
SphereFed: Hyperspherical Federated Learning 21

A Extra Federated Learning Results

In this section, we present additional results under various system and training
settings to further evaluate the robustness of our approach.

A.1 Different Local Training Epochs

Tuning the number of local epochs affects accuracy-communication trade-off for
most federated learning algorithms. Prior studies [32,51,60] attempt to reduce
the number of local training epochs to mitigate the disparity of local models. The
default number of local training epochs is set as E = 10 in the main manuscript.
We further test different numbers of local training epochs E = {1, 5} in Tab. 5.
When E is set as 1, we increase the total number of rounds to 500 to ensure
convergence. As is seen from Tab. 5, our method consistently improves the base
algorithms with various numbers of local training epochs.

Table 5. Accuracy (%) with different number of local training epochs.

Model Method E = 1 E = 5

MobileNetV2
(α = 0.5)

FedAvg 70.51 68.40

+ CCVR 71.33 (↑ 0.82) 68.93 (↑ 0.53)

+ BABU 71.46 (↑ 0.95) 69.10 (↑ 0.70)

+ Ours 73.26 (↑ 2.75) 72.02 (↑ 3.62)

VGG13
(α = 0.1)

FedNova 60.53 57.46

+ CCVR 61.31 (↑ 0.78) 57.77 (↑ 0.31)

+ BABU 62.75 (↑ 2.22) 58.50 (↑ 1.04)

+ Ours 64.75 (↑ 4.22) 62.06 (↑ 4.60)

A.2 Different Client Numbers

The default number of clients K is set as 10 following prior work [41,48]. We
further test the performance of our methods when the system contains more
clients. In Tab. 6, we partition CIFAR-100 training set to K = 100 clients
according to a Dirichlet distribution with a concentration parameter α = 0.5.
During federated training, the central server randomly selects 10% clients to
participate each round [32,43,54,60]. For each method, we set the number of
rounds as 500. According to results in Tab. 6,

A.3 Different Learning Rate Scheduling Strategies

Besides adjusting the learning rate at each round according to a cosine annealing
schedule4, we further experiment another widely used learning rate scheduling

4 See torch.optim.lr scheduler.CosineAnnealingLR

22 X. Dong et al.

Table 6. Accuracy (%) with K = 100 clients.

Model Method Accuracy Model Method Accuracy

MobileNetV2

FedAvg 68.26

VGG13

FedNova 49.04

+ CCVR 69.20 (↑ 0.94) + CCVR 50.45 (↑ 1.41)

+ BABU 69.14 (↑ 0.88) + BABU 51.27 (↑ 2.23)

+ Ours 71.38 (↑ 5.12) + Ours 55.23 (↑ 6.19)

strategy (e.g., multi-step scheduling5) to verify the robustness of our approaches.
Specifically, we decay the learning rate by 0.1 every 40 epochs. Empirical results
in Tab. 7 indicate that our methods are able to bring state-of-the-art accuracy
gain with different learning rate scheduling strategies.

Table 7. Accuracy (%) with different learning rate (LR) schedulings.

LR method Accuracy LR Method Accuracy

Cosine

FedAvg 68.78

Multi-step

FedAvg 68.60

+ CCVR 69.14 (↑ 0.36) + CCVR 69.05 (↑ 0.45)

+ BABU 69.35 (↑ 0.57) + BABU 69.43 (↑ 0.83)

+ Ours 71.85 (↑ 3.07) + Ours 71.06 (↑ 2.46)

B Personalization Performance Comparison

We investigate the performance gain brought by SphereFed for personalized
federated learning. Following the setup in [29,54,77], we first combine the training
and testing sets of CIFAR-100 to a single dataset which contains 60,000 samples
in total. Then, the combined dataset is partitioned into 10 clients according to
a Dirichlet distribution with a concentration parameter α. On each client, we
use 15% its local data as local testing set and the other as local training set.
Each personalized local model is evaluated on its corresponding local testing
set. The overall performance of personalized federated learning is evaluated by
calculating the mean and standard deviation of local testing accuracies across
all clients [29,54,77].

We consider four recent personalized federated learning baselines for compar-
ison in Tab. 8. For instance, LG-FedAvg [44] jointly updates feature extractors
and classifiers during local training and only aggregates classifiers on the server
in order to learn compact local representations. In FedRep [15], local feature
extractors and classifiers are updated sequentially and the servers aggregates
updated feature extractors at each round. The state-of-the-art pFL method,
BABU [54], is also included in the comparison.

