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Abstract. In this paper, we propose a novel learning scheme for self-
supervised video representation learning. Motivated by how humans un-
derstand videos, we propose to first learn general visual concepts then
attend to discriminative local areas for video understanding. Specifically,
we utilize static frame and frame difference to help decouple static and
dynamic concepts, and respectively align the concept distributions in
latent space. We add diversity and fidelity regularizations to guarantee
that we learn a compact set of meaningful concepts. Then we employ a
cross-attention mechanism to aggregate detailed local features of differ-
ent concepts, and filter out redundant concepts with low activations to
perform local concept contrast. Extensive experiments demonstrate that
our method distills meaningful static and dynamic concepts to guide
video understanding, and obtains state-of-the-art results on UCF-101,
HMDB-51, and Diving-48.

Keywords: Video Representation · Visual Concepts · Local Contrast

1 Introduction

Self-supervised representation learning has been an exciting problem in computer
vision, which aims to encode robust representations that can be transferred to
various downstream tasks without human labeling. A prevalent strategy is to
design pretext tasks and acquire pseudo labels as self-supervision [7,24] or employ
contrastive learning to discriminate instances [12,29,8]. However, this learning
scheme is inconsistent with how humans learn from the world. To be specific,
instead of solely learning from labels or contrasting global features, humans can
typically conclude some general basic concepts from detailed observations, then
make predictions based on these concepts [6,62,38]. For example, we identify an
airplane through its wings and rudder; and recognize the action of playing soccer
through the ball as well as running and kicking movement as in Fig 1. To this
end, it would be promising to automatically formulate transferable concepts to
guide detailed local feature perception and improve the representations.
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(a) Soccer Juggling

(b) Basketball

Fig. 1. Visualization of visual concept attention maps. Each column corresponds to
the same concept, the former two columns describe static concepts and the latter three
present dynamic concepts. The same visual concept highlights similar visual patterns,
e.g., spherical objects, grass land, foot movement, leg movement, arm movement.

There have been some works exploring learning interpretable visual concepts
for particular tasks [38,6,78,13]. But in unsupervised video representation learn-
ing, how to formulate meaningful visual concepts and efficiently leverage local
cues remains unsolved. The difficulty lies in two aspects: Videos contain more
redundancy on temporal dimension. Besides, we lack fine-grained supervision
on the potential visual concepts. Most of the recent state-of-the-art works on
video representation learning inherit contrastive learning framework [58,28,22],
which projects the global pooled feature vectors into a latent space and performs
instance discrimination. Compared with the aforementioned human perception,
this formulation explicitly contrasts high-level global feature vectors but has dif-
ficulty dealing with detailed local features. Some works propose region-based
local feature contrast but could result in high redundancy [73,83]. In order to
effectively utilize the detailed local features, we propose a novel learning strat-
egy for self-supervised video representation learning. We aggregate local features
that present similar concepts, and then perform the concept-level alignment.

Concretely, we propose to form a latent space consisting of the learned vi-
sual concepts, and leverage the latent concept distributions as self-supervision
to jointly optimize feature representations and concept descriptions. However,
since the feature attributes are highly entangled in the high-level representation,
it is nontrivial to directly obtain general concepts without annotations. To solve
this, we divide the learning concepts into two general divisions, i.e., static scenes
and dynamic motions. Those two concepts are proved to be complementary but
orthogonal for video representation learning [32]. Static scenes focus on back-
ground cues while dynamic motions lay more emphasis on object’s movement.
In practice, we use the simple static frame and frame difference to naturally de-
couple these two aspects and ameliorate the entanglement of high-level feature.
Further, we define the projection head as a cosine classifier to generate concept
latent codes, with each class corresponding to a potential static or dynamic local
concept. We respectively align the static (dynamic) concept latent codes between
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original video and static frame (frame difference), and encourage sparsity in the
latent space to guarantee diversity of learned concepts. Besides, to make the pro-
jection head preserve necessarily relevant information and reduce redundancy,
we regard the latent codes as information bottleneck, where they are expected
to reconstruct the initial feature vectors. Thus, we apply a light-weight MLP
to achieve the fidelity regularization. By doing so, we establish a concept-based
latent space consisting of general static and dynamic visual concepts.

