower side respectively.

Considering two generalized windows M_{1}, M_{2} with size $\left(p_{n}, p_{n}\right)$ on the $q \times q$ grid. Without loss of generality, we assume $L\left(M_{1}\right) \leq L\left(M_{2}\right)$. Also we assume $U\left(M_{1}\right) \leq U\left(M_{2}\right)$, otherwise we can rotate the grid, and find the generalized window on the rotated grid that corresponds to the one on origin grid. Now we consider different cases.

1. If $x_{2}-x_{1} \leq q / 2, y_{2}-y_{1} \leq q / 2$, obviously $U L\left(x_{1}, y_{1}\right)$ satisfies.
2. If $x_{2}-x_{1} \leq q / 2, y_{2}-y_{1}>q / 2$, we have $\forall M \in L\left(y_{2}\right), R(M) \geq y_{1}+p_{n}$. So we only need to find x such that $L o\left(U L\left(x, y_{2}\right)\right) \geq \max \left\{x_{1}+p_{n}, x_{2}+p_{n}\right\}$. Actually $x=x_{1}$ is enough, so choose the generalized window to be $U L\left(x_{1}, y_{2}\right)$.
3. If $x_{2}-x_{1}>q / 2, y_{2}-y_{1} \leq q / 2$, similarly, we can choose $U L\left(x_{2}, y_{1}\right)$.
4. If $x_{2}-x_{1}>q / 2, y_{2}-y_{1}>q / 2$, choose $U L\left(x_{2}, y_{2}\right)$.

Hence such generalized window exists for all cases.