For our methods, we use SphereFed during federated training. Since it is
not necessary to get the optimal global classifier for pFL, we skip the FFC for

5 See torch.optim.lr scheduler.MultiStepLR

SphereFed: Hyperspherical Federated Learning 23

the global classifier. Instead, we keep the learnt global feature extractor fixed
and conduct personalization fine-tuning for the local classifier on each client.
We consider two manners for the personalization fine-tunings. The first manner
(duded ‘Ours (SGD)’ in Tab. 8) is to optimize the classifier on the local training
set with SGD optimizer like prior arts [29,54,77]. The second manner (duded
‘Ours (FFC)’ in Tab. 8) is to adapt our FFC to compute the closed-form optimal
classifier on the local training set (according to Eq. (7)).

Empirical results in Tab. 8 indicate that our proposed methods are able to
improve pFL as well with hyperspherical features which are better aligned and
less biased.

Table 8. Accuracy (%) comparison of different personalized federated learning (pFL)
methods. The numbers ‘A±B’ are the ‘mean± standard deviation’ of personalized
accuracies across clients.

Data FedAvg LG-FedAvg FedRep BABU Ours (FFC) Ours (SGD)

α = 0.5 69.95 ± 3.96 71.67 ± 4.33 62.39 ± 3.91 72.34 ± 3.84 75.63 ± 3.13 75.71±3.32

α = 0.1 80.16 ± 3.77 81.95 ± 3.69 73.63 ± 3.74 82.12 ± 3.63 84.06 ± 3.10 84.12±3.29

C Extra Calibration Results

C.1 Adapting An ℓ2 Penalty in the Closed-Form Solution

In Sec. 4.3, we formulate the calibrating the classifier W as a least square prob-
lem in Eq. (6). Theoretically, an ℓ2 penalty of W can be added and the objective
of calibrating the classifier is,

argminW E(x,y)∼D [LMSE (Wz, y)] + λ∥W∥22 , (11)

where λ is a hyper-parameter used to control the penalty intensity. As a result,
the closed-form weights optimum (i.e., Eq. (10)) becomes,

W∗ =
(∑K

k=1 V
k + λI

)−1 (∑K
k=1 U

k
)
, (12)

where I ∈ Rl×l is the identity matrix. In practise, we test different values for
λ ∈ {0, 10−3, 10−2, 10−1, 100, 101} and find that the difference among resulted
accuracies is less than 0.27% (10−1 results in the better accuracy 71.96%). There-
fore, we keep λ = 0 in our main experiments.

C.2 Calibrate Weights One or Multiple Times?

Theoretically, we can conduct the Fast Federated Calibration (FFC) multiple
times during the federated training. In practise, we attempt to calibrate the

24 X. Dong et al.

classifier every 10 rounds and get a final accuracy 71.88% which is quite close to
the accuracy of one-time calibration (71.85%). This empirical result suggests that
the pre-defined orthogonal hyperspherical W serves as a high-quality feature
learning target (as discussed in Sec. 4.1) against a calibrated one. Moreover,
conducting calibration multiple times will introduce extra communication and
computation overheads. In this regard, we conduct FFC once after federated
training in our main experiments.

C.3 Applying FFC with Features Trained with CE

The derivation of Fast Federated Calibration (FFC) relies on the mean square
error (MSE) loss. However, in this section, we show that FFC can be used upon
features trained by other losses (e.g., cross entropy loss) because the training
of the feature extractor and the calibration of the classifier are decoupled. In
addition, both CE and MSE have similar optimization goal, i.e., encouraging
the feature extractor to make features of the i-th class close to wi. For instance,
we train the feature extractor with cross entropy loss (CE) and then calibrate
the classifier with our proposed FFC in Tab. 9. Experiential results verify that
FFC is able to improve the classifier on features trained with CE.

Table 9. Applying FFC for the classifier on features trained with CE.

FedAvg + Fix (R) + Fix (R) + FFC

CE 63.90 64.91 (↑ 1.01) 65.36 (↑ 1.46)

D Different Ways to Generate Orthogonal Classifier
Initialization

We experiment two representative methods to generate the row-orthogonal weight
matrix for classifier’s weight initialization.

– QR-decomposition method. In linear algebra, a QR decomposition is to de-
compose a random matrix A into a product A = QR of an orthogonal
matrix Q and an upper triangular matrix R [1,58,73], in which Q is the
matrix of our interest.