With these learned concept prototypes, we attend to local concepts in each
spatio-temporal area to improve the detailed local feature modeling. Specifically,
we use cross-attention to aggregate local features, then output a set of features
belonging to different concepts like Fig. 1. By referring to the concept latent code,
we select a series of visual concepts with high activations as valid ones and filter
out the redundant feature pairs. Contrastive loss is applied to these valid pairs
for fine-grained alignment. In this way, we seamlessly integrate general concept
learning with detailed local feature perception to enhance video representations.

To sum up, our contributions are: (1) We propose a novel self-supervised
video representation learning scheme, where we formulate general concepts to
guide concept-level detailed local feature alignment. (2) We employ cross-attention
to aggregate detailed features of different concepts, and filter out redundant local
features by concept latent codes. In this way, we achieve efficient local concept
contrast. (3) We achieve state-of-the-art results on downstream action recogni-
tion and video retrieval across UCF-101, HMDB-51 and Diving-48 datasets.

2 Related Work

Self-supervised Learning. Self-supervised learning aims to make full use of
large-scale unlabelled data without resorting to human annotations. Some works
design pretext tasks, e.g., image rotation [24], colorization [37], clustering [7,60],
to obtain pseudo labels and guide representation learning. Another line of works
introduce contrastive learning to build robust feature representations [75,20,52].
They employ noise contrastive estimation [25] to compare feature representations
and discriminate different instances [65,12,29]. Technically, these methods rely
on nonlinear projection head to project the extracted features into a latent space
for contrastive loss computation to reduce information loss. However, without
explicit constraint on the projection head, what information is preserved and
contrasted in the latent space is unclear, and the learning process is of low inter-
pretability. More recently, [21] employs whitening to analyze the latent feature
space. [8] assigns features to prototype vectors and contrasts cluster assignments
in the latent space. In contrast, in this work, we enforce the projection heads to
learn potential visual concepts and formulate an interpretable latent space, where
we contrast the concept distributions to guide general representation learning.
Video Representation Learning. Representation learning in video domain
requires the model to capture crucial spatio-temporal relationships in video se-
quences. Early works employ the temporal transformation [51,79,81,5,35,11,80],
spatio-temporal jigsaw [36,69], temporal cycle-consistency [33,42,72], future pre-
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diction [4,49] as pretext tasks. Later, [58,70,22,55,46,44,30,45] expand contrastive
learning framework to video and audio-video domain. Further, [34,39,31,17,18]
utilize the internal temporal structure to generate richer positive samples. [28,41,2,50,54]
contrast temporally aligned multi-modal inputs to learn complementary infor-
mation. These works explicitly contrast the global representations of video clips,
but pay little attention to detailed local features. To this end, [26,27] propose
to predict dense feature maps in future timestamps. [59,3,15,56] contrast short
and long clips on each timestamp to attend to fine-grained temporal features,
but still fail to utilize detailed spatial cues. [83,10] rely on bounding boxes or
segmentation masks to align semantically related local areas. While in our work,
we use simple static frame and frame difference to distill static and dynamic
visual concepts, based on which we aggregate relevant information from each
spatio-temporal area to enhance detailed content modeling.
Concept Learning. Recently, there have emerged a line of works that learn
human-specified visual concepts to solve downstream visual tasks [38,13,6,47,16].
They design concept bottlenecks models to first predict concepts then use these
concepts to make final predictions. Comparing to end-to-end deep models, con-
cept bottleneck models are more interpretable but require extra concept anno-
tations. To tackle this problem, [61,1] develop various regularizations to con-
strain the concept bottleneck and obtain potential concepts. [78] points out that
one-hot category labels are not optimal concept descriptions, and devises an
exploration-experience loss to alternatively update feature representation and
concept description. To our best knowledge, we are the first to integrate concept
learning into self-supervised video representation learning. We utilize static and
dynamic visual concepts to learn both general and detailed video representations.

3 Method

Our framework is shown in Fig. 2. For simplicity, we show detailed procedures
for video clip v, while static frame s and d are processed similarly. Specifically,
we first propose decoupled concept alignment (Sec. 3.1) with regularizations
(Sec. 3.2) to jointly optimize the extracted features and concept descriptions.
Then referring to learned concepts, we employ cross-attention to aggregate de-
tailed local features of different concepts, filter out redundant concepts with low
activations and perform concept-level alignment (Sec. 3.3).

3.1 Decoupled Concept Learning

Videos typically possess two complementary concepts, static concepts that in-
dicate background scene attributes, and dynamic concepts that reveal human
or object movements. Given a video sequence v, since various visual concepts
are highly entangled, it is nontrivial to directly learn meaningful visual con-
cepts without resorting to human annotations. But it is practical to decouple
the static and dynamic information in the input stage, i.e., we randomly select
a static frame s and calculate frame difference d to respectively carry static and
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Fig. 2. Overview of the framework. We take the original input video clip v for illustra-
tion. In the upper branch, we calculate cosine similarity between concept prototypes
Pv and transformed video feature σv(v) as concept latent code qv, which is then passed
through simple MLP to reconstruct the original feature vector. In the lower branch, we
use QKV attention with residue to aggregate local features of different concepts and
refer to qv to avoid redundant local concept contrast.

dynamic attributes. Then, an intuitive idea is to learn potential static concepts
from v and s, extract dynamic concepts from v and d, and respectively perform
static and dynamic concept alignment.
Concept Prototypes. To formulate the latent concept space, we propose to
learn several prototypes, each corresponding to a static or dynamic concept.
Specifically, we define three sets of prototypes respectively for s, d, v as:

Ps ∈ RKs×C , Pd ∈ RKd×C , Pv ∈ R(Ks+Kd)×C , (1)

where C denotes channel dimension, Ks is the number of static concepts, Kd is
the number of dynamic concepts. We use these concept prototypes to generate
latent concept activation codes and retrieve relevant local features in later stage.
Concept Codes. Following [12,8], we use a projection head to project the fea-
tures into a latent space and generate the concept latent codes. Mathematically,
we denote the feature extractor as f , and employ global average pooling to obtain
three feature vectors4:

s = GAP (f(s)), d = GAP (f(d)), v = GAP (f(v)), (2)

each is of the same dimension RC . Then, we pass these feature vectors through
projection heads to calculate concept codes. For illustration, we take the concept
code qs for static frame as an example. We first input s into a transformation
σs, which is in default identity mapping but can be replaced with other shallow
layers like MLP. Then we calculate the cosine similarity between the output

4 For simplicity, we use the same symbol to denote the backbone for s, d, v.
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vector and each prototype to form qs:

q(k)
s =

P
(k)
s σs(s)

T

||P (k)
s ||2||σs(s)||2

, qs ∈ RKs , (3)

where the superscript (k) indicates k-th channel. Similarly, we obtain concept
codes qd ∈ RKd and qv ∈ RKs+Kd in the same manner.
Concept Alignment. Since the video and static frame share the same static
attributes, while video and frame difference have the same dynamic attributes,
we propose to respectively align the static and dynamic concepts through Eq. 4.

Laln =−
Ks∑
k=1

(
qs

(k) log
exp(qs

v
(k)/τ)∑

k′ exp(qs
v
(k′)/τ)

+ qs
v
(k)

log
exp(q

(k)
s /τ)∑

k′ exp(q
(k′)
s /τ)

)

−
Kd∑
k=1

(
qd

(k) log
exp(qd

v
(k)/τ)∑

k′ exp(qd
v
(k′)/τ)

+ qd
v

(k)
log

exp(q
(k)
d /τ)∑

k′ exp(q
(k′)
d /τ)

)
,
(4)

For simplicity, we divide qv into two parts, the former Ks channels as qs
v indi-

cating static concepts, and the latter Kd channels as qd
v for dynamic concepts.