– Tammes method. To distribute C two-dimensional vectors on an unit cir-
cle as uniformly as possible, one can randomly place the first vector and
then put the next vector by shifting the previous vector for an angle of 2π

C .
However, when the dimension is larger than two, no such optimal separation
algorithm exists, which is known as the Tammes problem [71]. To maximize
the separation for any vector dimension, Mettes et al. [52] optimize an ob-
jective which encourages large cosine similarity of any pair of vectors with

SphereFed: Hyperspherical Federated Learning 25

gradient decent. Following [52], we learn the vectors using SGD optimizer
with 0.1 learning rate and 0.9 momentum for 104 steps.

Table 10. Accuracy (%) of different initialization methods for the classifier.

FedAvg+SphereFed

(MobileNetv2

on CIFAR-100)

Init. Rep. dim. (l) #Classes (C) Time Accuracy

QR 1280 100 0.02 s 71.85
Tammes 1280 100 13.1 s 71.36

Tab. 10 shows the comparison of above two kinds of initialization methods for
the orthogonal classifier weight matrix. QR-decomposition initialization achieves
slightly better accuracy than the Tammes initialization. We also provide the wall
time of the two methods which is measured on the machine with one NVIDIA
GeForce GTX 1080 Ti GPU.

In all the other experiments of this work, QR method is used for SphereFed
due to its efficiency and effectiveness.

E Details of Hardware Experiments

We evaluate the hardware performance of different on an embedded DNN train-
ing accelerator [91] based on the Xilinx VC707 FPGA evaluation board [78]. A
32 by 64 systolic array is used to perform the tensor operations during the for-
ward and backpropagation. Each systolic cell consists of a Multiply-Accumulate
(MAC) unit which can perform a floating-point multiplication and addition
within a clock cycle, and a special unit is implemented to perform the opera-
tions for the rest layers (e.g., group/batch normalization, ReLU). The hardware
system runs at 100 MHz.

F Details of Implementation

F.1 Model Architectures

We provide the detailed information of ConvNet, MobileNetV2, ResNet18, VGG13
and SENet18 in Tabs. 11 to 15. For the ‘NormLayer’ after each convolution
layer, two kinds of normalization layers are experimented. For experiments with
MobileNetV2 and CIFAR-100, we instance the normalization layer as batch nor-
malization. For other experiments, we use group normalization following prior
arts [32,43,48,66,76,84,87].

F.2 Hyper-parameters

SphereFed and FFC do not introduce any extra hyper-parameter to base feder-
ated learning algorithms. Since we change the loss function from cross entropy

26 X. Dong et al.

to mean square error and these two loss functions have different magnitude,
we tune the learning rate for both baselines and our methods using grid search
from the limited candidate set {0.005, 0.01, 0.05, 0.1, 0.5, 0.8, 1.0}. Detailed de-
fault hyper-parameters are summarized in Tab. 16.

Table 11. Architecture of ConvNet

Block Layers Repetition

Conv(3, 32, k=3, s=1), NormLayer(32), ReLU() 1
Conv(32, 64, k=3, s=2), NormLayer(64), ReLU() 1
Conv(64, 64, k=3, s=2), NormLayer(64), ReLU() 1
Conv(64, 64, k=3, s=1), NormLayer(64), ReLU() 1
Conv(64, 128, k=3, s=2), NormLayer(128), ReLU() 1
Conv(128, 128, k=3, s=1), NormLayer(128), ReLU() 1
Conv(128, 256, k=3, s=2), NormLayer(256), ReLU() 1

Flatten() 1
FeatureNorm() if use SphereFed 1
FC(1024, 100, bias=False) 1

Table 12. Architecture of VGG13

Block Layers Repetition

Conv(3, 64, k=3, s=1, p=1), NormLayer(64), ReLU() 1
Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU() 1
MaxPool2d(k=2, s=2) 1
Conv(64, 128, k=3, s=1, p=1), NormLayer(128), ReLU() 1
Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU() 1
MaxPool2d(k=2, s=2) 1
Conv(128, 256, k=3, s=1, p=1), NormLayer(256), ReLU() 1
Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU() 1
MaxPool2d(k=2, s=2) 1
Conv(256, 512, k=3, s=1, p=1), NormLayer(256), ReLU() 1
Conv(512, 512, k=3, s=1, p=1), NormLayer(256), ReLU() 1
MaxPool2d(k=2, s=2) 1
Conv(512, 512, k=3, s=1, p=1), NormLayer(256), ReLU() 2
MaxPool2d(k=TIN S, s=TIN S) 1

AvgPool2d(k=1, s=1)
Flatten() 1
FeatureNorm() if use SphereFed 1
FC(512, 100, bias=False) 1

*: TIN S=1 if dataset is CIFAR-100 and TIN S=2 if dataset is TinyImageNet.