Similar to SWAV [8], we assume the concepts follow a uniform distribution over
the whole dataset, and use Sinkhorn-Knopp algorithm [14] to generate the soft
code q. Then we calculate the cross-entropy between q and the latent concept
distribution by taking softmax with temperature τ on q. By minimizing Laln, we
respectively align static and dynamic concept distributions, and jointly optimize
feature representations and concept descriptions from large-scale video data.

3.2 Concept Bottleneck Constraint

However, the decoupled concept alignment objective alone cannot guarantee that
each of the learned prototype corresponds to a meaningful concept. Motivated
by [1], the general concepts should possess fidelity and diversity. That is, the
concepts should preserve much relevant information from the inputs, and the
inputs can be described by a few concepts. To this end, we devise two constraints
on the concept latent codes as follows.

The first constraint is the sparsity regularization term as Eq. 5 to enforce
diversity of learned concepts. We employ L1 norm regularization to encourage
sparsity of concept latent codes, so that each input activates only a few concepts.

Ldiv = ∥qs∥1 + ∥qd∥1 + ∥qv∥1 . (5)

The second constraint is a reconstruction loss as Eq. 6 to ensure fidelity and
reduce redundancy. We borrow the idea from autoencoder to reconstruct the
feature vectors. Since the channel dimension of concept code is smaller than the
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feature vector, we regard q as information bottleneck and pass them through
two-layer MLP g for reconstruction. We use L2 loss for optimization, and stop
gradient on the original features. In this way, the concept prototypes cover a
wide range of important information with low redundancy.

Lfid = ∥gs(qs)− s∥22 + ∥gd(qd)− d∥22 + ∥gv(qv)− v∥22 . (6)

Relation to SWAV. Our concept code formulation is similar to SWAV [8], both
using cosine similarity between feature vectors and prototypes. But the motiva-
tions and technical designs are different. In terms of the motivation, SWAV is
essentially over-clustering and the prototypes are cluster centroids, the number of
which is set as 3,000 in default, much greater than semantic categories. While in
our method, the prototypes project the feature vectors into the low dimensional
space, which interprets the concept activations instead of the instance discrim-
ination. Through regularizations and activation alignment, our prototypes are
an ordered set of interpretable concepts each presenting a visual attribute. In
terms of technical design, our method only conducts spatio-temporal cropping
due to multiple modalities while SWAV requires stronger augmentation to make
the pretraining task harder and improve the representation quality.

3.3 Local Concept Contrast

The global concept code alignment serves as an effective supervision to learn
spatio-temporal characters in videos, but does not make use of detailed local
features which are crucial for video understanding. Some existing works in im-
age domain first match corresponding local areas then make contrast [73,77],
but they have difficulty expanding to videos because of the redundancy on time
dimension. [83] employs bounding boxes for region-based contrast between video
clips, but requires prior to filter redundant background areas. In order to better
utilize the detailed local contents, we need to generate a compact set of local
features with low redundancy. Therefore, we propose to leverage the learned pro-
totypes to retrieve detailed local features that are relevant to particular concepts,
and output an ordered set of local features for effective contrast.

Local Feature Attention. Motivated by the success of attention mechanism
in local feature aggregation [67,19,71,23], we employ widely used cross-attention
mechanism to retrieve detailed local features that are relevant to specific visual
concepts. As illustrated in Fig. 2, we linearly project the concept prototypes as
query tokens, and project the feature maps to formulate key and value tokens.
Then QKV attention with residue is applied to aggregate local features related
to the query. We still use the local features on static frame as an example:

Fs = QKV (Ps, f(s), f(s)), Fs ∈ RKs×C . (7)

We obtain Fd ∈ RKd×C and Fv ∈ R(Ks+Kd)×C in the same manner. Similar to
the separation on qv, we also divide Fv into F s

v ∈ RKs×C and F d
v ∈ RKd×C .
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Since each prototype corresponds to a potential static or dynamic concept,
each generated attention map highlights local areas that contain particular con-
cepts as shown in Fig. 1, where each column belongs to the same concept. There-
fore, it is intuitive to apply contrastive loss on the aggregated features of the
matching concepts to further enhance detailed local representations.
Local Feature Contrast. Recall that each input is representable with a few
concepts, we need to first filter out a set of valid concepts that exist in the
input sample. To do this, we resort to the previously obtained concept latent
codes q, which figure out which concepts are activated in each training sample.
Mathematically, we take local features of static concepts for illustration. Given
concept latent codes qs, q

s
v and local features Fs,F

s
v , we select top-K indexes

of each latent code and take the intersection as the valid static concept indexes:

idxs = top-k(qs,K) ∩ top-k(qs
v,K). (8)

The valid local feature pairs are denoted as {(F (k)
s ,F s

v
(k))|k ∈ idxs}, with the

superscript (k) indicating local feature of k-th concept.
These local features of the same static (dynamic) concept from the same

video are expected to represent exactly the same appearances (movements),
thus should be aligned. To this end, we apply contrastive margin loss in Eq. 9
to contrast the local features of valid concept indexes. To be specific, we employ
the valid local feature pair from the same video as positive samples, and use
local features of corresponding concept from other videos in the mini-batch to
form negative samples. We minimize the L2 distance between positive feature
pairs, and push the distance between negative pairs to a large margin:

l(Fs,F
s
v ) =

∑
k∈idxs

∥∥∥F (k)
s − F s

v
(k)
∥∥∥2
2
+
∑
F̃∈N

max
(
λ−

∥∥∥F (k)
s − F̃ s

v
(k)
∥∥∥
2
, 0
)2 ,

(9)

where λ is the margin hyper-parameter, and N is the set of negative samples in
the mini-batch. We use similar techniques to process local features of dynamic
concepts, and the final local concept contrast learning objective is formulated as

Lloc = l(Fs,F
s
v ) + l(F s

v ,Fs) + l(Fd,F
d
v ) + l(F d

v ,Fd). (10)

By minimizing Lloc, we build a concept-level self-supervision to make use of de-
tailed local features and improve video representations. Comparing to previous
methods using similar techniques to contrast local features [83,74], our method
does not rely on prior or complex post-processing to filter out redundant feature
pairs. The integration of general concept learning and detailed local feature con-
trast leads to higher learning efficiency and more comprehensive representations.
Overall Learning Objective. The overall training objective can be written as

L = Laln + αLloc + βLfid + γLdiv, (11)
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where the balancing hyper-parameters are respectively set to α = β = 1, γ = 0.01
in default. Since the formulation of Lloc relies on the concept codes to filter out
valid pairs, in the first few epochs (5 epochs in default), we do not include Lloc

to prevent random selection and stabilize training.

4 Experiment

4.1 Dataset

We use 4 popular video datasets, Kinetics-400 [9], UCF-101 [63], HMDB-51 [40]
and Diving-48 [43].Kinetics-400 [9] is a widely used benchmark for self-supervised
video representation learning, with 240K video clips covering 400 human action
classes. UCF-101 [63] covers 101 action categories and more than 13K anno-
tated clips. HMDB-51 [40] contains around 7k clips covering 51 action classes.
Diving-48 [43] contains 48 different diving actions. Different action classes in
Diving-48 mainly vary in motion patterns and the backgrounds are quite similar.

4.2 Implementation Details

We choose R(2+1)D-18 [66] with 14.4M parameters, and S3D [76] as the video
encoder. We empirically find that using separate networks or sharing the same
network to extract RGB/static frame/frame difference features leads to similar
performance. But using shared backbone results in higher learning efficiency, so
we use the same backbone for all in default. Given a video clip, we randomly
select a frame and repeat 16 times on the temporal axis to construct static
frame input, and use the difference between adjacent frames to form the frame
difference input. The resolution of each input sequence is 16 × 112 × 112 if not
specially motioned. We pretrain the model for 200 epochs on UCF-101 or 100
epochs on Kinetics-400. We adopt SGD optimizer with the initial learning rate of
10−2 and weight decay of 10−4. We set the number of static or dynamic concepts
to Ks = Kd = 50, and the ratio of valid local concepts to 10%, K = 5 in default.