SphereFed: Hyperspherical Federated Learning 27

Table 13. Architecture of SENet18

Block Layers Repetition

Conv(3, 64, k=3, s=1, p=1), NormLayer(64), ReLU() 1

B1

Conv(64, 64, k=3, s=TIN S, p=1), NormLayer(64), ReLU()
Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU()
SquzzeExcitationModule()

1

Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU()
Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU()
SquzzeExcitationModule()

1

B2

Conv(64, 128, k=3, s=2, p=1), NormLayer(128), ReLU()
Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU()
SquzzeExcitationModule()

1

Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU()
Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU()
SquzzeExcitationModule()

1

B3

Conv(128, 256, k=3, s=2, p=1), NormLayer(256), ReLU()
Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU()
SquzzeExcitationModule()

1

Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU()
Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU()
SquzzeExcitationModule()

1

B4

Conv(256, 512, k=3, s=2, p=1), NormLayer(512), ReLU()
Conv(512, 512, k=3, s=1, p=1), NormLayer(256), ReLU()
SquzzeExcitationModule()

1

Conv(512, 512, k=3, s=1, p=1), NormLayer(512), ReLU()
Conv(512, 512, k=3, s=1, p=1), NormLayer(512), ReLU()
SquzzeExcitationModule()

1

AvgPool2d(k=4, s=4) 1
Flatten() 1
FeatureNorm() if use SphereFed 1
FC(512, 100, bias=False) 1

*: TIN S=1 if dataset is CIFAR-100 and TIN S=2 if dataset is TinyImageNet.

28 X. Dong et al.

Table 14. Architecture of MobileNetV2.

Block Layers Repetition

Conv(3, 32, k=3, s=1), NormLayer(32), ReLU() 1

B1
Conv(32, 32, k=1, s=1), NormLayer(32), ReLU()
Conv(32, 32, k=3, s=1, p=1, g=32), NormLayer(32), ReLU()
Conv(32, 16, k=1, s=1), NormLayer(16), ReLU()

1

B2

Conv(16, 96, k=1, s=1), NormLayer(96), ReLU()
Conv(96, 96, k=3, s=TIN S, p=1, g=96), NormLayer(96), ReLU()
Conv(96, 24, k=1, s=1), NormLayer(24), ReLU()

1

Conv(24, 144, k=1, s=1), NormLayer(144), ReLU()
Conv(144, 144, k=3, s=1, p=1, g=144), NormLayer(144), ReLU()
Conv(144, 24, k=1, s=1), NormLayer(24), ReLU()

1

B3

Conv(24, 144, k=1, s=1), NormLayer(144), ReLU()
Conv(144, 144, k=3, s=2, p=1, g=144), NormLayer(144), ReLU()
Conv(144, 32, k=1, s=1), NormLayer(32), ReLU()

1

Conv(32, 192, k=1, s=1), NormLayer(192), ReLU()
Conv(192, 192, k=3, s=1, p=1, g=192), NormLayer(192), ReLU()
Conv(192, 32, k=1, s=1), NormLayer(32), ReLU()

2

B4

Conv(32, 192, k=1, s=1), NormLayer(192), ReLU()
Conv(192, 192, k=3, s=2, p=1, g=192), NormLayer(192), ReLU()
Conv(192, 64, k=1, s=1), NormLayer(64), ReLU()

1

Conv(64, 384, k=1, s=1), NormLayer(384), ReLU()
Conv(384, 384, k=3, s=1, p=1, g=384), NormLayer(384), ReLU()
Conv(384, 64, k=1, s=1), NormLayer(64), ReLU()

3

B5

Conv(64, 384, k=1, s=1), NormLayer(384), ReLU()
Conv(384, 384, k=3, s=1, p=1, g=384), NormLayer(384), ReLU()
Conv(384, 96, k=1, s=1), NormLayer(96), ReLU()

1

Conv(96, 576, k=1, s=1), NormLayer(576), ReLU()
Conv(576, 576, k=3, s=1, p=1, g=576), NormLayer(576), ReLU()
Conv(576, 96, k=1, s=1), NormLayer(96), ReLU()

2

B6

Conv(96, 576, k=1, s=1), NormLayer(576), ReLU()
Conv(576, 576, k=3, s=2, p=1, g=576), NormLayer(576), ReLU()
Conv(576, 160, k=1, s=1), NormLayer(160), ReLU()