4.3 Evaluation on Downstream Tasks

Action Recognition. We first present action recognition in Table 1. We report
linear probe and finetune Top-1 accuracy. For fair comparison, we exclude the
works with different evaluation settings and much deeper backbone [58,22] or
rely on audio and text [59,50]. The † means jointly utilizing RGB and optical
flow for pretraining, and the final performance is tested with RGB only.

In linear probe settings, our method achieves state-of-the art results on both
two datasets. It is worth noting that our UCF-101 pretrained model even outper-
forms most RGB-based methods pretrained on Kinetics-400, which indicates the
high data efficiency of our learning framework. Regarding to comparison with
CoCLR [28] pretrained with RGB and Flow, we reach higher accuracy with
fewer frames in each clip. It indicates that simple frame difference could replace
computationally expensive optical flow to improve dynamic attribute learning.
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Method Backbone Pretrain Dataset Frames Res. Freeze UCF-101 HMDB-51

CBT [64] S3D Kinetics-600 16 112 ! 54.0 29.5

RSPNet [11] R3D Kinetics-400 16 112 ! 61.8 42.8

MLRep [57] R3D Kinetics-400 16 112 ! 63.2 33.4

CoCLR† [28] S3D Kinetics-400 32 128 ! 74.5 46.1

Ours R(2+1)D UCF-101 16 112 ! 67.4 40.7

Ours R(2+1)D Kinetics-400 16 112 ! 72.1 45.9

Ours S3D Kinetics-400 16 128 ! 75.1 47.4

TempTrans [35] R(2+1)D UCF-101 16 112 % 81.6 46.4

LSFD [3] R3D UCF-101 32 112 % 77.2 53.7

STS† [68] R(2+1)D UCF-101 16 112 % 77.8 40.7

CoCLR† [28] S3D UCF-101 32 128 % 81.4 52.1

Ours R(2+1)D UCF-101 16 112 % 82.1 49.7

Ours S3D UCF-101 32 128 % 83.7 53.8

ASCNet [31] R3D Kinetics-400 16 112 % 80.5 52.3

Pace [70] R(2+1)D Kinetics-400 16 112 % 77.1 36.6

VideoMoCo [53] R(2+1)D Kinetics-400 32 112 % 78.7 49.2

RSPNet [11] R(2+1)D Kinetics-400 16 112 % 81.1 44.6

TCLR [15] R(2+1)D Kinetics-400 16 112 % 84.3 54.2

TimeEq [34] S3D-G Kinetics-400 32 128 % 86.9 63.5

STS† [68] S3D-G Kinetics-400 64 224 % 89.0 62.0

CoCLR† [28] S3D Kinetics-400 32 128 % 87.9 54.6

Ours R(2+1)D Kinetics-400 16 112 % 86.1 54.8

Ours S3D Kinetics-400 16 128 % 88.3 56.4

Table 1. Results on action recognition downstream task. We present the backbone
encoder, pretrain dataset, spatio-temporal resolution of each method. Freeze (tick)
indicates linear probe, and no freeze (cross) denotes end-to-end finetune.

In finetune, ours also achieves the best results among RGB-only methods,
and is comparable with RGB-Flow two-stream models. Among these method,
[35,34,11,31] carefully design temporal transformations to enhance temporal per-
ception in videos, [3,15] employ short and long clips to attend to fine-grained
temporal features, [28,68] utilize complementary information between RGB and
Flow to enhance video representations. While our method proposes to formulate
general static and dynamic concepts to guide detailed local feature perception,
the performance demonstrates the effectiveness of our new learning scheme.
Video Retrieval. We show the performance on video retrieval with R@k in
Table 2. All models are pretrained on UCF-101 with resolution 112×112 for fair
comparison. Generally, our method achieves superior results over both RGB-only
and RGB-Flow two-stream methods, especially when k is small. It indicates that
our method encodes desired characteristics into a more compact manifold.

4.4 Concept Analysis

Intuitively, actions can be represented by some general concepts, and the de-
tailed feature description of these concepts help to discriminate similar action
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Method Backbone
UCF-101 HMDB-51

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

VCP [48] R3D 18.6 33.6 42.5 53.3 7.6 24.4 36.3 53.6
MLRep [57] R3D 39.6 57.6 69.2 78.0 18.8 39.2 51.0 63.7
VCLR [39] R2D-50 46.8 61.8 70.4 79.0 17.6 38.6 51.1 67.6
PRP [82] R(2+1)D 20.3 34.0 41.9 51.7 8.2 25.3 36.2 51.0
STS† [68] R(2+1)D 38.1 58.9 68.9 77.2 16.4 36.9 50.5 65.4

CoCLR† [28] S3D 53.3 69.4 76.6 82.0 23.3 43.2 53.5 65.5

Ours R(2+1)D 55.6 70.1 77.4 83.1 24.4 45.1 54.5 66.4

Table 2. Results on video retrieval downstream task. We report R@k (k=1,5,10,20),
† means pretrained with RGB and optical flow.

classes. To this end, in this section, we reveal how the learned static and dynamic
concepts influence downstream action recognition.

Feature v qv qs
v qd

v Fv F s
v F d

v

UCF-101 72.1 66.3 61.4 62.6 72.7 68.3 69.8
HMDB-51 45.9 43.8 42.9 40.1 46.3 45.7 44.2
Diving-48 73.4 59.4 26.7 64.8 72.5 31.1 74.1

Table 3. Results of static and dynamic concept analysis. The models in first two rows
and the third row are respectively pretrained on Kinetics-400 and Diving-48.

Decoupled Concept for Action Recognition. We first quantitatively ana-
lyze the static and dynamic concepts and their relevant local features on action
recognition. We adopt different outputs from our learning framework and pass
them through linear classifier to do action classification on UCF-101, HMDB-
51 and Diving-48. Specifically, in default evaluation settings, we use the global
average pooled v as input to the classifier. We also compare using the concept
latent codes or the local feature set for recognition. Note that when using the
local feature set, e.g., Fv, we first filter out Top-10% concepts from qv, then av-
erage the corresponding local features for classification. From Table 3, we have
several observations. First, using concept latent code for classification leads to
performance drop, while the local feature set slightly improves performance. This
is because we learn limited number of general concepts and could lose detailed
information. While the local feature set effectively aggregates detailed informa-
tion and drops redundant features, which helps to improve action recognition.
Second, on UCF-101 and HMDB-51, static and dynamic concepts are almost
of equal significance, and jointly utilizing static and dynamic concepts leads to
best performance. Third, the dynamic concepts dominate action recognition on
Diving-48, and the static concepts are nearly useless as expected. This is be-
cause different diving classes share the same background scene and only differ
in motions, the static concepts could disturb motion pattern discrimination.
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Fig. 3. Per-class action recognition accuracy analysis. We compare the performance of
using static, dynamic and joint concept related local feature set, namely F s

v , F d
v , Fv.

(a) Static concept code (b) Dynamic concept code

Fig. 4. Decoupled concept code similarity. We respectively average static and dynamic
concept latent codes, qs

v and qd
v , within each category, then calculate cosine similarity.