1

Conv(160, 960, k=1, s=1), NormLayer(960), ReLU()
Conv(960, 960, k=3, s=1, p=1, g=960), NormLayer(960), ReLU()
Conv(960, 160, k=1, s=1), NormLayer(160), ReLU()

2

B7
Conv(160, 960, k=1, s=1), NormLayer(960), ReLU()
Conv(960, 960, k=3, s=1, p=1, g=960), NormLayer(960), ReLU()
Conv(960, 320, k=1, s=1), NormLayer(320), ReLU()

1

Conv(320, 1280, k=1, s=1), NormLayer(1280), ReLU() 1

AvgPool2d(k=4, s=4) 1
Flatten() 1
FeatureNorm() if use SphereFed 1
FC(1280, 100, bias=False) 1

*: TIN S=1 if dataset is CIFAR-100 and TIN S=2 if dataset is TinyImageNet.

SphereFed: Hyperspherical Federated Learning 29

Table 15. Architecture of ResNet18

Block Layers Repetition

Conv(3, 64, k=3, s=1, p=1), NormLayer(64), ReLU() 1

B1

Conv(64, 64, k=3, s=TIN S, p=1), NormLayer(64), ReLU()
Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU()

1

Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU()
Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU()

1

B2

Conv(64, 128, k=3, s=2, p=1), NormLayer(128), ReLU()
Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU()

1

Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU()
Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU()

1

B3

Conv(128, 256, k=3, s=2, p=1), NormLayer(256), ReLU()
Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU()

1

Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU()
Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU()

1

B4

Conv(256, 512, k=3, s=2, p=1), NormLayer(512), ReLU()
Conv(512, 512, k=3, s=1, p=1), NormLayer(256), ReLU()

1

Conv(512, 512, k=3, s=1, p=1), NormLayer(512), ReLU()
Conv(512, 512, k=3, s=1, p=1), NormLayer(512), ReLU()

1

AvgPool2d(k=4, s=4) 1
Flatten() 1
FeatureNorm() if use SphereFed 1
FC(512, 100, bias=False) 1

*: TIN S=1 if dataset is CIFAR-100 and TIN S=2 if dataset is TinyImageNet.

30 X. Dong et al.

Table 16. Summary of default hyper-parameters.

Method Hyper-parameters IID α = 0.5 α = 0.1 TinyImageNet

FedAvg
(MobileNetV2)

Rounds 100
Optimizer SGD
Weights decay 0.00001
Momentum 0.9
Local epochs 10
Local batch size 64
Learning rate 0.1

+ CCVR
virtual features per class [48] 500 500 500 1000
fine-tuning learning rate [48] 0.00001 0.00001 0.00001 0.00001

+ BABU learning rate 0.1 0.1 0.1 0.01

+ Ours learning rate 0.5 0.5 1.0 0.5

FedProx
(ResNet18)

Rounds 100
Optimizer SGD
Weights decay 0.00001
Momentum 0.9
Local epochs 10
Local batch size 64
Learning rate 0.1
µ 0.001

+ CCVR
virtual features per class [48] 500 500 500 1000
fine-tuning learning rate [48] 0.00001 0.00001 0.00001 0.00001

+ BABU
learning rate 0.1 0.1 0.1 0.1
µ 0.001 0.001 0.001 0.001

+ Ours
learning rate 0.5 0.5 0.5 0.5
µ 0.0001 0.0001 0.0001 0.001

FedNova
(VGG13)

Rounds 100
Optimizer SGD
Weights decay 0.00001
Momentum 0.9
Local epochs 10
Local batch size 64
Learning rate 0.01

+ CCVR
virtual features per class [48] 500 500 500 1000
fine-tuning learning rate [48] 0.00001 0.00001 0.00001 0.00001

+ BABU learning rate 0.01 0.01 0.01 0.001

+ Ours learning rate 0.1 0.1 0.1 0.1

FedOpt
(SENet18)

Rounds 100
Optimizer SGD
Weights decay 0.00001
Momentum 0.9
Local epochs 10
Local batch size 64
Local learning rate 0.01
On-server optimizer [60] SGD
On-server learning rate [60] 1.0
On-server momentum [60] 0.3

+ CCVR
virtual features per class [48] 500 500 500 1000
fine-tuning learning rate [48] 0.00001 0.00001 0.00001 0.00001

+ BABU Local learning rate 0.01 0.01 0.01 0.01

+ Ours Local learning rate 0.5 0.5 0.5 0.5

	SphereFed: Hyperspherical Federated Learning