To further analyze the impact of the decoupled concepts on specific action
categories, we select some typical classes from UCF-101 and visualize the per-
class accuracy under different settings in Fig. 3. Among the selected action cat-
egories, the blue ones are highly dominated by motions, the red ones may have
ambiguous motion patterns but can be easily recognized by appearance, and
for the purple ones, both static appearance and dynamic motion are discrim-
inative. The per-class accuracy with different feature input is in line with our
expectations, which indicates the decoupled concepts respectively reveal static
and dynamic attributes. Besides, we analyze the inter-class similarity in static
and dynamic concept latent space. In Fig. 4, we visualize the similarity be-
tween different actions. Intuitively, some actions share similar background but
with different motions, e.g., breaststroke and diving, while some possess similar
movement but diverse appearances, e.g., playing different instruments. As ex-
pected, the former ones have higher inter-class similarity in static concept space
while the latter ones are more similar regarding to dynamic concepts.
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Visualization Results. For each clip, we respectively select a static and a dy-
namic concept with highest activation in latent space, and visualize the atten-
tion maps. Generally, the selected static concept attends to foreground objects or
representative scene components, while the selected dynamic concepts highlights
discriminative motions. Comparing Fig. 5(a) and Fig. 5(c), they share similar
dynamic attributes, i.e., almost synchronized forearm movements, but can be
discriminated by static objects. Regarding to Fig. 5(b) and Fig. 5(d), they hap-
pen in similar pools, but the dynamic concept helps to figure out distinct motion
patterns. It reveals that the we learn meaningful static and dynamic concepts
that focus on different aspects, these two jointly facilitate video understanding.

(a) Playing Violin (b) Breast Stroke

(c) Playing Cello (d) Diving

Fig. 5. Visualization of static and dynamic concept attention maps. Each subfigure
left to right is: original frame, static concept attention map, dynamic concept attention
map.

4.5 Ablation Study

We perform ablation studies on the loss function designs and crucial hyper-
parameters. More ablative experiments please refer to Supplementary Material.

Laln Lfid Ldiv Lloc
UCF-101 HMDB-51

Linear Finetune Linear Finetune
✓ 61.4 76.3 40.3 44.7
✓ ✓ ✓ 68.1 80.1 43.2 47.9
✓ ✓ 67.4 78.9 43.3 46.4
✓ ✓ ✓ ✓ 72.1 82.1 45.9 49.7

Table 4. Ablation study on loss functions. We pretrain on Kinetics-400.

Overall Framework. We first validate the effectiveness of the loss functions in
Table 4. The model is pretrained with default concept numbers, Ks = Kd = 50,
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and the decoupled concept alignment objective Laln serves as the baseline. We
can observe that the two regularizations Lfid and Ldiv significantly improve the
performance. This is because these two terms reduce redundancy in the learned
concept prototypes and contribute to more compact and diverse concept formu-
lation, which effectively guides representation learning. And regarding to Lloc, it
also brings significant improvement since this objective explicitly contrasts local
features of valid concepts and facilitates detailed local feature perception.

Ks Kd
UCF-101 HMDB-51

w/ Lloc w/o Lloc w/ Lloc w/o Lloc

25 25 70.3 61.2 43.0 39.4
25 50 71.7 66.3 44.1 40.8
50 25 71.3 65.2 44.8 42.4
50 50 72.1 68.1 45.9 43.2
100 100 72.3 68.8 45.8 44.3
200 200 72.3 69.4 45.6 44.1

Table 5. Ablation study on concept numbers. We report linear probe accuracy.

Number of Concepts.We also explore the impact of different concept numbers
in Table 5. With the help of Lloc, the performance slightly improves when Ks

and Kd increases, and maintains stable in range of 50 to 200. While without
Lloc, the performance dramatically drops when the concept numbers become
small. Because when Ks and Kd are small, the latent space captures general
concepts but loses detailed information to discriminate similar actions. But when
combined with Lloc, the model adaptively attends to detailed local features with
desired concepts, which makes up for the information loss to a large extent.

5 Conclusion

In this paper, we propose to learn general static and dynamic visual concepts to
guide self-supervised video representation learning. We design decoupled concept
alignment objective with regularizations to jointly optimize feature representa-
tions and concept distributions. Then we refer to the learned concepts to aggre-
gate detailed local features corresponding to different concepts. We utilize the
concept latent code to filter out redundant concepts with low activations, and
perform concept-level local feature contrast for detailed video understanding.
We achieve state-of-the-art results on UCF-101, HMDB-51 and Diving-48. The
ablation studies demonstrate that the integration of general concept learning
and detailed local feature contrast improves video representation learning.
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